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Abstract: Functional magnetic resonance imaging (fMRI) allows for the indirect

measurement of whole brain neuronal activity using local blood oxygenation level.

Functional connectivity, i.e., the correlation between the temporal activity of re-

mote regions, may be used to track brain reorganization while, for example, a sub-

ject learns a new skill. However, testing the significance of changes in functional

connectivity is challenging for individual data, because fMRI time series exhibit de-

pendencies in both space and time that may not be properly captured by classical

parametric models. To address this issue, we propose a new statistical procedure in

a bootstrap hypothesis testing framework after various strategies were implemented

to take temporal dependencies into account. These alternatives were evaluated on

Gaussian and non-Gaussian Monte-Carlo simulations of space-time processes, as

well as on a longitudinal study of motor skill learning. The results demonstrated

that neglecting the temporal dependencies or modeling them as an autoregressive

process of order 1 may lead to poor control of the false positive rate, i.e. to liberal

tests. The version of the procedure based on a circular block bootstrap achieved

robust, satisfactory performances in all settings.
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1. Introduction

Blood oxygen level dependent (BOLD) functional magnetic resonance imag-
ing (fMRI) is a non-invasive technique that measures the hemodynamic correlates
of whole-brain neural activity (Ogawa et al. (1990)). One main contribution of
fMRI to brain science has been to help identify the brain regions engaged in
the performance of a given task (Worsley and Friston (1995)). Beyond the mere
localization of brain functions, fMRI has also contributed to the elucidation of
some aspects of the interactions within a network of brain regions (Marrelec,
Bellec and Benali (2006)). A popular approach in connectivity studies is the so-
called functional connectivity, operationally defined as the correlation between
the fMRI time series associated with two voxels or regions (Friston (1994)).

Assessing changes in functional connectivity has already proved to be a pow-
erful tool to investigate brain reorganization (e.g., Dodel et al. (2005)). For this
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purpose, statistical procedures have mostly been applied at a group level and
therefore have dealt with independent measurements from different subjects, al-
lowing use of general techniques such as the analysis of variance (ANOVA) (Mor-
gan and Price (2004)). At the individual level, statistical tests have to deal with
the uncertainty related to fMRI time series, which is more challenging. A first
issue is that the assumption of a joint Gaussian distribution of individual fMRI
time series is questionable (Gavrilescu et al. (2004)). A second issue is that,
in functional connectivity studies, regions have a temporal activity dominated
by the slow vascular response to neuronal activity. The associated fMRI time
series thus cannot be regarded as independent and identically distributed (i.i.d.)
samples from a given process (Bullmore et al. (2000)). While some resampling
procedures have been put forward as remedies for these issues in the context
of the general linear model (Friman and Westin (2005)), they are not readily
applicable to functional connectivity studies.

In this paper, we propose a new statistical procedure designed to test changes
in functional connectivity at the individual level. Various strategies were inves-
tigated to take temporal dependencies into account, and these alternatives were
evaluated on Gaussian and non-Gaussian Monte-Carlo simulations of space-time
processes. The procedure was also evaluated on an experiment of motor skill
learning, with a longitudinal study of three subjects.

2. Bootstrap Hypothesis Testing Procedure

This section presents the details of the statistical testing procedure. The
test is applied on a connectivity measure, i.e., a function of the fMRI data which
can be, for example, the average functional connectivity measure (AFC), see
Section 2.1. A bootstrap data-generating process (DGP) is used to approximate
the distribution of the AFC, and multiple strategies can be implemented to take
temporal dependencies into account, see Section 2.2. The bootstrap DGP is
modified to conform with a null hypothesis in which the connectivity measures
have the same distribution in two datasets. This approach, called bootstrap
hypothesis testing, provides an estimate of the false positive rate (FPR) when
rejecting the null hypothesis, see Section 2.3. Because multiple comparisons are
performed, an estimate of the false discovery rate (FDR) is also implemented, see
Section 2.4. Finally, a more complex version of the initial bootstrap algorithm is
introduced to improve the accuracy of FPR and FDR estimation, see Section 2.5.
The abbreviations used throughout the article have been listed in Supplementary
Material, A.

