Supplementary material \#1 for manuscript "Time-frequency analysis of event-related brain recordings: Connecting power of evoked potential and inter-trial coherence"

Jonas Benhamou, Michel Le Van Quyen, and Guillaume Marrelec

Contents

1 Expression of avgAMP, ITC, and POWavg 2
1.1 avgAMP 2
1.2 ITC 2
1.3 POWavg 2
1.4 Summary of properties 3
2 Investigation of oscillatory model 3
2.1 Preliminary results 3
2.2 S-transform of oscillatory signal 4
2.3 Approximation 5
2.3.1 General approach 5
2.3.2 Bounds for $\epsilon_{m}(t, f)$ 6
2.3.3 Bounds for $\epsilon_{a}(t, f)$ 6
2.3.4 Modulus of $T_{x}(t, f)$ 7
2.3.5 Argument of $T_{x}(t, f)$ 7
2.3.6 Summary of bounds 7
2.4 Model with varying amplitude and phase 7
2.5 Model with varying amplitude, frequency, and phase 8
2.5.1 Preliminary results 8
2.5.2 Expectation of $\left|T_{x}^{\dagger}(t, f)\right|$ 10
2.5.3 Expectation of $e^{i \arg \left[T_{x}^{\dagger}(t, f)\right]}$ 10
2.5.4 Expectation of $T_{x}^{\dagger}(t, f)$ 10
2.6 Summary of results 11
3 Proof of general relationship between avgAMP, ITC, and POWavg 11

1 Expression of avgAMP, ITC, and POWavg

1.1 avgAMP

The square of avgAMP can be expanded as

$$
\begin{align*}
\operatorname{avgAMP}_{x_{1: N}}(t, f)^{2} & =\left[\frac{1}{N} \sum_{n=1}^{N}\left|T_{x_{n}}(t, f)\right|\right]^{2} \\
& =\frac{1}{N^{2}}\left[\sum_{n=1}^{N}\left|T_{x_{n}}(t, f)\right|^{2}+\sum_{m \neq n}\left|T_{x_{m}}(t, f)\right|\left|T_{x_{n}}(t, f)\right|\right] . \tag{S-1}
\end{align*}
$$

Its expectation yields

$$
\left.\left.\begin{array}{rl}
\mathrm{E}[\operatorname{avgAMP} & \left.x_{1: N}(t, f)^{2}\right]
\end{array}\right) \frac{1}{N} \mathrm{E}\left[\left|T_{x}(t, f)\right|^{2}\right]+\left(1-\frac{1}{N}\right) \mathrm{E}\left[\left|T_{x}(t, f)\right|\right]^{2}\right] \text { 无 }\left[\left|T_{x}(t, f)\right|\right]^{2}+\frac{1}{N} \operatorname{Var}\left[\left|T_{x}(t, f)\right|\right] .
$$

1.2 ITC

The square of ITC can be expanded as

$$
\begin{equation*}
\operatorname{ITC}_{x_{1: N}}(t, f)^{2}=\frac{1}{N}+\frac{1}{N^{2}} \sum_{m \neq n} e^{i\left[\theta_{x_{m}}(t, f)-\theta_{x_{n}}(t, f)\right]} \tag{S-3}
\end{equation*}
$$

Its expectation is given by

$$
\begin{align*}
\mathrm{E}\left[\operatorname{ITC}_{x_{1: N}}(t, f)^{2}\right] & =\frac{1}{N}+\left(1-\frac{1}{N}\right)\left|\mathrm{E}\left[e^{i \theta_{x}(t, f)}\right]\right|^{2} \\
& =\left|\mathrm{E}\left[e^{i \theta_{x}(t, f)}\right]\right|^{2}+\frac{1}{N} \operatorname{Var}\left[e^{i \theta_{x}(t, f)}\right] \tag{S-4}
\end{align*}
$$

where we used the fact that, according to Equation (7) of the manuscript, we have

$$
\begin{equation*}
\operatorname{Var}\left[e^{i \theta_{x}(t, f)}\right]=1-\left|\mathrm{E}\left[e^{i \theta_{x}(t, f)}\right]\right|^{2} \tag{S-5}
\end{equation*}
$$

1.3 POWavg

We have

$$
\begin{aligned}
\text { POWavg }_{x_{1: N}}(t, f) & =\left[\frac{1}{N} \sum_{n=1}^{N} T_{x_{n}}(t, f)\right]\left[\frac{1}{N} \sum_{n=1}^{N} T_{x_{n}}(t, f)\right]^{*} \\
& =\frac{1}{N^{2}}\left[\sum_{n=1}^{N}\left|T_{x_{n}}(t, f)\right|^{2}+\sum_{m \neq n} T_{x_{m}}(t, f) T_{x_{n}}(t, f)^{*}\right] .
\end{aligned}
$$

Taking the expectation yields

$$
\mathrm{E}\left[\operatorname{POWavg}_{x_{1: N}}(t, f)\right]=\frac{1}{N^{2}}\left\{\sum_{n=1}^{N} \mathrm{E}\left[\left|T_{x_{n}}(t, f)\right|^{2}\right]+\sum_{n \neq m} \mathrm{E}\left[T_{x_{n}}(t, f) T_{x_{m}}(t, f)^{*}\right]\right\}
$$

Since the $T_{x_{n}}(t, f)$'s are i.i.d. realizations of $T_{x}(t, f)$, we obtain

$$
\begin{aligned}
\mathrm{E}\left[T_{x_{n}}(t, f) T_{x_{m}}(t, f)^{*}\right] & =\mathrm{E}\left[T_{x_{n}}(t, f)\right] \mathrm{E}\left[T_{x_{m}}(t, f)\right]^{*} \\
& =\left|\mathrm{E}\left[T_{x}(t, f)\right]\right|^{2}
\end{aligned}
$$

and

$$
\begin{align*}
\mathrm{E}\left[\operatorname{POWavg}_{x_{1: N}}(t, f)\right] & =\frac{1}{N} \mathrm{E}\left[\left|T_{x}(t, f)\right|^{2}\right]+\left(1-\frac{1}{N}\right)\left|\mathrm{E}\left[T_{x}(t, f)\right]\right|^{2} \\
& =\left|\mathrm{E}\left[T_{x}(t, f)\right]\right|^{2}+\frac{1}{N} \operatorname{Var}\left[T_{x}(t, f)\right] \tag{S-6}
\end{align*}
$$

1.4 Summary of properties

Results regarding the properties of the expectation of avgAMP ${ }^{2}$, ITC 2 and POWavg are summarized here.

Measure	Expectation		
	depends on	limit as $N \rightarrow \infty$	asymptotic expectation
avgAMP 2	amplitude, $\left\|T_{x}(t, f)\right\|$	$\mathrm{E}\left[\left\|T_{x}(t, f)\right\|\right]^{2}$	$\mathrm{E}\left[\left\|T_{x}(t, f)\right\|\right]^{2}+O\left(\frac{1}{N}\right)$
ITC 2	phase, $\theta_{x}(t, f)$	$\left\|\mathrm{E}\left[e^{i \theta_{x}(t, f)}\right]\right\|^{2}$	$\left\|\mathrm{E}\left[e^{i \theta_{x}(t, f)}\right]\right\|^{2}+O\left(\frac{1}{N}\right)$
POWavg	both, $T_{x}(t, f)$	$\left\|\mathrm{E}\left[T_{x}(t, f)\right]\right\|^{2}$	$\left\|\mathrm{E}\left[T_{x}(t, f)\right]\right\|^{2}+O\left(\frac{1}{N}\right)$

2 Investigation of oscillatory model

2.1 Preliminary results

We need the values of the three following integrals. The first integral is

$$
\begin{equation*}
I_{1}(t, \alpha, f)=\frac{1}{\sqrt{2 \pi \alpha^{2}}} \int e^{-\frac{(u-t)^{2}}{2 \alpha^{2}}} e^{-2 i \pi f u} \mathrm{~d} u \tag{S-7}
\end{equation*}
$$

