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1 Introduction

Blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) has been exten-
sively used to study how task performance modulates brain activity. Such an approach emphasizes the
principle of functional segregation, in that different brain areas are characterized by their involvement in
specific cognitive processes. However, this type of analysis essentially ignores that the brain maintains
a constant level of spontaneous activity, i.e., activity that is not a direct consequence of environmental
stimulations. Investigating these spontaneous brain fluctuations is a challenge precisely because they can-
not be controlled by an experimental design. The first successful study of brain spontaneous fluctuations
in BOLD fMRI was performed by Biswal and colleagues, who computed the correlation between the time
course of a seed region and all brain voxels in the absence of any experimental task (Biswal et al., 1995).
Such resting-state functional connectivity maps, which identified distributed sets of brain regions whose
spontaneous activity exhibited a large degree of temporal coherence, are currently known as resting-state
networks (RSNs). By contrast with task-oriented studies, investigation of RSNs relies on the principle
of functional integration: brain regions are characterized by the set of regions with which their signal is
highly synchronized.

While the exact mechanisms at the origin of spontaneous fluctuations are still not fully elucidated, it
is now firmly established that RSNs are mainly the consequence of neural activity. Approaches combining
multiple neuroimaging modalities have contributed to better understand their neuronal and anatomical
basis. Much progress has also been done regarding methods, with the emergence of fully exploratory
multivariate techniques. Beyond the mapping of RSNs, some recent approaches use a graph representation
which gives a better insight into the structure of information flow within RSNs.

Investigation of RSNs in BOLD fMRI is a recent yet quickly growing field that has already generated
a wealth of applications. This chapter is a concise review of the most prominent results and challenges, as
well as a discussion of existing and potential applications. References were carefully selected to point the
interested readers to key works as well as some specialized reviews that cover the various topics presented
here more thoroughly.

2 Mapping RSNs

In the present section, we summarize the main methods used to map the spatial distributions of RSNs
and we also present a typology of the maps that have been reported so far in the literature.

2.1 Methods

Mapping RSNs consists of finding sets of voxels that exhibit coherent spontaneous BOLD fluctuations.
In a seminal work on resting-state fMRI, Biswal et al. (1995) introduced functional connectivity maps,
i.e., volumes representing the correlation between the time course of a seed region and that of every
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voxel in the brain (see Figure 1). A variety of fully exploratory and multivariate algorithms have then
been proposed to automatically identify RSNs without having to rely on the choice of a particular seed
region, see Li et al. (2009) for a review. The most popular of these techniques is spatial independent
component analysis (ICA) (see Figure 2). The significant ICA maps delineate groups of brain regions
that seem interpretable in terms of brain networks. Such identification is performed at the level of a single
subject; for group-level analyses, the methodology needs to be extended to identify group-level RSNs that
would summarize the distribution of individual maps across many subjects. The first and still popular
approach for group ICA essentially consists of concatenating subjects in time and run a standard ICA
on the concatenated time series to derive group components. Many methodological challenges remain in
this area, which is still under active development, see Calhoun et al. (2009) for an excellent review of
recent approaches. In the perspective of clinical applications, perhaps the most important of these open
challenges is to propose a framework that will be flexible enough to capture individual variability, while
still allowing for a clear correspondence between group-level and individual-level RSNs.

2.2 Reliability of extracted maps

A key question is the degree of reliability of the extracted maps, which can be affected by two main
factors. The first one is algorithmic: how does the choice of algorithm and parameters impact the maps?
The second one is related to the particular sample of datasets that is selected for the study: how stable
would be the maps if the study were to be replicated with a new, independent database? Altogether, the
RSNs reported so far in the literature exhibit a fair level of agreement across studies (see Section 2.3),
suggesting that RSN identification is overall reliable.