2.1. Intra- and inter-networks average functional connectivity

Let y be a series of L functional datasets (yl)L
l=1, assumed to have an iden-

tical size, T × N , for simplicity. The time series (yl
t,i)

T
t=1 is usually taken to
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be the spatial average of the time series of all voxels within a region i and for
an experimental condition l. A (multivariate) smooth function of yl is derived
to estimate a connectivity measure. For example, the functional connectivity
between two regions i and j is the classic estimate of Pearson linear correlation
coefficient rij(yl). The AFC θθθ is another measure that applies to a set of N brain
regions grouped into M non-overlapping sets (Sm)M

m=1, called networks. Many
approaches can be used to define the regions and networks, e.g., a general linear
model (Worsley and Friston (1995)), independent component analysis (McKeown
et al. (1998)) or hierarchical clustering (Bellec et al. (2006)). The inter-networks
AFC between Sm and Sm′ is defined as (#Sm#Sm′)−1

∑j∈Sm′
i∈Sm

rij(yl), where #
is the cardinality of a set. The intra-network AFC limits the average to pairs of
distinct regions: 2(#Sm(#Sm − 1))−1

∑i6=j
i,j∈Sm

rij(yl). The (multivariate) AFC
θθθ(y) is the M(M + 1)/2 vector of distinct intra- and inter-networks AFC mea-
sures placed in any arbitrary order, and θ(y) denotes any of these univariate
measures.

2.2. Bootstrap data-generating processes

To test for significant changes in AFC between two fMRI datasets, the distri-
bution of the random variable θ(yl) needs to be approximated. Formally, regional
time series yl are modelled as a sample from a N -dimensional stationary random
process Yl = (Yl

t; t ∈ Z) such that (Yl
t)

t0+T
t=t0+1 has a probability density function

(pdf) f l that depends on T but not on t0, because of stationarity. Having ob-
served yl, the bootstrap consists of building an approximation f̂ l

y of f l, which
can be done under various assumptions. In practice, bootstrap estimates are
built through Monte-Carlo sampling and it is not necessary to have an explicit
expression for f̂ l

y, but rather to be able to draw samples yl,∗ from f̂ l
y through

a DGP. In the classic independent and identically distributed (i.i.d.) case, the
DGP consists of sampling independently T values u(t) in {1, . . . , T} with a uni-
form probability 1/T , with yl,∗

t,i equals to yl
u(t),i for all i = 1, . . . , N (Efron and

Tibshirani (1994)). This DGP, called iidB, respects the spatial dependence of
the data, because the same temporal samples are used for all spatial locations,
and it leads to consistent confidence intervals for the spatial correlations when
the time series are i.i.d. (Shao and Tu (1995)).

Unfortunately, iidB is not suited for data with temporal dependencies, yet
the DGP can be adapted to resample the data while preserving its intrinsic
temporal structure. A class of DGPs, called pre-withening, is based on a para-
metric assumption on the temporal structure of Y. The parameters of temporal
dependencies are estimated to transform the data into a space where the i.i.d.
assumption holds. For example, for a autoregressive process of order 1 (AR1),
the DGP consists of estimating the parameter of the AR1 process and the i.i.d.
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residuals, then applying iidB to the residuals. This semi-parametric DGP, called
AR1B, has been advocated as an accurate fMRI data resampling scheme in the
estimation of the null distribution in a general linear model (Friman and Westin
(2005)).

A fully non-parametric alternative to AR1B is the circular block bootstrap
(CBB) (Shao and Tu (1995)). The CBB consists of drawing blocks of the time
series rather than independent observations in order to respect the temporal
dependencies of the data. The block length h needs to be adapted to the range of
temporal dependencies and the number of volumes T . For adequate h values, the
CBB preserves spatial correlation, and formally leads to consistent confidence
intervals of spatial correlations (Lahiri (2003)). In order to choose h, we propose
the following maximum variance criterion (MVC), which indirectly intends to
maximize the estimated FPR of the testing procedure by maximizing the variance
of the bootstrap distribution. Specifically, the standard deviation σ̂yl(h) of the
bootstrap distribution of θ(yl,∗) is estimated by Monte-Carlo sampling on a grid
of reasonable values for h; when multiple measures and datasets are considered,
σ̂y(h) is the average of σ̂yl(h) across all measures θ and datasets yl; the block
length hopt is selected as the one which maximises σ̂y(h).