It can be obtained as the characteristic function of a normal distribution Polyanin and Manzhirov, 2007, Equation (20.2.4.6)) computed at $-2 \pi f$,

$$
\begin{equation*}
I_{1}(t, \alpha, f)=e^{-\frac{1}{2}(2 \pi \alpha f)^{2}} e^{-2 i \pi f t} \tag{S-8}
\end{equation*}
$$

The second integral is

$$
\begin{equation*}
I_{2}(\Omega, t, \alpha, f)=\frac{1}{\sqrt{2 \pi \alpha^{2}}} \int \Omega \cos (2 \pi \nu u+\phi) e^{-\frac{(u-t)^{2}}{2 \alpha^{2}}} e^{-2 i \pi f u} \mathrm{~d} u \tag{S-9}
\end{equation*}
$$

It can be computed by first using Euler formula for the cosine function (Polyanin and Manzhirov, 2007, §2.2.3-14)

$$
\begin{align*}
I_{2}(\Omega, t, \alpha, f) & =\frac{\Omega}{\sqrt{2 \pi \alpha^{2}}} \int \frac{e^{i(2 \pi \nu u+\phi)}+e^{-i(2 \pi \nu u+\phi)}}{2} e^{-\frac{(u-t)^{2}}{2 \alpha^{2}}} e^{-2 i \pi f u} \mathrm{~d} u \\
& =\frac{\Omega}{2} e^{i \phi} \frac{1}{\sqrt{2 \pi \alpha^{2}}} \int e^{-\frac{(u-t)^{2}}{2 \alpha^{2}}} e^{-2 i \pi(f-\nu) u} \mathrm{~d} u+\frac{\Omega}{2} e^{-i \phi} \frac{1}{\sqrt{2 \pi \alpha^{2}}} \int e^{-\frac{(u-t)^{2}}{2 \alpha^{2}}} e^{-2 i \pi(f+\nu) u} \mathrm{~d} u \tag{S-10}
\end{align*}
$$

and then integrating each exponential using (S-8):

$$
\begin{align*}
I_{2}(\Omega, t, \alpha, f) & =\frac{\Omega}{2} e^{i \phi} I_{1}(t, \alpha, f-\nu)+\frac{\Omega}{2} e^{-i \phi} I_{1}(t, \alpha, f+\nu) \\
& =\frac{\Omega}{2} e^{-\frac{1}{2}(2 \pi \alpha)^{2}(f-\nu)^{2}} e^{i[\phi-2 \pi(f-\nu) t]}+\frac{\Omega}{2} e^{-\frac{1}{2}(2 \pi \alpha)^{2}(f+\nu)^{2}} e^{i[-\phi-2 \pi(f-\nu) t]} \tag{S-11}
\end{align*}
$$

The third and last integral is

$$
\begin{equation*}
I_{3}\left(\Omega, t, \alpha, t_{0}, \tau, f\right)=\frac{1}{\sqrt{2 \pi \alpha^{2}}} \int \Omega \cos (2 \pi \nu u+\phi) e^{-\frac{\left(u-t_{0}\right)^{2}}{2 \tau^{2}}} e^{-\frac{(u-t)^{2}}{2 \alpha^{2}}} e^{-2 i \pi f u} \mathrm{~d} u \tag{S-12}
\end{equation*}
$$

It can be calculated by first reorganizing the quadratic terms of the exponential

$$
\begin{aligned}
Q & =\frac{1}{\tau^{2}}\left(u-t_{0}\right)^{2}+\frac{1}{\alpha^{2}}(u-t)^{2} \\
& =\left(\frac{1}{\tau^{2}}+\frac{1}{\alpha^{2}}\right) u^{2}-2 u\left(\frac{t_{0}}{\tau^{2}}+\frac{t}{\alpha^{2}}\right)+\frac{t_{0}^{2}}{\tau^{2}}+\frac{t^{2}}{\alpha^{2}}
\end{aligned}
$$

Setting

$$
\hat{t}=\frac{\frac{t_{0}}{\tau^{2}}+\frac{t}{\alpha^{2}}}{\frac{1}{\tau^{2}}+\frac{1}{\alpha^{2}}}
$$

we obtain

$$
Q=\left(\frac{1}{\tau^{2}}+\frac{1}{\alpha^{2}}\right)(u-\hat{t})^{2}+\frac{t_{0}^{2}}{\tau^{2}}+\frac{t^{2}}{\alpha^{2}}-\left(\frac{1}{\tau^{2}}+\frac{1}{\alpha^{2}}\right) \hat{t}^{2}
$$

The term that does not depend on u can be expanded and simplified to yield

$$
\begin{aligned}
\frac{t_{0}^{2}}{\tau^{2}}+\frac{t^{2}}{\alpha^{2}}-\left(\frac{1}{\tau^{2}}+\frac{1}{\alpha^{2}}\right) \hat{t}^{2} & =\frac{\frac{1}{\tau^{2}} \frac{1}{\alpha^{2}}}{\frac{1}{\tau^{2}}+\frac{1}{\alpha^{2}}}\left(t-t_{0}\right)^{2} \\
& =\frac{1}{\tau^{2}+\alpha^{2}}\left(t-t_{0}\right)^{2}
\end{aligned}
$$

so that

$$
Q=\left(\frac{1}{\tau^{2}}+\frac{1}{\alpha^{2}}\right)(u-\hat{t})^{2}+\frac{\left(t-t_{0}\right)^{2}}{\tau^{2}+\alpha^{2}}
$$

and

$$
\begin{equation*}
I_{3}\left(t, \alpha, t_{0}, f\right)=e^{\frac{\left(t-t_{0}\right)^{2}}{2\left(\tau^{2}+\alpha^{2}\right)}} \frac{1}{\sqrt{2 \pi \alpha^{2}}} \int \Omega \cos (2 \pi \nu u+\phi) e^{-\frac{1}{2}\left(\frac{1}{\tau^{2}}+\frac{1}{\alpha^{2}}\right)(u-\hat{t})^{2}} e^{-2 i \pi f u} \mathrm{~d} u \tag{S-13}
\end{equation*}
$$

Setting

$$
\begin{equation*}
\beta=\frac{1}{\tau^{2}}+\frac{1}{\alpha^{2}}, \tag{S-14}
\end{equation*}
$$

we can then applying (S-10):

$$
\begin{align*}
I_{3}\left(t, \alpha, t_{0}, f\right) & =\frac{\beta}{\alpha} e^{\frac{\left(t-t_{0}\right)^{2}}{2\left(\tau^{2}+\alpha^{2}\right)}} \frac{1}{\sqrt{2 \pi \beta^{2}}} \int \Omega \cos (2 \pi \nu u+\phi) e^{-\frac{(u-\hat{t})^{2}}{2 \beta^{2}}} e^{-2 i \pi f u} \mathrm{~d} u \\
& =\frac{\beta}{\alpha} e^{\frac{\left(t-t_{0}\right)^{2}}{2\left(\tau^{2}+\alpha^{2}\right)}} I_{2}(\Omega, \hat{t}, \beta, f) \\
& =\frac{\beta}{\alpha} e^{-\frac{\left(t-t_{0}\right)^{2}}{2\left(\tau^{2}+\alpha^{2}\right)}}\left\{\frac{\Omega}{2} e^{-\frac{1}{2}(2 \pi \beta)^{2}(f-\nu)^{2}} e^{i[\phi-2 \pi(f-\nu) \hat{t}]}+\frac{\Omega}{2} e^{-\frac{1}{2}(2 \pi \beta)^{2}(f+\nu)^{2}} e^{i[-\phi-2 \pi(f-\nu) \hat{t}]}\right\} \tag{S-15}
\end{align*}
$$

Note that, for $\tau^{2} \ll \alpha^{2}$, we have $\beta^{2} \approx \tau^{2}$, whereas $\beta^{2} \approx \alpha^{2}$ for $\tau^{2} \gg \alpha^{2}$.