Regarding algorithmic reliability, Margulies et al. (2009) showed that even a small shift of the seed
voxel could lead to dramatic instability of the connectivity pattern (see Figure 4). Similar results were
reported using slightly different ROIs within the default mode network (see Section 2.3 for definition
and description of that particular RSN) (Buckner et al., 2008; Cole et al., 2010). As to RSN extraction
by spatial ICA, it was found that the algorithm used was rather robust to its initial conditions. Few
studies have compared specific RSNs identified by different methods (e.g., connectivity maps and ICA).
The existing results suggest a good level of agreement across methods, yet many of the alternatives to
ICA have not yet been included in such investigation.

Regarding sampling reliability, an early work had concluded to a high degree of reproducibility of some
specific RSNs identified using ICA both across subjects and across datasets acquired on the same subject.
More systematic extensions of this study to test-retest databases found moderate to high reliability at
the group level Van Dijk et al. (2010); Zuo et al. (2010). Tests-retest stability can be approximated from
a single sample of the population using resampling techniques. The work of Damoiseaux et al. (2006)
was notably the first to claim the consistency of group RSNs using this type of approach.

2.3 Typology of RSNs

The sensorimotor network was the first RSN studied with functional connectivity using a seed in the
primary motor cortex (Biswal et al., 1995). A visual RSNs was identified with a seed around the calcarine
fissure, and a limbic network with a seed in the amygdala. An auditory and a language RSNs were
later extracted as well as a fronto-parietal network involved notably in working-memory tasks. The so
called default-mode network (DMN) was also identified using a seed in the posterior cingulate cortex.
Interestingly, this network was first defined as a set of regions consistently exhibiting larger BOLD activity
during rest periods than during a broad range of task-oriented behaviors, and in addition has the highest
level of metabolic activity in the brain. These networks could also be identified in a reliable manner
through ICA (Damoiseaux et al., 2006) (see Figure 3 for a summary of findings at the group level). An
interesting phenomenon which can occur in ICA is the splitting of a network in one or more subnetworks
(e.g. the subdivision of the visual cortex into primary and extrastriate) when the number of extracted
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networks is large (Smith et al., 2009). The anatomofunctional significance of such fine RSNs cartography
largely remains to be investigated, even though it has been shown to be consistent with the organization
of the monkey brain as well as the organization of white matter tracts in some specific areas such as the
precuneus (Margulies et al., 2009) (see Figure 4). For a more detailed typology of the RSNs along with
Talairach coordinates, see Perlbarg and Marrelec (2008). For reviews that are specific to the default-mode
network, see Raichle and Snyder (2007) or Buckner et al. (2008).

3 Investigating information flow within RSNs

Graph representations are perfectly suited to characterize information flow within RSNs. Graphs are
composed of two objects: vertices or nodes (regions) and edges (links or connections), both of which can
be defined using various techniques. Once a RSN has been modeled in the form of a graph, tools from
graph theory can be used to summarize its key properties.

3.1 Defining nodes

Graph nodes are the functional units that are being connected. It is generally not feasible to identify each
voxel with a specific node, because it would lead to analyses that are computationally very challenging.
More fundamentally, the fMRI time courses within individual voxels are also highly redundant and noisy.
It is therefore common practice to select a very limited set of regions (e.g., from 3 to 20) based on prior
knowledge; each region is then defined as a sphere centered around a stereotaxic coordinate. Alternatively,
a full brain exploration can be performed by grouping voxels into brain regions that are then used as nodes.
A common strategy is to rely on an atlas of brain regions manually segmented on the basis of anatomical
landmarks in a stereotaxic space of reference. However, this atlas has a limited number of regions (116),
potentially gathering voxels with heterogeneous signal. To circumvent this issue and investigate graph
properties at a finer spatial scale, one can either generate a gray matter parcellation of arbitrary size
or reduce the number of voxels by resampling the data to a coarser resolution. Using functional data,
brain regions can be obtained at the individual level as sets of voxels with highly homogeneous time
courses; group-level studies then require to establish a correspondence between individual brain regions
across subjects. Finally, brain regions based on structural (i.e., white matter) connectivity rather than
functional connectivity has also been advocated.