2.3. Bootstrap estimate of the false positive rate

For a dataset y = (yl)2l=1, i.e., L = 2, the statistic of interest, δ(y), is the
difference in AFC between the two conditions, θ(y2) − θ(y1). Under the null
hypothesis H0, the pdfs f1 and f2 are identical, equal to f0 say, which implies
that the AFC measures have the same distributions. The cumulative distribution
function (cdf) of δ(Y) under the null hypothesis is

G0(x) = Pr
{
δ(y) ≤ x|f0

}
, ∀x ∈ R. (2.1)

In general, G0 is monotone increasing (not strictly) and right-continuous, bounded
between 0 and 1. Because δ is bounded, G0 is moreover increasing from 0 to 1 on
[−2, 2]. The left, one-tailed FPR αy under the null hypothesis H0 is G0 {δ(y)}.

We propose to estimate αy by modifying the DGP in order to force the sam-
ples to conform with H0 even when the alternative hypothesis of different pdfs
holds. This type of approach, called bootstrap hypothesis testing, has received
surprisingly little attention compared to bootstrap confidence interval construc-
tion, but has still yielded compelling results (Martin (2007)). Under H0, the
DGPs introduced in the last section can be modified to build samples of the es-
timated pdf f̂0

y in the following way. Because f1 and f2 are identical, bootstrap
samples y1,∗ and y2,∗ can actually be drawn from a single distribution f̂ l

y. Half of
the boostrap samples will be generated with l = 1 and the other half with l = 2.
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The specifications of the null distribution apply to δ(y∗) = θ(y2,∗) − θ(y1,∗).
Conversely, under such a DGP, the regional time series of the bootstrap data
y∗ = (yl,∗)2l=1 have, by construction, an identical distribution, and thus conform
to H0. The DGP under H0 can be used to build a bootstrap estimate of G0:

∀x ∈ R, Ĝ0
y(x) = Pr

{
δ(y∗) ≤ x|f̂0

y

}
(2.2)

.= (B + 1)−1#
{

b = 1, . . . , B|δ(y∗b) ≤ x
}

, (2.3)

where # is the cardinality of a set. Equation (2.3) is a Monte-Carlo approxima-
tion of (2.2), and the symbol .= means that the two terms are asymptotically equal
as B tends toward infinity. Because of the discrete nature of the Monte-Carlo
approximation, Ĝ0

y is a step discontinuous function. This has a practical disad-
vantage, because the algorithm we present in Section 2.5 requires the inversion
of Ĝ0

y. The application of a linear interpolation between discontinuity points on
a grid of the possible values of δ(y), i.e. [-2,2], may be used to ensure continuity.
In addition, imposing Ĝ0

y(−2) = 0 and Ĝ0
y(2) = 1) on the interpolation, together

with the choice of a normalization by (B + 1) instead of the classical B in (2.3)
which has asymptotically no impact, ensure that the new interpolated estimate,
also denoted Ĝ0

y for simplicity, is monotone increasing (strictly on [−2, 2]) and
continuous, and thus defines a bijection from [−2, 2] on [0, 1].

The bootstrap estimate α̂y of the (left one-tailed) FPR under the null hy-
pothesis is Ĝ0

y {δ(y)}, and the bootstrap estimate of the bilateral FPR is

p̂ = 2 min(α̂y, 1 − α̂y). (2.4)

Note that the bootstrap scheme proposed here is not the only one that satisfies
the null hypothesis requirements. The bootstrap samples y1,∗ and y2,∗ could,
for example, be generated by mixing data samples from both y1 and y2 under a
given DGP. The behavior of alternative schemes for the null hypothesis has not
been investigated in this work.

2.4. Bootstrap estimate of the false discovery rate

The previous section focussed on a particular case where the connectivity
measure was univariate and only two conditions were compared, leading to a
single test. In general, there are M(M + 1)/2 distinct AFC measures and an
arbitrary number L of conditions y = (yl)L

l=1, implying L(L−1)/2 possibly non-
redundant comparisons. This raises the issue of multiple comparisons, precisely
M(M +1)L(L−1)/4 of them; moreveover these are dependent because the same
data is involved in more than one univariate AFC measure and more than one
comparison. The FDR initially proposed by Benjamini and Hochberg (1995) is
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an approach to this issue that is very well suited to bootstrap hypothesis testing.
The key idea is to allow for some false positives to arise in the procedure, but to
relate their number to the total number of positive findings. For a given FPR
threshold p on each individual test, let Dy(p) be the total number of discoveries,
i.e., the number of tests on θ(yl) − θ(yl′) where p̂ is smaller than p. Among
these Dy(p) discoveries, there are DF

y (p) unknown false positive discoveries and
DT

y (p) true positive discoveries. The FDR q(p) is defined as the expectation
E

{
DF

y (p)/Dy(p)|f
}
, where f is the joint pdf of Y = (Yl)L

l=1. Let G0 be the global
null hypothesis that all data (Yl)L

l=1 have the same distributions f0. Samples
(yl,∗)L

l=1 from f̂0
y under the global null can be generated from a single dataset

yl, the value l taking random values in {1, . . . , L} with uniform probability for
each bootstrap sample. Let D∗