2.2 S-transform of oscillatory signal

We here calculate the time-frequency transform of a signal of the form given by Equation (24) of the manuscript. Application of S-10 with $\alpha=1 / f$ yields

$$
\begin{align*}
T_{x}(t, f) & =\frac{|f|}{\sqrt{2 \pi}} \int \Omega \cos (2 \pi \nu u+\phi) e^{-\frac{f^{2}(u-t)^{2}}{2}} e^{-2 i \pi f u} d u \\
& =\frac{\Omega}{2} e^{-\frac{1}{2}(2 \pi)^{2}\left(1-\frac{\nu}{f}\right)^{2}} e^{i[\phi-2 \pi(f-\nu) t]}+\frac{\Omega}{2} e^{-\frac{1}{2}(2 \pi)^{2}\left(1+\frac{\nu}{f}\right)^{2}} e^{i\left[-\phi-2 \pi\left(f-f_{0}\right) t\right]} \tag{S-16}
\end{align*}
$$

2.3 Approximation

2.3.1 General approach

We here provide an approximation for the modulus and argument of $T_{x}(t, f)$ in (S-16). We first express $T_{x}(t, f)$ as

$$
T_{x}(t, f)=\frac{\Omega}{2} e^{-\frac{1}{2}(2 \pi)^{2}\left(1-\frac{\nu}{f}\right)^{2}} e^{i[\phi-2 \pi(f-\nu) t]}\left[1+e^{-8 \pi^{2} \frac{\nu}{f}} e^{i(-2 \phi-4 \pi \nu t)}\right]
$$

Setting

$$
\begin{equation*}
T_{x}^{\dagger}(t, f)=\frac{\Omega}{2} e^{-\frac{1}{2}(2 \pi)^{2}\left(1-\frac{\nu}{f}\right)^{2}} e^{i[\phi-2 \pi(f-\nu) t]} \tag{S-17}
\end{equation*}
$$

and

$$
\begin{equation*}
\epsilon(t, f)=e^{-8 \pi^{2} \frac{\nu}{f}} e^{i(-2 \phi-4 \pi \nu t)} \tag{S-18}
\end{equation*}
$$

we can express $T_{x}(t, f)$ as

$$
\begin{equation*}
T_{x}(t, f)=T_{x}^{\dagger}(t, f)[1+\epsilon(t, f)] \tag{S-19}
\end{equation*}
$$

From there, the module and argument of $T_{x}(t, f)$ can be calculated as

$$
\begin{align*}
\left|T_{x}(t, f)\right| & =\left|T_{x}^{\dagger}(t, f)\right||1+\epsilon(t, f)| \tag{S-20}\\
\arg \left[T_{x}(t, f)\right] & =\arg \left[T_{x}^{\dagger}(t, f)\right]+\arg [1+\epsilon(t, f)] \tag{S-21}
\end{align*}
$$

The module and argument of $T_{x}^{\dagger}(t, f)$ can be easily calculated, yielding

$$
\begin{align*}
\left|T_{x}^{\dagger}(t, f)\right| & =\frac{\Omega}{2} e^{-\frac{1}{2}(2 \pi)^{2}\left(1-\frac{\nu}{f}\right)^{2}} \tag{S-22}\\
\arg \left[T_{x}^{\dagger}(t, f)\right] & =\phi-2 \pi(f-\nu) t \tag{S-23}
\end{align*}
$$

The module and argument of $1+\epsilon(t, f)$ are not quite as straightforward to obtain. See Figure 1 for a schematic description. Since we only consider $f>0$, we have $e^{-8 \pi^{2} \frac{\nu}{f}}<1$, so that $0<\epsilon(t, f)<1$ and $1+\epsilon(t, f)$ has modulus in $] 0,2[$ and argument in $]-\frac{\pi}{2}, \frac{\pi}{2}\left[\right.$. We define $\epsilon_{m}(t, f)$ and $\epsilon_{a}(t, f)$ as

$$
\begin{align*}
|1+\epsilon(t, f)| & =1+\epsilon_{m}(t, f) \tag{S-24}\\
\arg [1+\epsilon(t, f)] & =\epsilon_{a}(t, f) \tag{S-25}
\end{align*}
$$

We now provide bounds for both quantities.

Figure 1: Modulus and argument of $1+\epsilon(t, f)$.
2.3.2 Bounds for $\epsilon_{m}(t, f)$

From (S-24) and (S-18), we have

$$
\begin{aligned}
{\left[1+\epsilon_{m}(t, f)\right]^{2}=} & |1+\epsilon(t, f)|^{2} \\
= & \left|1+e^{-8 \pi^{2} \frac{\nu}{f}} e^{i(-2 \phi-4 \pi \nu t)}\right|^{2} \\
= & {\left[1+e^{-8 \pi^{2} \frac{\nu}{f}} \cos (2 \phi+4 \pi \nu t)\right]^{2} } \\
& \quad+\left[e^{-8 \pi^{2} \frac{\nu}{f}} \sin (2 \phi+4 \pi \nu t)\right]^{2} \\
= & 1+2 e^{-8 \pi^{2} \frac{\nu}{f}} \cos (2 \phi+4 \pi \nu t) \\
& +e^{-16 \pi^{2} \frac{\nu}{f}},
\end{aligned}
$$

so that

$$
\begin{align*}
{\left[1+\epsilon_{m}(t, f)\right]^{2} } & <1+2 e^{-8 \pi^{2} \frac{\nu}{f}}+e^{-16 \pi^{2} \frac{\nu}{f}} \\
& <\left(1+e^{-8 \pi^{2} \frac{\nu}{f}}\right)^{2} \\
1+\epsilon_{m}(t, f) & <1+e^{-8 \pi^{2} \frac{\nu}{f}} \tag{S-26}
\end{align*}
$$

and

$$
\begin{align*}
{\left[1+\epsilon_{m}(t, f)\right]^{2} } & >1-2 e^{-8 \pi^{2} \frac{\nu}{f}}+e^{-16 \pi^{2} \frac{\nu}{f}} \\
& >\left(1-e^{-8 \pi^{2} \frac{\nu}{f}}\right)^{2} \\
1+\epsilon_{m}(t, f) & >1-e^{-8 \pi^{2} \frac{\nu}{f}} \tag{S-27}
\end{align*}
$$

From (S-26) and (S-27), we are led to

$$
\begin{equation*}
\left|\epsilon_{m}(t, f)\right|<e^{-8 \pi^{2} \frac{\nu}{f}} \tag{S-28}
\end{equation*}
$$

Numerically, we have for $f<f_{0}=10 \nu$

$$
\begin{equation*}
\left|\epsilon_{m}(t, f)\right|<e^{-8 \pi^{2} \frac{\nu}{f}}<e^{-8 \pi^{2} \frac{\nu}{f_{0}}} \approx 3.8 \times 10^{-4} \tag{S-29}
\end{equation*}
$$

2.3.3 Bounds for $\epsilon_{a}(t, f)$

Since $\epsilon_{a}(t, f)$ is in $]-\frac{\pi}{2}, \frac{\pi}{2}[$, its argument can be expressed from S-25 and S-18) in terms of the tangent function, yielding

$$
\tan \left[\epsilon_{a}(t, f)\right]=\frac{e^{-8 \pi^{2} \frac{\nu}{f}} \sin (2 \phi+4 \pi \nu t)}{1+e^{-8 \pi^{2} \frac{\nu}{f}} \cos (2 \phi+4 \pi \nu t)}
$$