3.2 Quantifying links

Once nodes have been selected, the strength of the connection between two nodes is usually quantified
by their so-called functional connectivity, i.e., the temporal correlation between the time courses of these
regions. Many studies have used correlation as a way to characterize connections between regions. Other
statistical measures of functional connectivity have been proposed to circumvent certain shortcomings of
correlation, such as conditional and partial correlations. Measures have been used either in the temporal
or the frequency domain.

When the number of regions remains limited, the strength of connection between regions can also
be quantified by effective connectivity, which considers the influence that regions exert on each other.
The notion of effective connectivity is strongly tied with that of causality. The two main frameworks to
investigate it are structural equation modeling (SEM) and dynamical causal modeling (DCM). Both ap-
proaches are model-based and strongly rely (at least to some level) on the definition of a structural model
in the form of a directed graph prior to the analysis. While causality appears to be naturally embedded in
SEM and DCM in the form of arrow directions, exploratory investigation of causal relationships remains
a challenge. Few methods have been proposed in fMRI, with the notable exception of the application of
Granger causality. To our knowledge, only one study has investigated effective connectivity within RSNs
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(James et al., 2009). For a review on measures of functional and effective connectivity, see Marrelec et al.
(2006) or Rogers et al. (2007).

3.3 Characterizing graphs

When the number of regions N increases, the number of potential connections increases as N(N−1)/2 (45
for N = 10, 4950 for N = 100) and direct interpretation of the graph and its connections quickly becomes
impossible. For this reason, measures have been proposed that compute a global summary of the graph
features. In statistics, such measures were proposed based notably on mutual information. Also, using
graph theory, one can study the characteristic path length L of a network and its clustering coefficient C.
Small-world networks are a variety of graphs whose properties lie between the two extreme configurations
(random and lattice), with small L (comparable to random networks) and high C (comparable to lattice
networks) (see Figure 5). In fMRI, the brain architecture was found to exhibit small-world properties.
Many others measures exist, such as alternative measures of efficiency, modularity, or motifs. For a review
of graph theory and its application to brain networks, see Bullmore and Sporns (2009), or van den Heuvel
and Hulshoff Pol (in press).

3.4 Reliability of graph-theoretic measures

While the test-retest reliability of graph representation of RSNs has not been investigated to the best
of our knowledge, a few studies have investigated the algorithmic reliability which is influenced by two
factors: how nodes are selected and what signal is assigned to each node. Using two atlases of 90 and 70
regions, Wang et al. (2009) showed that node definition has an influence on the quantitative measures of
graph theory, but not on the qualitative nature of the graph. Hayasaka and Laurenti (2010) compared
voxel-based and region-based (with 90 regions) graphs and showed that even qualitative features of
the graph could differ. As to the signal assigned to a node, it is usually the spatial average of the time
courses of all voxels within a neighborhood. As will be discussed in the next section, removal of structured
physiological processes is an important step and can modify the whole pattern of functional connectivity
and, consequently, all graph-theoretic measures (Chang and Glover, 2009).

4 Neurophysiological basis of RSNs

Since the early controversy regarding the neural origin of resting-state BOLD fluctuations, a number
of key aspects of the neurophysiological basis of RSNs have been established, namely: (1) RSNs are
not only consequences of physiological noise; (2) RSNs reflect, to some extent, the underlying structural
connections; (3) RSNs can be related to the neural activity as measured with other imaging modalities;
and (4) RSNs represent sets of brain regions that are involved in similar functions.

4.1 Physiological noise

BOLD signal only accounts for part of fMRI signal, which also contains artifacts from various origins. In
particular, some physiological processes (e.g., cardiac, respiratory, or movement-related) induce spurious
effects that contaminate the BOLD signal in the whole brain. Nonetheless, it has been shown that spatially
structured physiological fluctuations and spontaneous activity as measured by low-frequency BOLD signal
seem to be two distinct processes. Still, physiological noise reduction is increasingly acknowledged as a
key step in connectivity analysis and is commonly applied in recent studies (Biswal et al., 2010). There is
however not yet an agreement regarding the best methodological approach to perform this noise reduction.
For discussions on physiological noises, see, e.g., Marrelec et al. (2006), Rogers et al. (2007), Auer (2008)
or Perlbarg and Marrelec (2008).
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4.2 RSNs and structural connectivity