0(p) be the number of false positives of one sample
y∗ under the global null hypothesis G0. Logan and Rowe (2003) proposed the
following conservative estimate of the FDR:

q̂(p) = E

{
D∗

0(p)
D∗

0(p) + D̂T (p)
|f̂0

y

}
.= B−1

B∑
b=1

{
D∗b

0 (p)
D∗b

0 (p) + D̂T (p)

}
, (2.5)

where D̂T (p) = D(p)−pM(M +1)L(L−1)/4. To achieve a comparison at a given
FDR threshold, e.g., q < 0.05, the largest FPR threshold p such that q̂(p) < 0.05
is selected.

2.5. Yet another double bootstrap algorithm

Despite its asymptotic consistency, the simple bootstrap estimate p̂ of the
FPR introduced in Section 2.3 may be too liberal on finite time series, which
would also compromise the estimate q̂(p) of the FDR. Some procedures have
been proposed to correct for the fact that all bootstrap samples are actually
generated from the same dataset. Such correction usually results in a better
behavior on finite samples, and a faster asymptotic convergence. Instances of
correction procedures are the double bootstrap (DB) (Hall and Martin (1998)),
computationally demanding, and the fast double bootstrap (FDB) (Davidson
and Mackinnon (2007)) which, as the name suggests, is faster than DB. We
present here a new algorithm called “yet another double bootstrap” (YADB)
whose complexity is in general of the same order as the DB, but can be made
markedly faster than the FDB in the particular context of bootstrap hypothesis
testing on a difference.

The YADB appears as an a posteriori correction of the simple bootstrap
estimate of FPR. The theoretical motivation behind this correction is that it
would be desirable for the bootstrap cdf estimates to be distributed equally
around the true cdf, i.e.,

∀x ∈ [−2, 2], H(x) = med(Ĝ0
y(x)|f0) = G0(x), (2.6)
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where med denotes median. Note that each cdf Ĝ0
y is a continuous monotone

bijection from [−2, 2] on [0, 1], and H thus statisfies the same properties. This
allows us to define the function ξ as G0 ◦ H−1 which satisfies ξ ◦ H(x) = G0(x),
and ξ is a continuous monotone increasing bijection from [0,1] to [0,1]. The
corrected estimate of cdf defined as ξ ◦ Ĝ0

y satisfies the condition (2.6), because
the median and a monotone increasing function commute. Unfortunately, the
function ξ is unknown, yet it can be estimated through bootstraping. Informally,
the idea is to compare the (simple) bootstrap cdf to the median cdf derived when
a bootstrap sample is used instead of the original dataset. The function which
brings the median double bootstrap cdf on the simple bootstrap cdf will serve
as an estimate of the one which brings the single bootstrap cdf on the true cdf.
Formally, the median double boostrap cdf is

Ĥy(x) = med(Ĝ0
y∗(x)|f̂0

y) .= med
{

Ĝ0
y∗c(x), c = 1, . . . , C

}
. (2.7)

The estimate ξ̂ of ξ is then Ĝ0
y ◦ Ĥ−1

y , with numerical inversion and composition
performed through linear interpolation on a grid of [0, 1]. The corrected cdf ξ̂◦Ĝ0

y

can be used to derive some YADB estimates of the FPR and FDR in the same
way as it was done with the simple bootstrap.

Regarding computational complexity, the DB requires approximately BC

samples y∗ while the FDB involves 2B samples y∗, with B at least 1, 000 and C

at least 50 (Hall, Lee and Young (2000) and Davidson and Mackinnon (2007)).
The YADB algorithm requires one initial cdf estimation Ĝ0

y∗ followed by the
generation of C samples y∗ and the corresponding cdf estimation Ĝ0

y∗ , see (2.7),
each cdf estimation requiring B samples y∗, see (2.3). This approach thus involves
B + C(B + 1) Monte-Carlo samples y∗, with B > 1, 000 and C at least 20 in
order to stabilize the estimation of the median. This complexity is asymptotically
equivalent to that of the DB.