The variations of the right-hand side of the expression as a function of t can be investigated (see $\S 1.1$ of Supplementary Material \#3), showing that

$$
\left|\tan \left[\epsilon_{a}(t, f)\right]\right| \leq \frac{e^{-8 \pi^{2} \frac{\nu}{f}}}{\sqrt{1-e^{-16 \pi^{2} \frac{\nu}{f}}}}
$$

or, equivalently,

$$
\begin{equation*}
\left|\epsilon_{a}(t, f)\right|<\arctan \left[\frac{e^{-8 \pi^{2} \frac{\nu}{f}}}{\sqrt{1-e^{-16 \pi^{2} \frac{\nu}{f}}}}\right] \tag{S-30}
\end{equation*}
$$

Since the upper bound is an increasing function of f (see $\S 1.2$ of Supplementary Material \#3), we obtain in particular that, for $f<f_{0}$,

$$
\begin{equation*}
\left|\epsilon_{a}(t, f)\right|<\arctan \left[\frac{e^{-8 \pi^{2} \frac{\nu}{f_{0}}}}{\sqrt{1-e^{-16 \pi^{2} \frac{\nu}{f_{0}}}}}\right] \approx 3.8 \times 10^{-4} \tag{S-31}
\end{equation*}
$$

2.3.4 Modulus of $T_{x}(t, f)$

According to $\left(\mathrm{S}-20,(\mathrm{~S}-22)\right.$, and $(\mathrm{S}-24)$, the modulus of $T_{x}(t, f)$ is given by

$$
\begin{equation*}
\left|T_{x}(t, f)\right|=\frac{\Omega}{2} e^{-\frac{1}{2}(2 \pi)^{2}\left(1-\frac{\nu}{f}\right)^{2}}\left[1+\epsilon_{m}(t, f)\right] \tag{S-32}
\end{equation*}
$$

with, according to S-28,

$$
\begin{equation*}
\left|\epsilon_{m}(t, f)\right|<1 \tag{S-33}
\end{equation*}
$$

and, using $\mathrm{S}-29$ for $f<10 \nu$,

$$
\begin{equation*}
\left|\epsilon_{m}(t, f)\right|<3.8 \times 10^{-4} \tag{S-34}
\end{equation*}
$$

Note that, for $f \geq 10 \nu$, we have

$$
\begin{equation*}
\left|T_{x}^{\dagger}(t, f)\right|<1.1 \times 10^{-7} \frac{\Omega}{2} \tag{S-35}
\end{equation*}
$$

which, together with $S-20$ the fact that $\left.\epsilon_{m}(t, f) \in\right] 0,2[$, yields the following upper bound

$$
\begin{equation*}
\left|T_{x}(t, f)\right|<2.2 \times 10^{-7} \frac{\Omega}{2} \tag{S-36}
\end{equation*}
$$

As a consequence, values of modulus are not relevant for $f \geq 10 \nu$.

2.3.5 Argument of $T_{x}(t, f)$

According to (S-21), S-23), and S-25), the argument of $T_{x}(t, f)$ is given by

$$
\begin{equation*}
\arg \left[T_{x}(t, f)\right]=\phi-2 \pi(f-\nu) t+\epsilon_{a}(t, f) \tag{S-37}
\end{equation*}
$$

with, according to (S-30

$$
\left|\epsilon_{a}(t, f)\right|<\arctan \left[\frac{e^{-8 \pi^{2} \frac{\nu}{f}}}{\sqrt{1-e^{-16 \pi^{2} \frac{\nu}{f}}}}\right]
$$

and, using S-31 for $f \geq 10 \nu$,

$$
\begin{equation*}
\left|\epsilon_{a}(t, f)\right|<3.8 \times 10^{-4} \tag{S-38}
\end{equation*}
$$

2.3.6 Summary of bounds

Since we are interested in $f>0$, we always have $|\epsilon(t, f)|<1$. Furthermore, for $f<f_{0}=10 \nu$, $|\epsilon(t, f)|<3.8 \times 10^{-4}$. For $f \geq 10 \nu,|\epsilon(t, f)|$ can be larger (up to the upper bound of 1 , reached for $f \rightarrow \infty)$, but $T_{x}^{\dagger}(t, f)$ itself is then negligible, as $\left|T_{x}^{\dagger}(t, f)\right|<1.1 \times 10^{-7} \Omega / 2$.

For the amplitude, $\left|\epsilon_{m}(t, f)\right|<e^{-8 \pi^{2} \frac{\nu}{f}}$ and, for $f<f_{0},\left|\epsilon_{m}(t, f)\right|<3.8 \times 10^{-4}$. For the phase, $\left|\tan \epsilon_{a}(t, f)\right|<e^{-8 \pi^{2} \frac{\nu}{f}} / \sqrt{1-e^{-16 \pi^{2} \frac{\nu}{f}}}$ and, for $f<f_{0},\left|\epsilon_{a}(t, f)\right|<3.8 \times 10^{-4}$.

2.4 Model with varying amplitude and phase

To derive an asymptotic form for $\mathrm{E}\left(\mathrm{POWavg}^{\dagger}\right)$, we first need to calculate the expectation of the time-frequency transform. Using Equation (46) of the manuscript, we obtain

$$
\begin{aligned}
\mathrm{E}\left[T_{x_{n}}^{\dagger}(t, f)\right] & =\frac{1}{2} e^{-\frac{1}{2}(2 \pi)^{2}\left(1-\frac{\nu_{0}}{f}\right)^{2}} e^{-2 i \pi\left(f-\nu_{0}\right) t} \mathrm{E}\left(\Omega_{n} e^{i \phi_{n}}\right) \\
& =\frac{1}{2} e^{-\frac{1}{2}(2 \pi)^{2}\left(1-\frac{\nu_{0}}{f}\right)^{2}} e^{-2 i \pi\left(f-\nu_{0}\right) t} \mathrm{E}\left(\Omega_{n}\right) \mathrm{E}\left(e^{i \phi_{n}}\right) \\
& =\frac{\Omega_{0} \rho}{2} e^{-\frac{1}{2}(2 \pi)^{2}\left(1-\frac{\nu_{0}}{f}\right)^{2}} e^{i\left[\phi_{0}-2 \pi\left(f-\nu_{0}\right) t\right]}
\end{aligned}
$$

whose power is given by

$$
\begin{equation*}
\left|\mathrm{E}\left[T_{x}^{\dagger}(t, f)\right]\right|^{2}=\left[\frac{\Omega_{0} \rho}{2} e^{-\frac{1}{2}(2 \pi)^{2}\left(1-\frac{\nu_{0}}{f}\right)^{2}}\right]^{2} \tag{S-39}
\end{equation*}
$$

Equation (23) of the manuscript then implies

$$
\begin{equation*}
\mathrm{E}\left(\mathrm{POWavg}^{\dagger}\right)=\left[\frac{\Omega_{0} \rho}{2} e^{-\frac{1}{2}(2 \pi)^{2}\left(1-\frac{\nu_{0}}{f}\right)^{2}}\right]^{2}+O\left(\frac{1}{N}\right) \tag{S-40}
\end{equation*}
$$

