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1 Expression of avgAMP, ITC, and POWavg

1.1 avgAMP

The square of avgAMP can be expanded as

avgAMPx1:N (t, f)2 =

[
1

N

N∑
n=1

|Txn(t, f)|

]2

=
1

N2

[
N∑
n=1

|Txn(t, f)|2 +
∑
m 6=n
|Txm(t, f)| |Txn(t, f)|

]
. (S-1)

Its expectation yields

E
[
avgAMPx1:N (t, f)2

]
=

1

N
E
[
|Tx(t, f)|2

]
+

(
1− 1

N

)
E [|Tx(t, f)|]2

= E [|Tx(t, f)|]2 +
1

N
Var [|Tx(t, f)|] . (S-2)

1.2 ITC

The square of ITC can be expanded as

ITCx1:N (t, f)2 =
1

N
+

1

N2

∑
m6=n

ei[θxm (t,f)−θxn (t,f)]. (S-3)

Its expectation is given by

E
[
ITCx1:N (t, f)2

]
=

1

N
+

(
1− 1

N

) ∣∣∣E [eiθx(t,f)
]∣∣∣2

=
∣∣∣E [eiθx(t,f)

]∣∣∣2 +
1

N
Var

[
eiθx(t,f)

]
,

(S-4)

where we used the fact that, according to Equation (7) of the manuscript, we have

Var
[
eiθx(t,f)

]
= 1−

∣∣∣E [eiθx(t,f)
]∣∣∣2 . (S-5)

1.3 POWavg

We have

POWavgx1:N (t, f) =

[
1

N

N∑
n=1

Txn(t, f)

][
1

N

N∑
n=1

Txn(t, f)

]∗

=
1

N2

 N∑
n=1

|Txn(t, f)|2 +
∑
m 6=n

Txm(t, f)Txn(t, f)∗

 .
Taking the expectation yields

E
[
POWavgx1:N (t, f)

]
=

1

N2

{
N∑
n=1

E
[
|Txn(t, f)|2

]
+
∑
n6=m

E [Txn(t, f)Txm(t, f)∗]

}
.

Since the Txn(t, f)’s are i.i.d. realizations of Tx(t, f), we obtain

E [Txn(t, f)Txm(t, f)∗] = E [Txn(t, f)] E [Txm(t, f)]∗

= |E [Tx(t, f)]|2
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and

E
[
POWavgx1:N (t, f)

]
=

1

N
E
[
|Tx(t, f)|2

]
+

(
1− 1

N

)
|E [Tx(t, f)]|2

= |E [Tx(t, f)]|2 +
1

N
Var [Tx(t, f)] . (S-6)

1.4 Summary of properties

Results regarding the properties of the expectation of avgAMP2, ITC2 and POWavg are summarized
here.

Measure
Expectation

depends on limit as N →∞ asymptotic expectation

avgAMP2 amplitude, |Tx(t, f)| E [|Tx(t, f)|]2 E [|Tx(t, f)|]2 +O
(

1
N

)
ITC2 phase, θx(t, f)

∣∣E [eiθx(t,f)
]∣∣2 ∣∣E [eiθx(t,f)

]∣∣2 +O
(

1
N

)
POWavg both, Tx(t, f) |E [Tx(t, f)]|2 |E [Tx(t, f)]|2 +O

(
1
N

)

2 Investigation of oscillatory model

2.1 Preliminary results

We need the values of the three following integrals. The first integral is

I1(t, α, f) =
1√

2πα2

∫
e−

(u−t)2

2α2 e−2iπfu du. (S-7)

It can be obtained as the characteristic function of a normal distribution (Polyanin and Manzhirov,
2007, Equation (20.2.4.6)) computed at −2πf ,

I1(t, α, f) = e−
1
2

(2παf)2e−2iπft. (S-8)

The second integral is

I2(Ω, t, α, f) =
1√

2πα2

∫
Ω cos(2πνu+ φ) e−

(u−t)2

2α2 e−2iπfu du.

(S-9)

It can be computed by first using Euler formula for the cosine function (Polyanin and Manzhirov,
2007, §2.2.3-14)

I2(Ω, t, α, f) =
Ω√

2πα2

∫
ei(2πνu+φ) + e−i(2πνu+φ)

2
e−

(u−t)2

2α2 e−2iπfu du

=
Ω

2
eiφ

1√
2πα2

∫
e−

(u−t)2

2α2 e−2iπ(f−ν)u du+
Ω

2
e−iφ

1√
2πα2

∫
e−

(u−t)2

2α2 e−2iπ(f+ν)u du,

(S-10)

and then integrating each exponential using (S-8):

I2(Ω, t, α, f) =
Ω

2
eiφI1(t, α, f − ν) +

Ω

2
e−iφI1(t, α, f + ν)

=
Ω

2
e−

1
2

(2πα)2(f−ν)2ei[φ−2π(f−ν)t] +
Ω

2
e−

1
2

(2πα)2(f+ν)2ei[−φ−2π(f−ν)t]. (S-11)

The third and last integral is

I3(Ω, t, α, t0, τ, f) =
1√

2πα2

∫
Ω cos(2πνu+ φ) e−

(u−t0)
2

2τ2 e−
(u−t)2

2α2 e−2iπfu du.