Taking advantage of the fact that the statistic δ is a difference, a simple
computational trick can be used to drastically cut down on the computational
cost of the FPR estimation for one comparison, e.g., θ(y2)− θ(y1). Let (y∗d)D

d=1

be some independent samples generated under H0 from a single dataset, say y1.
The differences {θ(y2,∗d) − θ(y1,∗d′)} are distinct samples of the type δ(y∗) for
all D(D − 1) pairs where d 6= d′. The samples δ(y∗) are not independent but
this has small impact in practice. For deriving a cdf with B samples δ(y∗), B/2
samples are generated from y1 and another B/2 from y2, each batch requiring
about D = 1/2+

√
1 + B/2 effective samples y∗ (more precisely the upper integer

part). Using this trick to compute the cdfs, the number of samples y∗ can be
reduced to approximately B

√
2C with the DB and C

√
2B with the YADB, but

the same idea does not apply to the FDB due to implementation details, leaving
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its complexity at 2B. In practice, for a reasonably accurate estimation of a 0.05
FPR with B = 10, 000 and C = 50, the DB would use approximately 100, 000
bootstrap samples y∗, the FDB would use 20, 000 and the YADB 7, 072.

3. Simulation Study

3.1. Description of the experiments

The behavior of the testing procedure was investigated on Monte-Carlo sim-
ulations using different alternatives for the bootstrap DGP, iidB, AR1B and
CBB-and using two models of multivariate space-time processes-a Gaussian pro-
cess separable in space and time (GSST) and a non-Gaussian hidden Markov
multi-states (HMMS) process. The analytic expression and validity of models of
time correlation (tC) and space correlation (sC) are reported in Supplementary
Material, Section B, and only the values of parameters are listed here. The para-
metric tC model was exponential, equivalent to an AR1 model, with parameter
a = 0.5. The sC model was homogeneous, which means that the sC associated
with regions of two networks m and m′ was constant, equal to an AFC param-
eter θm,m′ . We used M = 3 networks, each one formed of 5 regions to limit
computation time. Three scenarios were considered for the sC, with most AFC
measures identical in all scenarios: θ11 = θ22 = θ33 = 0.6, θ12 = θ13 = 0.15, and
the AFC between networks 2 and 3 varying, θ23 ∈ {−0.15, 0, 0.15} for each sce-
nario. The HMMS model in addition implemented the idea that two different
systems could perform the same task, and that the brain may sometimes switch
from one to the other. Formally, the sC at each time frame in the HMMS model
actually took one of two possible values with θ12 and θ13 either equal to −0.05 or
0.35, depending on the state of a binary hidden Markov chain. The probability
that the state of the chain changed from one time frame to the next was 0.05.
For each simulation, three datasets (yl)3l=1 of size T × N were generated, each
corresponding to one of the three scenarios of tC and sC.

A first batch of simulations was used to investigate how the choice of the
optimal block length hopt was related to the number of time samples T (50,
100 or 200) and the simulation model (GSST or HMMS). Simulated datasets
(yl)3l=1 were used to select the block length in CBB using the MVC, with B =
300 bootstrap samples, and h in {1, 4, 7, 10, 20, 30, 40, 50, 75, 100}. There were
100 simulations performed for each T and simulation type, for a total of 600
simulations.

A second batch of simulations was used to investigate the sensitivity and
specificity of the procedure. Specifically, simple bootstrap and the YADB algo-
rithm were applied to test for changes in AFC between y2 and y1 (hard compari-
son, θ2

23−θ1
23 = 0.15), and between y3 and y1 (easy comparison, θ3

23−θ1
23 = 0.3),
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Figure 3.1. Average bootstrap estimate of the average standard deviation of
AFC measures σ̂y(h) for different numbers of time samples T . Curves have
been averaged across all simulations for a given simulation type, and all
subjects for real data. Note the smooth relationship between h and σ̂y(h),
achieving a single global maximum for a value hopt which is dependent on
T and the data type.