2.5 Model with varying amplitude, frequency, and phase

2.5.1 Preliminary results

We first provide the expectation of three quantities:

$$
\begin{align*}
E_{1}(t, f) & =\mathrm{E}\left[e^{-2 i \pi(f-\nu) t}\right] \tag{S-41}\\
E_{2}(\alpha, f) & =\mathrm{E}\left[e^{-\frac{1}{2}(2 \pi \alpha)^{2}(f-\nu)^{2}}\right] \tag{S-42}\\
E_{3}(t, \alpha, f) & =\mathrm{E}\left[e^{-\frac{1}{2}(2 \pi \alpha)^{2}(f-\nu)^{2}-2 i \pi(f-\nu) t}\right], \tag{S-43}
\end{align*}
$$

when ν is normally distributed with mean ν_{0} and variance τ_{ν}^{2}.
Calculation of $E_{1}(t, f)$. The first quantity is given by

$$
\begin{aligned}
E_{1}(t, f) & =\frac{1}{\sqrt{2 \pi \tau_{\nu}^{2}}} \int_{-\infty}^{+\infty} e^{-2 i \pi(f-\nu) t} e^{-\frac{1}{2 \tau_{\nu}^{2}}\left(\nu-\nu_{0}\right)^{2}} \mathrm{~d} \nu \\
& =\frac{1}{\sqrt{2 \pi \tau_{\nu}^{2}}} e^{-2 i \pi f t} \int_{-\infty}^{+\infty} e^{2 i \pi \nu t} e^{-\frac{1}{2 \tau_{\nu}}\left(\nu-\nu_{0}\right)^{2}} \mathrm{~d} \nu \\
& =\frac{1}{\sqrt{2 \pi \tau_{\nu}^{2}}} e^{-2 i \pi f t} \int_{-\infty}^{+\infty} e^{-2 i \pi \nu(-t)} e^{-\frac{1}{2 \tau_{\nu}^{2}}\left(\nu-\nu_{0}\right)^{2}} \mathrm{~d} \nu \\
& =e^{-2 i \pi f t} I_{1}\left(\nu_{0}, \tau_{\nu},-t\right) \\
& =e^{-2 i \pi f t} e^{-\frac{1}{2}\left(2 \pi \tau_{\nu} t\right)^{2}} e^{2 i \pi \nu_{0} t} \\
& =e^{-\frac{1}{2}\left(2 \pi \tau_{\nu} t\right)^{2}} e^{-2 i \pi\left(f-\nu_{0}\right) t}
\end{aligned}
$$

where I_{1} is defined in (S-7).
Calculation of $E_{2}(\alpha, f)$. The second quantity is given by

$$
E_{2}(\alpha, f)=\frac{1}{\sqrt{2 \pi \tau_{\nu}^{2}}} \int_{-\infty}^{+\infty} e^{-\frac{1}{2}(2 \pi \alpha)^{2}(f-\nu)^{2}} e^{-\frac{1}{2 \tau_{\nu}^{2}}\left(\nu-\nu_{0}\right)^{2}} \mathrm{~d} \nu
$$

We reorganize the quadratic terms in the exponential

$$
\begin{aligned}
Q= & (2 \pi \alpha)^{2}(f-\nu)^{2}+\frac{1}{\tau_{\nu}^{2}}\left(\nu-\nu_{0}\right)^{2} \\
= & {\left[(2 \pi \alpha)^{2}+\frac{1}{\tau_{\nu}^{2}}\right] \nu^{2}-2 \nu\left[(2 \pi \alpha)^{2} f+\frac{\nu_{0}}{\tau_{\nu}^{2}}\right] } \\
& \quad+(2 \pi \alpha)^{2} f^{2}+\frac{\nu_{0}^{2}}{\tau_{\nu}^{2}} .
\end{aligned}
$$

Setting

$$
\hat{\nu}=\frac{(2 \pi \alpha)^{2} f+\frac{\nu_{0}}{\tau_{\nu}^{2}}}{(2 \pi \alpha)^{2}+\frac{1}{\tau_{\nu}^{2}}},
$$

we obtain

$$
Q=\left[(2 \pi \alpha)^{2}+\frac{1}{\tau_{\nu}^{2}}\right]\left(\nu-\nu_{0}\right)^{2}+(2 \pi \alpha)^{2} f^{2}+\frac{\nu_{0}^{2}}{\tau_{\nu}^{2}}-\left[(2 \pi \alpha)^{2}+\frac{1}{\tau_{\nu}^{2}}\right] \hat{\nu}^{2} .
$$

The term that does not depend on ν can be expanded and simplified to yield

$$
\begin{aligned}
(2 \pi \alpha)^{2} f^{2}+\frac{\nu_{0}^{2}}{\tau_{\nu}^{2}}-\left[(2 \pi \alpha)^{2}+\frac{1}{\tau_{\nu}^{2}}\right] \hat{\nu}^{2} & =\frac{(2 \pi \alpha)^{2} \frac{1}{\tau_{\nu}^{2}}}{(2 \pi \alpha)^{2}+\frac{1}{\tau_{\nu}^{2}}}\left(f-\nu_{0}\right)^{2} \\
& =\frac{(2 \pi \alpha)^{2}}{(2 \pi \alpha)^{2} \tau_{\nu}^{2}+1}\left(f-\nu_{0}\right)^{2}
\end{aligned}
$$

so that

$$
Q=\left[(2 \pi \alpha)^{2}+\frac{1}{\tau_{\nu}^{2}}\right]\left(\nu-\nu_{0}\right)^{2}+\frac{(2 \pi \alpha)^{2}}{(2 \pi \alpha)^{2} \tau_{\nu}^{2}+1}\left(f-\nu_{0}\right)^{2}
$$

and

$$
\begin{equation*}
E_{2}(\alpha, f)=\frac{1}{\sqrt{2 \pi \tau_{\nu}^{2}}} e^{-\frac{1}{2} \frac{(2 \pi \alpha)^{2}}{(2 \pi \alpha)^{2} \tau_{\nu}^{2}+1}\left(f-\nu_{0}\right)^{2}} \int_{-\infty}^{+\infty} e^{-\frac{1}{2}\left[(2 \pi \alpha)^{2}+\frac{1}{\tau_{\nu}^{2}}\right]\left(\nu-\nu_{0}\right)^{2}} \mathrm{~d} \nu \tag{S-44}
\end{equation*}
$$

The integral can be calculated using the fact that a normal distribution sums to 1 (Polyanin and Manzhirov, 2007, Equation (20.2.4.5)), leading to

$$
\int_{-\infty}^{+\infty} e^{-\frac{1}{2}\left[(2 \pi \alpha)^{2}+\frac{1}{\tau_{\nu}^{2}}\right]\left(\nu-\nu_{0}\right)^{2}} \mathrm{~d} \nu=\sqrt{\frac{2 \pi}{(2 \pi \alpha)^{2}+\frac{1}{\tau_{\nu}^{2}}}}
$$

and

$$
E_{2}(\alpha, f)=\frac{1}{\sqrt{(2 \pi \alpha)^{2} \tau_{\nu}^{2}+1}} e^{-\frac{1}{2} \frac{(2 \pi \alpha)^{2}}{(2 \pi \alpha)^{2} \tau_{\nu}^{2}+1}\left(f-\nu_{0}\right)^{2}} .
$$

Calculation of $E_{3}(t, \alpha, f) . \quad E_{3}(t, \alpha, f)$ is given by

$$
E_{3}(t, \alpha, f)=\frac{1}{\sqrt{2 \pi \tau_{\nu}^{2}}} \int_{-\infty}^{+\infty} e^{-\frac{1}{2}(2 \pi \alpha)^{2}(f-\nu)^{2}} e^{-\frac{1}{2 \tau_{\nu}^{2}}\left(\nu-\nu_{0}\right)^{2}} e^{-2 i \pi(f-\nu) t} \mathrm{~d} \nu
$$

We use (S-44) to express the real term in the exponential, yielding

$$
E_{3}(t, \alpha, f)=\frac{1}{\sqrt{2 \pi \tau_{\nu}^{2}}} e^{-\frac{1}{2} \frac{(2 \pi \alpha)^{2}}{(2 \pi \alpha)^{2} \tau_{\nu}^{2}+1}\left(f-\nu_{0}\right)^{2}} \int_{-\infty}^{+\infty} e^{-\frac{1}{2}\left[(2 \pi \alpha)^{2}+\frac{1}{\tau_{\nu}^{2}}\right]\left(\nu-\nu_{0}\right)^{2}} e^{-2 i \pi(f-\nu) t} \mathrm{~d} \nu
$$