A key question for a better understanding of RSNs is the relationship between these networks and
the underlying structural connectivity. In monkey, the DMN was found to be composed of regions
that are connected to one another (Buckner et al., 2008). Also, the cortical pattern of correlation
with oculomotor regions was found to be consistent with the anatomical connectivity pattern obtained
by retrograde tracer injection (Vincent et al., 2007). In human, studies comparing maps of RSN and
structural connectivity from diffusion-weighted imaging (DWI) showed that nodes that are functionally
connected can, but do not need to, be anatomically connected (Greicius et al., 2009; van den Heuvel et al.,
2009). Still, there is converging evidence that brain regions defined on the basis of either local homogeneity
of functional connectivity or local homogeneity of structural connectivity are largely consistent with each
other (Tomassini et al., 2007; Margulies et al., 2009) (see Figure 4). To elucidate the intricate relationship
between the patterns of white matter connections and the emergence of functionally connected RSNs,
a number of recent studies have implemented complex neurocomputational models whose objective is
to replicate the dynamics of neuronal assemblies in a completely controlled, digital environment. The
relationship between RSNs and the underlying structural connectivity is further reviewed in Damoiseaux
and Greicius (2009) and van den Heuvel and Hulshoff Pol (in press) from an experimental perspective,
while Honey et al. (in press) concentrates on more theoretical aspects.

4.3 RSNs and neural activity

The spontaneous fluctuations of brain activity as measured in BOLD fMRI have been compared to more
direct measures of neural activity. Scalp electroencephalography (EEG), in particular, is a well-established
tool to study resting-state activity. Many studies have used simultaneous EEG-fMRI acquisitions to
investigate the fMRI correlates of EEG activity. The existence of a complex relationship between both
types of signal was evidenced, relationship that depends on the features extracted from the EEG signal,
see Laufs (2008) for a review. In monkey, cortical electrophysiological measure of the neural activity also
concluded to a significant relationship with the BOLD spontaneous fluctuations (Shmuel and Leopold,
2008).

4.4 RSNs and neural correlates of cognitive functions

RSNs have also been found to be specifically involved in certain tasks. The DMN has consistently
been reported as exhibiting blocked and event-related task-induced deactivation in human (Gusnard and
Raichle, 2001). In monkey, the cortical pattern of correlation with oculomotor regions was found to be
consistent with the response pattern evoked during performance of a saccadic eye movement task (Vincent
et al., 2007). In human, a meta-analysis of task-related studies showed that voxels that were consistently
coactivated during specific tasks formed networks that strikingly matched RSNs (Smith et al., 2009).

5 Applications

A key advantage of resting-state fMRI is that the acquisition protocol is very simple and requires no
particular ability from the subject, so that it can be performed even by patients with impaired functions.
It is now routinely performed for cognitive purposes and is also getting increasingly used in clinical
research.

5.1 Healthy brain

Resting-state connectivity has been used as a tool in many areas of basic neuroscience. We focused here
on a number of results that have a direct implication for the design of resting-state protocols in relation
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with the following questions: (1) Can RSNs be identified during task performance? (2) Can RSNs be
identified at any stage of brain development and aging?

Modulation of RSNs by a task A number of studies have looked at the modulation of RSNs by
experimental tasks. For example, the spatial extent of the DMN was found to remain stable during a
simple visual task (Greicius et al., 2003). Other studies have shown some modulation of the connectivity
within the DMN by a task, e.g. as a function of the working memory load (Esposito et al., 2006). This
kind of approach was also applied to a variety of other RSNs and tasks. More recently, ICA was used to
assess systematically the stability of all RSNs in an oddball task (Calhoun et al., 2008).

Brain maturation Most of the RSNs found in adult could also be successfully extracted using sICA on
resting-state acquisitions of children (Fransson et al., 2007). Using graph-theoretical measures, a similar
global organization was found in children and young adults; however, development was characterized
by a simultaneous reduction of short-range connectivity and a strengthening of long-range connectivity,
suggesting a process of greater functional segregation in children and greater functional integration in
young-adults at the whole-brain level (Superkar et al., 2009).