(S-12)
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It can be calculated by first reorganizing the quadratic terms of the exponential

Q =
1

τ2
(u− t0)2 +

1

α2
(u− t)2

=

(
1

τ2
+

1

α2

)
u2 − 2u

(
t0
τ2

+
t

α2

)
+
t20
τ2

+
t2

α2
.

Setting

t̂ =
t0
τ2

+ t
α2

1
τ2

+ 1
α2

,

we obtain

Q =

(
1

τ2
+

1

α2

)
(u− t̂)2 +

t20
τ2

+
t2

α2
−
(

1

τ2
+

1

α2

)
t̂2.

The term that does not depend on u can be expanded and simplified to yield

t20
τ2

+
t2

α2
−
(

1

τ2
+

1

α2

)
t̂2 =

1
τ2

1
α2

1
τ2

+ 1
α2

(t− t0)2

=
1

τ2 + α2
(t− t0)2,

so that

Q =

(
1

τ2
+

1

α2

)
(u− t̂)2 +

(t− t0)2

τ2 + α2

and

I3(t, α, t0, f) = e
(t−t0)

2

2(τ2+α2)
1√

2πα2

∫
Ω cos(2πνu+ φ) e

− 1
2

(
1
τ2

+ 1
α2

)
(u−t̂)2

e−2iπfu du. (S-13)

Setting

β =
1

τ2
+

1

α2
, (S-14)

we can then applying (S-10):

I3(t, α, t0, f) =
β

α
e

(t−t0)
2

2(τ2+α2)
1√

2πβ2

∫
Ω cos(2πνu+ φ) e

− (u−t̂)2

2β2 e−2iπfu du

=
β

α
e

(t−t0)
2

2(τ2+α2) I2

(
Ω, t̂, β, f

)
=

β

α
e
− (t−t0)

2

2(τ2+α2)

{
Ω

2
e−

1
2

(2πβ)2(f−ν)2ei[φ−2π(f−ν)t̂] +
Ω

2
e−

1
2

(2πβ)2(f+ν)2ei[−φ−2π(f−ν)t̂]

}
.

(S-15)

Note that, for τ2 � α2, we have β2 ≈ τ2, whereas β2 ≈ α2 for τ2 � α2.

2.2 S-transform of oscillatory signal

We here calculate the time-frequency transform of a signal of the form given by Equation (24) of the
manuscript. Application of (S-10) with α = 1/f yields

Tx(t, f) =
|f |√
2π

∫
Ω cos(2πνu+ φ) e−

f2(u−t)2
2 e−2iπfu du

=
Ω

2
e
− 1

2
(2π)2

(
1− ν

f

)2
ei[φ−2π(f−ν)t] +

Ω

2
e
− 1

2
(2π)2

(
1+ ν

f

)2
ei[−φ−2π(f−f0)t]. (S-16)
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2.3 Approximation

2.3.1 General approach

We here provide an approximation for the modulus and argument of Tx(t, f) in (S-16). We first express
Tx(t, f) as

Tx(t, f) =
Ω

2
e
− 1

2
(2π)2

(
1− ν

f

)2
ei[φ−2π(f−ν)t]

[
1 + e

−8π2 ν
f ei(−2φ−4πνt)

]
.

Setting

T †x(t, f) =
Ω

2
e
− 1

2
(2π)2

(
1− ν

f

)2
ei[φ−2π(f−ν)t] (S-17)

and
ε(t, f) = e

−8π2 ν
f ei(−2φ−4πνt), (S-18)

we can express Tx(t, f) as
Tx(t, f) = T †x(t, f) [1 + ε(t, f)] . (S-19)

From there, the module and argument of Tx(t, f) can be calculated as

|Tx(t, f)| =
∣∣∣T †x(t, f)

∣∣∣ |1 + ε(t, f)| (S-20)

arg [Tx(t, f)] = arg
[
T †x(t, f)

]
+ arg [1 + ε(t, f)] . (S-21)

The module and argument of T †x(t, f) can be easily calculated, yielding∣∣∣T †x(t, f)
∣∣∣ =

Ω

2
e
− 1

2
(2π)2

(
1− ν

f

)2
(S-22)

arg
[
T †x(t, f)

]
= φ− 2π(f − ν)t. (S-23)

The module and argument of 1 + ε(t, f) are not quite as straightforward to obtain. See Figure 1 for a

schematic description. Since we only consider f > 0, we have e
−8π2 ν

f < 1, so that 0 < ε(t, f) < 1 and
1 + ε(t, f) has modulus in ]0, 2[ and argument in ]− π

2 ,
π
2 [. We define εm(t, f) and εa(t, f) as

|1 + ε(t, f)| = 1 + εm(t, f) (S-24)

arg [1 + ε(t, f)] = εa(t, f). (S-25)

We now provide bounds for both quantities.