The integral in this expression rereads

$$
\int_{-\infty}^{+\infty} e^{-\frac{1}{2}\left[(2 \pi \alpha)^{2}+\frac{1}{\tau_{\nu}^{2}}\right]\left(\nu-\nu_{0}\right)^{2}} e^{-2 i \pi(f-\nu) t} \mathrm{~d} \nu=e^{-2 i \pi f t} \int_{-\infty}^{+\infty} e^{-\frac{1}{2}\left[(2 \pi \alpha)^{2}+\frac{1}{\tau_{\nu}^{2}}\right]\left(\nu-\nu_{0}\right)^{2}} e^{2 i \pi \nu t} \mathrm{~d} \nu .
$$

Performing the parameter change $\xi=-\nu$, we obtain

$$
\int_{-\infty}^{+\infty} e^{-\frac{1}{2}\left[(2 \pi \alpha)^{2}+\frac{1}{\tau_{\nu}^{2}}\right]\left(\nu-\nu_{0}\right)^{2}} e^{2 i \pi \nu t} \mathrm{~d} \nu=\int_{-\infty}^{+\infty} e^{-\frac{1}{2}\left[(2 \pi \alpha)^{2}+\frac{1}{\tau_{\nu}^{2}}\right]\left(\xi+\nu_{0}\right)^{2}} e^{-2 i \pi \xi t} \mathrm{~d} \xi
$$

This integral can be calculated using (S-8), leading to

$$
\int_{-\infty}^{+\infty} e^{-\frac{1}{2}\left[(2 \pi \alpha)^{2}+\frac{1}{\tau_{\nu}^{2}}\right]\left(\xi+\nu_{0}\right)^{2}} e^{-2 i \pi \xi t} \mathrm{~d} \xi=\sqrt{\frac{2 \pi \tau_{\nu}^{2}}{(2 \pi \alpha)^{2} \tau_{\nu}^{2}+1}} e^{-\frac{1}{2} \frac{(2 \pi t)^{2}}{(2 \pi \alpha)^{2}+\frac{1}{\tau_{\nu}^{2}}}} e^{2 i \pi \nu_{0} t} .
$$

We therefore have

$$
\int_{-\infty}^{+\infty} e^{-\frac{1}{2}\left[(2 \pi \alpha)^{2}+\frac{1}{\tau_{\nu}^{2}}\right]\left(\nu-\nu_{0}\right)^{2}} e^{-2 i \pi(f-\nu) t} \mathrm{~d} \nu=\sqrt{\frac{2 \pi \tau_{\nu}^{2}}{(2 \pi \alpha)^{2} \tau_{\nu}^{2}+1}} e^{-\frac{1}{2} \frac{(2 \pi t)^{2}}{(2 \pi \alpha)^{2}+\frac{1}{\tau_{\nu}^{2}}}} e^{-2 i \pi\left(f-\nu_{0}\right) t}
$$

and

$$
\begin{aligned}
E_{3}(t, \alpha, f) & =\frac{1}{\sqrt{(2 \pi \alpha)^{2} \tau_{\nu}^{2}+1}} e^{-\frac{1}{2} \frac{(2 \pi \alpha)^{2}}{(2 \pi \alpha)^{2} \tau_{\nu}^{2}+1}\left(f-\nu_{0}\right)^{2}} e^{-\frac{1}{2} \frac{(2 \pi \tau)^{2}}{(2 \pi \alpha)^{2} \tau_{\nu}^{2}+1} t^{2}} e^{-2 i \pi\left(f-\nu_{0}\right) t} \\
& =\frac{1}{\sqrt{(2 \pi \alpha)^{2} \tau_{\nu}^{2}+1}} e^{-2 i \pi\left(f-\nu_{0}\right) t} e^{-\frac{1}{2} \frac{(2 \pi \alpha)^{2}}{(2 \pi \alpha)^{2} \tau_{\nu}^{2}+1}\left[\left(f-\nu_{0}\right)^{2}+\left(\frac{\tau_{\nu}}{\alpha}\right)^{2} t^{2}\right]} .
\end{aligned}
$$

2.5.2 Expectation of $\left|T_{x}^{\dagger}(t, f)\right|$

With the definition of $T_{x}^{\dagger}(t, f)$ from Equation (28) from the manuscript, we obtain that

$$
\begin{aligned}
\mathrm{E}\left[\left|T_{x}^{\dagger}(t, f)\right|\right] & =\mathrm{E}\left[\frac{\Omega}{2} e^{-\frac{1}{2}(2 \pi)^{2}\left(1-\frac{\nu}{f}\right)^{2}}\right] \\
& =\mathrm{E}\left[\frac{\Omega}{2}\right] \mathrm{E}\left[e^{-\frac{1}{2}(2 \pi)^{2}\left(1-\frac{\nu}{f}\right)^{2}}\right],
\end{aligned}
$$

since Ω and ν are independent. The first expectation in the right-hand is straightforward to calculate, yielding

$$
\begin{equation*}
\mathrm{E}\left[\frac{\Omega}{2}\right]=\frac{\Omega_{0}}{2} . \tag{S-45}
\end{equation*}
$$

The second expectation in the right-hand side needs to be calculated explicitly as

$$
\begin{align*}
\mathrm{E}\left[e^{-\frac{1}{2}(2 \pi)^{2}\left(1-\frac{\nu}{f}\right)^{2}}\right] & =\int e^{-\frac{1}{2}(2 \pi)^{2}\left(1-\frac{\nu}{f}\right)^{2}} \mathrm{p}(\nu) \mathrm{d} \nu \\
& =\frac{1}{\sqrt{2 \pi \tau_{\nu}^{2}}} \int e^{-\frac{1}{2}(2 \pi)^{2}\left(1-\frac{\nu}{f}\right)^{2}} e^{-\frac{1}{2 \tau_{\nu}^{2}}\left(\nu-\nu_{0}\right)^{2}} \mathrm{~d} \nu \\
& =E_{2}\left(\frac{1}{f}, f\right) \\
& =\frac{1}{\sqrt{\left(\frac{2 \pi \tau_{\nu}^{2}}{f}\right)^{2}+1}} e^{-\frac{1}{2} \frac{(2 \pi)^{2}}{\left(\frac{2 \pi \tau_{2}^{2}}{f}\right)^{2}+1}\left(1-\frac{\nu_{0}}{f}\right)^{2}} \tag{S-46}
\end{align*}
$$

2.5.3 Expectation of $e^{i \arg \left[T_{x}^{\dagger}(t, f)\right]}$

We have

$$
\begin{align*}
\mathrm{E}\left\{e^{i \arg \left[T_{x}^{\dagger}(t, f)\right]}\right\} & =\mathrm{E}\left\{e^{i[\phi-2 \pi(f-\nu) t]}\right\} \\
& =\mathrm{E}\left(e^{i \phi}\right) \mathrm{E}\left[e^{-2 i \pi(f-\nu) t}\right] \tag{S-47}
\end{align*}
$$

since ϕ and ν are independent. According to Equation (35) of the manuscript, the value of the first expectation of the right-hand side is given by $\rho e^{i \phi_{0}}$. As to the second expectation, it yields

$$
\begin{align*}
\mathrm{E}\left[e^{-2 i \pi(f-\nu) t}\right] & =E_{1}(t, f) \\
& =e^{-\frac{1}{2}\left(2 \pi \tau_{\nu} t\right)^{2}} e^{-2 i \pi\left(f-\nu_{0}\right) t} \tag{S-48}
\end{align*}
$$