Aging RSNs were also studied in healthy aging. Graph-theoretic measures of global and local efficiency
were altered in healthy older people in frontal, temporal and limbic/paralimbic cortical areas, as well as in
subcortical areas such as the pallidum and thalamus. By contrast, the same cortical areas were identified
as hubs in younger and older subjects (Achard and Bullmore, 2007). This loss of efficiency was consistent
with results obtained from ICA, which revealed alterations in the DMN. Decreased activity was found
in this network in healthy older as compared to healthy young subjects (Damoiseaux et al., 2008; Koch
et al., in press), with anterior regions activity being inversely proportional to the score of cognitive tests
measuring executive functioning and processing speed.

5.2 RSNs and pathologies

RSNs have been investigated in the context of a broad range of pathologies, including Alzheimer’s disease,
mental disorders, multiple sclerosis, and non-communicative patients, to name a few, see Auer (2008),
Guye et al. (in press) or van den Heuvel and Hulshoff Pol (in press) for a review, and Mesulam (2009)
for a discussion. At least three types of benefits could be gained from these investigations. First, RSNs
have been evidenced to be sensitive to the progression of certain diseases and could therefore serve as
biomarkers to predict their evolution. RSNs could also provide insight into the neural correlates of a
disease and thus provide a better understanding of the underlying neurophysiological process. Finally,
RSNs could be used to guide an intervention. These topics will respectively be illustrated with three
pathologies: Alzheimer’s disease (AD), non-communicative patients and brain tumors.

Alzheimer’s disease A critical challenge in the treatment of AD is the identification of biomarkers for
the early/prodromal diagnosis of the pathology. A seminal finding was that the regions belonging to the
DMN exhibit a loss of connectivity in AD (Greicius et al., 2004). This promising preliminary result has
not been yet followed by a full realization of the potential of RSNs as an early biomarker of AD. It was
still recently showed that gray matter atrophy associated with AD follows the pattern of the DMN (see
Figure 6). The small-world organization of brain activity, as characterized by the clustering coefficient,
also seems to be altered by the pathology (Superkar et al., 2008). Increased correlations within prefrontal,
parietal, and occipital lobes were also reported in AD patients, which could be interpreted as possible
compensatory mechanisms (Wang et al., 2007).
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Non-communicative patients While we are not aware of many studies using RSNs in the study
of patients with traumatic brain injury, it can be expected that such studies will gain importance in
the coming years. A longitudinal follow-up of patients scanned 3 and 6 month after TBI showed that,
with recovery, graph-theoretical measures get closer to what is observed in healthy controls Nakamura
et al. (2009). Interestingly, functional connectivity within the DMN in non-communicative patients was
negatively correlated with the degree of clinical consciousness impairment Vanhaudenhuyse et al. (2010).
This finding is consistent with the putative critical role of the DMN in self-oriented mental processes.