with B = 10, 000 bootstrap samples for the simple bootstrap and the FDR es-
timation, and C = 25 iterations with B = 5, 000 samples each in the YADB
bootstrap. For each number of time frames (T ∈ {50, 100, 200}), each DGP
(CBB, AR1B, iidB) and each simulation type (GSST, HMMS), 500 Monte-
Carlo simulations were done, for a total of 9, 000 simulations. For every possible
configuration, the effective FPR ê was estimated by deriving the detection rate
of differences in θ12 and θ13 with an estimated FPR p̂ < 0.05. Confidence interval
at the 90% level on ê, symmetric and bilateral, were derived using the asymptotic
approximation of the variance ê(1− ê)/D, where D is the number of Monte-Carlo
samples: 500 (samples) × 2 (measures) × 2 (comparisons). The effective FDR
for all AFC measures was assessed by deriving the average ratio between the
number of false positives and the total number of discoveries over all simulations
when an FDR threshold q̂ < 0.05 was applied. Confidence intervals at the 90%
level on the effective FDR were derived using simple bootstrap of the Monte-
Carlo samples. Finally, by considering a grid of thresholds for the FPR covering
[0, 1], a receiver-operating characteristic (ROC) curve of the effective sensitivity
as a function of the effective specificity was derived for each DGP, each type of
simulations, and each type of comparison (easy or hard), with T = 200.

3.2. Results

Figure 3.1(a,b) shows the bootstrap estimate of the average standard devia-
tion of AFC measures σ̂y(h) as a function of the block length h, averaged across
all simulations y. The standard deviation smoothly increased then decreased,
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Figure 3.2. Median cumulative distribution function (cdf) under the null
hypothesis estimated through YADB, with T = 200. Note that for GSST
simulations, AR1B and CBB achieved more accurate approximations than
iidB, the AR1B cdf actually overlapping the true cdf. With HMMS sim-
ulations, both AR1B and iidB underestimated the variance of the distri-
butions, while CBB achieved a reasonable approximation. Results on data
suggested that AR1B and iidB would have a similar behavior and both
underestimated the variance of the distribution, compared to CBB.

admitting one single global maximum for h = hopt. The value hopt increased
with increasing length of time series, and was larger for HMMS than GSST
simulations: for GSST simulations with T ∈ {50, 100, 200}, the distribution of
hopt exhibited a median of 4, 7, 10, a 0.05-unilateral lower percentile of 4, 4, 4
and a 0.05-unilateral upper percentile of 10, 20, 30; for HMMS simulations with
T ∈ {50, 100, 200}, the distribution of hopt exhibited a median of 7, 10, 20, a
0.05-unilateral lower percentile of 4, 4, 7 and a 0.05-unilateral upper percentile of
10, 20, 40. When a large number of time samples was simulated (T = 200), the
standard deviation was found stable on a large interval of values h around hopt.

Figure 3.2(a,b) presents the median across all simulations and comparisons
of the YADB estimate of the cdf under the null hypothesis for θ12 and θ13. On
GSST simulations, the AR1B DGP produced a very accurate estimation of the
true median cdf. The CBB also generated a satisfactory approximation, while
iidB performed badly. On HMMS simulations, none of the DGP produced very
accurate approximations of the true median cdf, yet the DGP CBB performed
best and iidB performed worst. Both AR1B and iidB approximations were
drastically underestimating the actual variance of the distribution, suggesting
liberal statistical tests. These results were confirmed by examining the effective
FPR of the testing procedures.

With T = 200, p̂ < 0.05, and simulations GSST, the effective FPR ê was
0.077 (90%-confidence interval [0.066, 0.089]) with CBB, 0.051 ([0.041, 0.06])
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with AR1B, and 0.133 ([0.118, 0.148]) with iidB. Both CBB and AR1B thus
reached an acceptable efffective FPR, meaning ê < 0.1. On HMMS simulations,
ê was 0.098 ([0.085, 0.111]) with CBB, 0.161 ([0.145, 0.177]) with AR1B, and
0.256 ([0.236, 0.276]) with iidB. On this last type of simulations, CBB was thus
the only DGP offering a reasonable control of the FPR. More comprehensive
results can be found in Supplementary Material, Figure C.1. The results on ef-
fective FDR were very similar to the ones just stated above on FPR, see Figure
C.2 of Supplementary Material. Despite the good control of false positives, the
CBB was the DGP which performed the worst on ROC curves. However, all
three DGP had very close performance, with a sensitivity of about 30± 10% for
hard comparisons, and a sensitivity of 80 ± 10% for easy comparisons when an
effective FPR (specificity) of 0.05 was considered, regardless of the simulation
type, see Figure C.3 of Supplementary Material.