2.5.4 Expectation of $T_{x}^{\dagger}(t, f)$

We have

$$
\begin{align*}
\mathrm{E}\left[T_{x}^{\dagger}(t, f)\right] & =\mathrm{E}\left\{\frac{\Omega}{2} e^{-\frac{1}{2}(2 \pi)^{2}\left(1-\frac{\nu}{f}\right)^{2}} e^{i[\phi-2 \pi(f-\nu) t]}\right\} \\
& =\mathrm{E}\left(\frac{\Omega}{2}\right) \mathrm{E}\left(e^{i \phi}\right) \mathrm{E}\left[e^{-\frac{1}{2}(2 \pi)^{2}\left(1-\frac{\nu}{f}\right)^{2}-2 i \pi(f-\nu) t}\right] \tag{S-49}
\end{align*}
$$

with $\mathrm{E}(\Omega / 2)=\Omega_{0} / 2, \mathrm{E}\left(e^{i \phi}\right)=\rho e^{i \phi_{0}}$, and

$$
\begin{align*}
\mathrm{E}\left[e^{-\frac{1}{2}(2 \pi)^{2}\left(1-\frac{\nu}{f}\right)^{2}-2 i \pi(f-\nu) t}\right] & =E_{3}\left(t, \frac{1}{f}, f\right) \\
& =\frac{1}{\sqrt{\left(\frac{2 \pi \tau_{\nu}}{f}\right)^{2}+1}} e^{-2 i \pi\left(f-\nu_{0}\right) t} e^{-\frac{1}{2} \frac{(2 \pi)^{2}}{\left(\frac{2 \pi \tau_{\nu}}{f}\right)^{2}+1}\left[\left(1-\frac{\nu_{0}}{f}\right)^{2}+\tau_{\nu}^{2} t^{2}\right]} . \tag{S-50}
\end{align*}
$$

2.6 Summary of results

The results regarding the S-transform of an oscillatory model of increasing complexity are summarized here.

Model	Section		Distributions	Relationship between quantities
varying ϕ	§II-D4	$\left\{\begin{array}{l}\phi_{n} \\ \Omega_{n} \\ \nu_{n}\end{array}\right.$	$\sim \operatorname{VonMises}\left(\phi_{0}, \kappa\right)$ $=\Omega_{0}$ $=\nu_{0}$	POWavg $=\operatorname{avg} \mathrm{AMP}^{2} \times \mathrm{ITC}^{2}$
varying ϕ and Ω	§II-D5	$\left\{\begin{array}{c}\phi_{n} \\ \Omega_{n} \\ \nu_{n}\end{array}\right.$	$\sim \operatorname{VonMises}\left(\phi_{0}, \kappa\right)$ $\sim \mathcal{N}\left(\Omega_{0}, \tau_{\Omega}^{2}\right)$ $=\nu_{0}$	$\mathrm{E}\left[\mathrm{POWavg}-\operatorname{avg} \mathrm{AMP}^{2} \times \mathrm{ITC}^{2}\right]=O\left(\frac{1}{N}\right)$
varying ϕ, Ω, and ν	§II-D6	$\left\{\begin{array}{l}\phi_{n} \\ \Omega_{n} \\ \nu_{n}\end{array}\right.$	$\sim \operatorname{VonMises}\left(\phi_{0}, \kappa\right)$ $\sim \mathcal{N}\left(\Omega_{0}, \tau_{\Omega}^{2}\right)$ $\sim \mathcal{N}\left(\nu_{0}, \tau_{\nu}^{2}\right)$	Nontrivial, see Equation (70)

3 Proof of general relationship between avgAMP, ITC, and POWavg

We here provide a sketch of proof. Detailed results can be found in $\S 2$ of Supplementary Material \#3.
We expand avgAMP ${ }^{2} \times \mathrm{ITC}^{2}$ from (S-1) and (S-3), yielding

$$
\begin{align*}
\operatorname{avgAMP} x_{x_{1: N}}(t, f)^{2} \times \operatorname{ITC}_{x_{1: N}}(t, f)^{2}= & \underbrace{\frac{1}{N^{3}} \sum_{k=1}^{N}\left|T_{x_{k}}(t, f)\right|^{2}}_{S_{1}}+\underbrace{\frac{1}{N^{3}} \sum_{k \neq l}\left|T_{x_{k}}(t, f)\right|\left|T_{x_{l}}(t, f)\right|}_{S_{2}} \\
& +\underbrace{\frac{1}{N^{4}}\left\{\sum_{m \neq n} e^{i\left[\theta_{x_{m}}(t, f)-\theta_{x_{n}}(t, f)\right]}\right\}\left[\sum_{k=1}^{N}\left|T_{x_{k}}(t, f)\right|^{2}\right]}_{P_{1}} \\
& +\frac{\underbrace{\frac{1}{N^{4}}\left\{\sum_{m \neq n} e^{i\left[\theta_{x_{m}}(t, f)-\theta_{x_{n}}(t, f)\right]}\right\}}_{P_{2}}}{} \\
& \times\left[\sum_{k \neq l}\left|T_{x_{k}}(t, f)\right|\left|T_{x_{l}}(t, f)\right|\right] \tag{S-51}
\end{align*}
$$

P_{1} of can be further expanded, yielding

$$
\begin{align*}
P_{1}= & \underbrace{\frac{1}{N^{4}} \sum_{m \neq n}\left|T_{x_{m}}(t, f)\right|^{2} e^{i\left[\theta_{x_{m}}(t, f)-\theta_{x_{n}}(t, f)\right]}}_{S_{3}} \\
& +\underbrace{\frac{1}{N^{4}} \sum_{m \neq n}\left|T_{x_{n}}(t, f)\right|^{2} e^{i\left[\theta_{x_{m}}(t, f)-\theta_{x_{n}}(t, f)\right]}}_{S_{4}} \\
& +\underbrace{\frac{1}{N^{4}} \sum_{m \neq n} e^{i\left[\theta_{x_{m}}(t, f)-\theta_{x_{n}}(t, f)\right]} \sum_{k \notin\{m, n\}}\left|T_{x_{k}}(t, f)\right|^{2}}_{S_{5}} . \tag{S-52}
\end{align*}
$$

P_{2} of (S-51) can also be expanded:

$$
\begin{align*}
P_{2}= & \underbrace{\frac{2}{N^{4}} \sum_{m \neq n}\left|T_{x_{m}}(t, f)\right|\left|T_{x_{n}}(t, f)\right| e^{i\left[\theta_{x_{m}}(t, f)-\theta_{x_{n}}(t, f)\right]}}_{S_{6}} \\
& +\underbrace{\frac{2}{N^{4}} \sum_{m \neq n}\left|T_{x_{m}}(t, f)\right| e^{i\left[\theta_{x_{m}}(t, f)-\theta_{x_{n}}(t, f)\right]} \sum_{l \notin\{m, n\}}\left|T_{x_{l}}(t, f)\right|}_{S_{7}} \\
& +\underbrace{\frac{2}{N^{4}} \sum_{m \neq n}\left|T_{x_{n}}(t, f)\right| e^{i\left[\theta_{x_{m}}(t, f)-\theta_{x_{n}}(t, f)\right]} \sum_{l \notin\{m, n\}}\left|T_{x_{l}}(t, f)\right|}_{S_{8}} \\
& +\underbrace{\frac{1}{N^{4}} \sum_{m \neq n} e^{i\left[\theta_{x_{m}}(t, f)-\theta_{x_{n}}(t, f)\right]}}_{S_{9}}
\end{align*}
$$

We were able to expand avgAMP $x_{x_{1: N}}(t, f)^{2} \times \operatorname{ITC}_{x_{1: N}}(t, f)^{2}$ into 9 terms: two (S_{1} and S_{2}) from (S-51), three (S_{3} to S_{5}) from (S-52), and $4\left(S_{6}\right.$ to $\left.S_{9}\right)$ from (S-53). We can now calculate the expectation of $\operatorname{avgAMP} x_{x_{1: N}}(t, f)^{2} \times \operatorname{ITC}_{x_{1: N}}(t, f)^{2}$ term by term.