Brain tumors RSNs could be used not only to provide a diagnostic, but also to predict the response
of a given patient to a particular treatment and plan the treatment accordingly. A few recent studies
have provided a proof of concept in the context of preoperative mapping of the sensorimotor cortex, as
part of the neurosurgical planning for brain tumor resection, e.g. (Kokkonen et al., 2009; Zhang et al.,
2009; Shimony et al., 2009). Obviously, using RSNs for neurosurgical planning will require specific and
thorough evaluation in terms of postoperative outcome. An important word of caution is that such a
use entails strong assumptions regarding the relationships between the neurophysiological basis of the
pathology and BOLD RSNs. Many non-neuronal factors can have an influence on the BOLD signal, a few
of which being age, sedation, sleep, and disease. In this last category, the potential effects can be as varied
as the pathologies themselves, ranging from a change in the vasculature and/or blood flow alteration (as
in stroke), alteration of metabolism (as in glioma and other tumors), cortex properties (as in Alzheimer’s
disease). For these reasons, there is also a lot to gain in the understanding of RSNs themselves through
their use in therapy.
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Fransson, P., Skiöld, B., Horsch, S., Nordell, A., Blennow, M., Lagercrantz, H., Åden, U., 2007. Resting-
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Figure Legends
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Figure 1: Resting-state functional connectivity maps. An individual functional connectivity map
of the default-mode network was derived using the posterior cingulate seed used in Greicius et al. (2003).
The time series of the seed is presented in panel a and is dominated by slow frequency fluctuations (below
0.1 Hz), as evidenced by a window Fourier transform representing the power spectrum as a function of
time (panel b). A correlation map (with an arbitrary threshold of 0.5) between the time series of the seed
and that of all other brain voxels identify an extended set of regions known as the default-mode network.
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Figure 2: Linear model for spatial independent component analysis (sICA). ICA is based on
the same linear mixture model that is used in conventional task activation paradigms. According to
this model, the space-time fMRI dataset is decomposed into a number of components, each component
consisting of a spatial map (in matrix S) and an associated time course (in matrix A). The spatial
component describes the weight of the associated time course at each voxel. By contrast with task
activation experimental designs, ICA proceeds by estimating simultaneously the spatial and temporal
components. It is then possible to test for the significance of the contribution of a particular spatial
component at each voxel.
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Figure 3: Example of RSNs extracted with group ICA. Group RSNs maps from 20 subjects
scanned at rest extracted using hierarchical clustering of individual maps.
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Figure 4: Functional and anatomical parcelations of the precuneus areas in the human and
monkey. Four seed regions (left column) have been used to exemplify the markedly different patterns
of functional connectivity found in the precuneus area for humans (right column) and macaque monkeys
(middle right column). Similar patterns of functional connectivity were identified in both species, which
were consistent with the anatomical connections of the seed regions as identified using tracers in macaques
(middle left column). Figure adapted from Margulies et al. (2009), courtesy of Pr. Milham and Pr.
Petrides on behalf of the co-authors.
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Figure 5: Characteristic path length and clustering coefficient as key measures of graph
theory. The characteristic path length L of a network is the average length of the shortest path between
any two nodes, where the path length (also called distance) between two nodes is defined as the minimum
number of distinct edges required to link these nodes. The clustering coefficient C of a network C is the
average of the clustering coefficients of all nodes, where the clustering coefficient of a node is the ratio
between the actual number of edges among the node neighbors and the largest possible number of such
connections. (A) Example of graph with 9 nodes and 12 edges. The path length between the red nodes
is L = 2, corresponding to the shortest path (in orange) between the two nodes. The green node has 3
neighbors (in yellow), connected to it by dashed edges. These 3 nodes could potentially be connected by
up to 3 × (3 − 1)/2 = 3 edges, but are effectively connected by only 2 edges (in green) in the present
graph. The clustering coefficient is therefore equal to C = 2/3. (B) Example of characteristic path length
and clustering coefficient for simulated random, small-world, and lattice graphs with the same number
of nodes and edges. (C) Example of such graphs.
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Figure 6: Convergent syndromic atrophy, healthy RSNs, and healthy structural covariance
patterns. (from (Seeley et al., 2009)) (A) Five distinct clinical syndromes showed dissociable atrophy
patterns, whose cortical maxima (circled) provided seed ROIs for RSN and structural connectivity anal-
yses. (B) RSN mapping experiments identified five distinct networks anchored by the five syndromic
atrophy seeds. (C) Healthy subjects further showed gray matter volume covariance patterns that reca-
pitulated results shown in (A) and (B). For visualization purposes, results are shown at p < 0.00001
uncorrected (A and C) and p < 0.001 corrected height and extent thresholds (B). In (A)–(C), results are
displayed on representative sections of the MNI template brain. In coronal and axial images, the left side
of the image corresponds to the left side of the brain. ANG = angular gyrus; FI = frontoinsula; IFGoper
= inferior frontal gyrus, pars opercularis; PMC = premotor cortex; TPole = temporal pole.
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