4. Application to fMRI Data: Motor Skill Learning

4.1 Description of the experiment

The YADB algorithm was evaluated on an experiment of motor skill learn-
ing, approved by the local ethic committee, with three right-handed, healthy
male volunteers (age 25 to 27). Functional data was acquired while subjects
steadily performed some motor sequences at a fixed, comfortable rate of 2 Hz.
Three sequences were performed after one month of daily training (known con-
ditions), and one at the very early stage of learning (new condition). Our first
evaluation hypothesis was that similar networks would be engaged in the known
conditions while marked differences in networks would be observed when compar-
ing the new and the known conditions. As a positive control, we also compared
these steady-state conditions to a block-designed condition alternating motor se-
quences and rest. The evaluation hypothesis regarding these comparisons was
that, because of stimulus-locked fluctuations, the block condition should sys-
tematically exhibit larger correlations than those observed in the steady-state
conditions within motor-related regions.

Functional data were acquired on a Bruker 3.0T MRI scanner at the fMRI
Center in Marseille, France, with the following parameters. For each condition,
200 full brain volumes were recorded using a single-shot echo-planar imaging
sequence (TR/TE = 2,333/30 ms, 64 × 64 matrix, 42 contiguous slices, FOV =
192 mm × 192 mm, slice thickness 3 mm, and flip angle = 81◦). A high-resolution
T1-weighted scan was also acquired using the following MPRAGE sequence: TR
= 11.6 ms, TE = 5.67 ms, TI = 800 ms, 256 × 192 × 104 matrix, FOV = 256
mm × 230 mm × 182 mm, and flip angle = 30◦.
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4.2. fMRI data analysis

The functional data were first corrected for delay in slice timing and inter-
run motion using SPM2 (Friston and Worsley (1995)). The time series were also
corrected for slow time drifts by application of a Butterworth high-pass filter
with a cut-off frequency of 0.01 Hz (Smith et al. (1999)). Intra-run motion and
physiological noise were reduced using a procedure based on independent com-
ponent analysis (Perlbarg et al. (2007)). Regions were identified separately for
each subject using the large-scale network identification (LSNI) method applied
to a block dataset different from the one used in the following analysis (Bellec
et al. (2006)). Three networks were reproducibly found across subjects, and the
thirty regions with highest average functional connectivity were selected for each
network: the first was composed of regions in large part located in the motor
system that overlapped the regions expected to be activated by the task; the
second included frontal cortex and bilateral superior parietal cortex; the third
overlapped with the so-called default mode network as reported by Greicius et al.
(2003).

We performed 10 statistical comparisons on the 6 AFC measures (3 intra-
networks AFC and 3 inter-networks AFC), for a total of 60 tests per subject.
First, we compared datasets acquired in the known conditions (3 known-known
comparisons), then we compared the dataset in the new condition to the ones
acquired in the known conditions (3 new -known comparisons), and finally, we
compared the dataset acquired in the block condition to the ones acquired in
the steady-state conditions (4 block -steady comparisons). For each subject, the
optimal block length hopt was selected using B = 1, 000 bootstrap samples and
the MVC criterion for h ∈ {1, 4, 7, 10, 20, 30, 40, 50, 75, 100}. We applied the
YADB algorithm with each DGP, i.e. CBB, AR1B and iidB, B = 100, 000
bootstrap samples for the level-1 bootstrap and FDR estimation, and C = 100
iterations of the bootstrap with 10, 000 samples each. The CBB DGP was
applied three times with h in {30, 40, 50} in order to cover the different values
hopt estimated on data. A test was considered significant for an estimated FPR
p̂ < 0.05, and the associated FDR was derived for each subject.

4.3 Results

Figure 3.1c shows the bootstrap estimate of the average standard deviation
of AFC measures σ̂y(h) as a function of the block length h, averaged across all
subjects, and with the time series truncated to achieve T = 50, T = 100 and
T = 200. The relationship between σ̂y(h) and h was smooth, and very similar in
shape to the one observed on simulated data, see Figure 3.1a,b. However, the
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values σ̂y(h) were smaller with actual data than with simulations, which may
be due to the fact that simulations included too much temporal autocorrelation.
The values estimated for hopt were slightly higher than the ones observed on
HMMS simulations, and consistent across subjects: 4, 4, 7 (T = 50); 20, 20, 20
(T = 100); and 30, 50, 30 (T = 200), for subjects 1 to 3, respectively.