$$
\mathrm{E}\left(S_{1}\right)=\frac{1}{N^{2}} \mathrm{E}\left[\left|T_{x}(t, f)\right|^{2}\right]
$$

for a global contribution that is $O\left(1 / N^{2}\right)$;

$$
\mathrm{E}\left(S_{2}\right)=\frac{N-1}{N^{2}} \mathrm{E}\left[\left|T_{x}(t, f)\right|\right]^{2},
$$

for a global contribution that is $O(1 / N)$;

$$
\mathrm{E}\left(S_{3}\right)=\frac{N-1}{N^{3}} \mathrm{E}\left[\left|T_{x}(t, f)\right|^{2} e^{i \theta_{x}(t, f)}\right] \mathrm{E}\left[e^{i \theta_{x}(t, f)}\right]^{*},
$$

which is $O\left(1 / N^{2}\right)$;

$$
\mathrm{E}\left(S_{4}\right)=\frac{N-1}{N^{3}} \mathrm{E}\left[\left|T_{x}(t, f)\right|^{2} e^{-i \theta_{x}(t, f)}\right] \mathrm{E}\left[e^{i \theta_{x}(t, f)}\right],
$$

which is also $O\left(1 / N^{2}\right)$;

$$
\mathrm{E}\left(S_{5}\right)=\frac{(N-1)(N-2)}{N^{3}} \mathrm{E}\left[\left|T_{x}(t, f)\right|^{2}\right]\left|\mathrm{E}\left[e^{i \theta_{x}(t, f)}\right]\right|^{2}
$$

which is $O(1 / N)$;

$$
\mathrm{E}\left(S_{6}\right)=\frac{2(N-1)}{N^{3}}\left|\mathrm{E}\left[T_{x}(t, f)\right]\right|^{2}
$$

which is $O\left(1 / N^{2}\right)$;

$$
\mathrm{E}\left(S_{7}\right)=\frac{2(N-1)(N-2)}{N^{3}} \mathrm{E}\left[T_{x}(t, f)\right] \mathrm{E}\left[e^{i \theta_{x}(t, f)}\right]^{*} \mathrm{E}\left[\left|T_{x}(t, f)\right|\right]
$$

which is $O(1 / N)$;

$$
\mathrm{E}\left(S_{8}\right)=\frac{2(N-1)(N-2)}{N^{3}} \mathrm{E}\left[T_{x}(t, f)\right]^{*} \mathrm{E}\left[e^{i \theta_{x}(t, f)}\right] \mathrm{E}\left[\left|T_{x}(t, f)\right|\right]
$$

which is $O(1 / N)$;

$$
\mathrm{E}\left(S_{9}\right)=\frac{(N-1)(N-2)(N-3)}{N^{3}}\left|\mathrm{E}\left[e^{i \theta_{x}(t, f)}\right]\right|^{2} \mathrm{E}\left[\left|T_{x}(t, f)\right|\right]^{2}
$$

which is the only term to be $O(1)$. Putting all expressions together, we are led to

$$
\begin{equation*}
\mathrm{E}\left(\operatorname{avg} \mathrm{AMP}^{2} \times \mathrm{ITC}^{2}\right)=\left|\mathrm{E}\left[e^{\left.i \theta_{x}(t, f)\right]}\right]\right|^{2} \mathrm{E}\left[\left|T_{x}(t, f)\right|\right]^{2}+O\left(\frac{1}{N}\right) \tag{S-54}
\end{equation*}
$$

We now need to express POWavg. From (S-6), we have

$$
\mathrm{E}\left[\operatorname{POWavg}_{x_{1: N}}(t, f)\right]=\left|\mathrm{E}\left[T_{x}(t, f)\right]\right|^{2}+O\left(\frac{1}{N}\right)
$$

The expectation can be expressed by using Equation (11) of the manuscript,

$$
\mathrm{E}\left[T_{x}(t, f)\right]=\mathrm{E}\left[\left|T_{x}(t, f)\right| e^{i \theta_{x}(t, f)}\right]
$$

and further developed using Equation (6) of the manuscript,

$$
\mathrm{E}\left[\left|T_{x}(t, f)\right| e^{i \theta_{x}(t, f)}\right]=\mathrm{E}\left[e^{i \theta_{x}(t, f)}\right] \mathrm{E}\left[\left|T_{x}(t, f)\right|\right]+\operatorname{Cov}\left[e^{i \theta_{x}(t, f)},\left|T_{x}(t, f)\right|\right] .
$$

Consequently,

$$
\begin{equation*}
\left|\mathrm{E}\left[T_{x}(t, f)\right]\right|^{2}=\left|\mathrm{E}\left[e^{i \theta_{x}(t, f)}\right] \mathrm{E}\left[\left|T_{x}(t, f)\right|\right]+\operatorname{Cov}\left[e^{i \theta_{x}(t, f)},\left|T_{x}(t, f)\right|\right]\right|^{2} \tag{S-55}
\end{equation*}
$$

As a conclusion, we have from $\mathrm{S}-54$ and $\mathrm{S}-55$ that

$$
\begin{align*}
& \mathrm{E}\left[\operatorname{POWavg}_{x_{1: N}}(t, f)\right]-\mathrm{E}\left[\operatorname{ITC}_{x_{1: N}}(t, f)^{2} \times \operatorname{avgAMP}_{x_{1: N}}(t, f)^{2}\right] \\
= & \left|\mathrm{E}\left[e^{i \theta_{x}(t, f)}\right] \mathrm{E}\left[\left|T_{x}(t, f)\right|\right]+\operatorname{Cov}\left[e^{i \theta_{x}(t, f)},\left|T_{x}(t, f)\right|\right]\right|^{2}-\left|\mathrm{E}\left[e^{i \theta_{x}(t, f)}\right]\right|^{2} \mathrm{E}\left[\left|T_{x}(t, f)\right|\right]^{2}+O\left(\frac{1}{N}\right) . \tag{S-56}
\end{align*}
$$

This is in general not $O(1 / N)$. A particular case occurs when

$$
\begin{equation*}
\operatorname{Cov}\left[e^{i \theta_{x}(t, f)},\left|T_{x}(t, f)\right|\right]=0 \tag{S-57}
\end{equation*}
$$

which does make the difference of (S-56) $O(1 / N)$. Since independence implies a zero covariance, independence of $e^{i \theta_{x}(t, f)}$ and $\left|T_{x}(t, f)\right|$ has the same effect on (S-56). Considering more general solutions is more challenging. For instance, considering the first moments of $e^{i \theta_{x}(t, f)}$ and $\left|T_{x}(t, f)\right|$ fixed, the difference is $O(1 / N)$ only if we have a relation of the form

$$
\left|z-z_{0}\right|^{2}=r^{2}
$$

with

$$
\begin{aligned}
z & =\operatorname{Cov}\left[e^{i \theta_{x}(t, f)},\left|T_{x}(t, f)\right|\right] \\
z_{0} & =-\mathrm{E}\left[e^{i \theta_{x}(t, f)}\right] \mathrm{E}\left[\left|T_{x}(t, f)\right|\right] \\
r & =\left|\mathrm{E}\left[e^{i \theta_{x}(t, f)}\right]\right| \mathrm{E}\left[\left|T_{x}(t, f)\right|\right] .
\end{aligned}
$$

The complex numbers z that respect (3) are on a circle of center z_{0} and radius r. The case of zero covariance mentioned above corresponds to the case $z=0$.

References

Polyanin, A.D., Manzhirov, A.V., 2007. Handbook of Mathematics for Engineers and Scientists. Chapman \& Hall/CRC, Boca Raton.