Figure 3.2c presents the median cdf under the null hypothesis estimated
through the testing procedure for all subjects and AFC measures, each curve
corresponding to a choice of GDP. Compared to the cdf derived on simulations,
see Figure 3.2a,b, the cdf on the datasets corresponded to distributions with
smaller variance, which confirmed the previous results regarding block length
selection. The median cdf derived using the DGP AR1B and iidB were very
close, and departed markedly from the one derived using the CBB, which cor-
responded to a distribution with larger variance. This result suggested that the
CBB would lead to much more conservative statistical tests than the ones per-
formed using the AR1B or iidB, and that the difference in specificity would be
even more drastic than it was on HMMS simulations. This result was confirmed
by further examination of significant differences derived for each DGP.

Summaries of the tests performed with a FPR threshold of 0.05 are listed
below for subjects 1 to 3, respectively. Note that the expected number of false
positives per subject would be three if tests were independent and the estimates
of FPR were exact. The CBB DGP with h = 40 led to an estimated FDR of
0.15, 0.14 and 0.29. Only a small number of significant differences were found in
known-known comparisons (0, 3, 0). By contrast, a higher number was observed
in new -known comparisons (1, 4, 2), and a large number was observed in block -
steady comparisons (13, 8, 5). Interestingly, the AFC within the motor-related
regions was found higher in the block condition than in any steady-state condition
for the three subjects. These results, derived with the CBB, supported our
evaluation hypothesis, yet the sensitivity in new -known comparisons appeared
limited. The AR1B DGP led to smaller estimate of FDR than the CBB (0.09,
0.1, 0.16). Unfortunately, a large number of significant differences per subject
were found in all comparison types: 15, 18, 39 total significant differences for
known-known, new -known and block -steady comparisons, respectively, which did
not support the evaluation hypothesis. The iidB and AR1B led to very similar
results: the FDR values were 0.09, 0.09, 0.15 and the total numbers of significant
differences per subject were 16, 20, 40 for known-known, new -known and block -
steady comparisons, respectively, which again did not support our evaluation
hypothesis.

To assert the robustness of the CBB results with respect to the block length
h, we computed the absolute difference between the FPR estimated for h = 40
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and h ∈ {30, 50}. The median of those values was 0.0153, 90% of the differences
being smaller than 0.06, and the largest difference being 0.15. The number of
significant differences, added for all subjects, was 3, 8, 27; 3, 7, 26; 2, 5, 25 for
known-known, new -known and block -steady comparisons, respectively, and for h

equal to 30, 40 and 50, respectively. The selection of a block length in this range
thus did not qualitatively change the conclusions stated above, yet longer block
length apparently led to slightly more conservative tests.

5. Conclusions

In this paper, we proposed a bootstrap hypothesis testing procedure de-
signed to assess significant changes in functional connectivity between two fMRI
datasets. A number of alternative bootstrap data-generating processes could be
used within YADB, which differed by their approach of temporal dependen-
cies: one neglected them (iidB), one assumed an autoregressive model of order
1 (AR1B), and the last one addressed them through block resampling (CBB).

The alternative data-generating processes were evaluated on Monte-Carlo
simulations with space and time dependencies, and two simulation types were
considered: a Gaussian model separable in space and time, and a non-Gaussian
model exhibiting nonlinear temporal dependencies. The iidB scheme did not
allow for a satisfactory control of false positive rate in any simulation type. The
AR1B scheme performed very well on Gaussian simulations, but lead to very
liberal tests on non-Gaussian simulations. The CBB scheme had a robust, sat-
isfactory behavior in all settings, as soon as the number of time samples reached
200.

The testing procedure was also applied on an experiment of motor skill learn-
ing. The experimental design was such that we had a strong evaluation hypothe-
sis regarding the existence or absence of significant differences. The AR1B and
iidB schemes had a very similar behavior, which did not occur with simulations,
and turned out to be far too liberal based on our evaluation hypothesis. The tests
based on the CBB scheme were drastically more conservative, and the results
conformed well with the evaluation hypothesis.

Together, our experiments on simulations and data suggest that fMRI indi-
vidual data significantly depart from a joint Gaussian model separable in time and
space with an autoregressive temporal structure. A fully non-parametric proce-
dure taking temporal dependencies into accout is thus desirable to derive correct
tests on functional connectivity at the individual level. Our results demonstrate
that a bootstrap hypothesis testing approach using the YADB algorithm and a
CBB bootstrap data-generating process is an adequate solution to this problem.
An implementation of this procedure will be made available on the internet at
http://wiki.bic.mni.mcgill.ca/index.php/BootstrapHypothesisTesting.
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Issac and Jonathan Lau for editing earlier versions of the manuscript.

References
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