1

|ε(t, f)|

arg[ε(t, f)]

|1 + ε(, f)|

arg[1 + ε(t, f)]

Figure 1: Modulus and argument of 1 + ε(t, f).
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2.3.2 Bounds for εm(t, f)

From (S-24) and (S-18), we have

[1 + εm(t, f)]2 = |1 + ε(t, f)|2

=
∣∣∣1 + e

−8π2 ν
f ei(−2φ−4πνt)

∣∣∣2
=

[
1 + e

−8π2 ν
f cos(2φ+ 4πνt)

]2

+
[
e
−8π2 ν

f sin(2φ+ 4πνt)
]2

= 1 + 2e
−8π2 ν

f cos(2φ+ 4πνt)

+e
−16π2 ν

f ,

so that

[1 + εm(t, f)]2 < 1 + 2e
−8π2 ν

f + e
−16π2 ν

f

<
(

1 + e
−8π2 ν

f

)2

1 + εm(t, f) < 1 + e
−8π2 ν

f (S-26)

and

[1 + εm(t, f)]2 > 1− 2e
−8π2 ν

f + e
−16π2 ν

f

>
(

1− e−8π2 ν
f

)2

1 + εm(t, f) > 1− e−8π2 ν
f . (S-27)

From (S-26) and (S-27), we are led to

|εm(t, f)| < e
−8π2 ν

f . (S-28)

Numerically, we have for f < f0 = 10ν

|εm(t, f)| < e
−8π2 ν

f < e
−8π2 ν

f0 ≈ 3.8× 10−4. (S-29)

2.3.3 Bounds for εa(t, f)

Since εa(t, f) is in ] − π
2 ,

π
2 [, its argument can be expressed from (S-25) and (S-18) in terms of the

tangent function, yielding

tan [εa(t, f)] =
e
−8π2 ν

f sin(2φ+ 4πνt)

1 + e
−8π2 ν

f cos(2φ+ 4πνt)
.

The variations of the right-hand side of the expression as a function of t can be investigated (see §1.1
of Supplementary Material #3), showing that

|tan [εa(t, f)]| ≤ e
−8π2 ν

f√
1− e−16π2 ν

f

,

or, equivalently,

|εa(t, f)| < arctan

 e
−8π2 ν

f√
1− e−16π2 ν

f

 . (S-30)

Since the upper bound is an increasing function of f (see §1.2 of Supplementary Material #3), we
obtain in particular that, for f < f0,

|εa(t, f)| < arctan

 e
−8π2 ν

f0√
1− e−16π2 ν

f0

 ≈ 3.8× 10−4. (S-31)
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2.3.4 Modulus of Tx(t, f)

According to (S-20), (S-22), and (S-24), the modulus of Tx(t, f) is given by

|Tx(t, f)| =
Ω

2
e
− 1

2
(2π)2

(
1− ν

f

)2
[1 + εm(t, f)] , (S-32)

with, according to (S-28),
|εm(t, f)| < 1 (S-33)

and, using (S-29) for f < 10ν,
|εm(t, f)| < 3.8× 10−4. (S-34)

Note that, for f ≥ 10ν, we have ∣∣∣T †x(t, f)
∣∣∣ < 1.1× 10−7 Ω

2
, (S-35)

which, together with (S-20) the fact that εm(t, f) ∈]0, 2[, yields the following upper bound

|Tx(t, f)| < 2.2× 10−7 Ω

2
. (S-36)

As a consequence, values of modulus are not relevant for f ≥ 10ν.

2.3.5 Argument of Tx(t, f)

According to (S-21), (S-23), and (S-25), the argument of Tx(t, f) is given by

arg [Tx(t, f)] = φ− 2π(f − ν)t+ εa(t, f), (S-37)

with, according to (S-30)

|εa(t, f)| < arctan

 e
−8π2 ν

f√
1− e−16π2 ν

f


and, using (S-31) for f ≥ 10ν,

|εa(t, f)| < 3.8× 10−4. (S-38)

2.3.6 Summary of bounds

Since we are interested in f > 0, we always have |ε(t, f)| < 1. Furthermore, for f < f0 = 10ν,
|ε(t, f)| < 3.8 × 10−4. For f ≥ 10ν, |ε(t, f)| can be larger (up to the upper bound of 1, reached for

f →∞), but T †x(t, f) itself is then negligible, as |T †x(t, f)| < 1.1× 10−7 Ω/2.

For the amplitude, |εm(t, f)| < e
−8π2 ν

f and, for f < f0, |εm(t, f)| < 3.8 × 10−4. For the phase,

| tan εa(t, f)| < e
−8π2 ν

f /

√
1− e−16π2 ν

f and, for f < f0, |εa(t, f)| < 3.8× 10−4.

2.4 Model with varying amplitude and phase

To derive an asymptotic form for E(POWavg†), we first need to calculate the expectation of the
time-frequency transform. Using Equation (46) of the manuscript, we obtain

E
[
T †xn(t, f)

]
=

1

2
e
− 1

2
(2π)2

(
1− ν0

f

)2
e−2iπ(f−ν0)tE

(
Ωne

iφn
)

=
1

2
e
− 1

2
(2π)2

(
1− ν0

f

)2
e−2iπ(f−ν0)t E (Ωn) E

(
eiφn

)
=

Ω0ρ

2
e
− 1

2
(2π)2

(
1− ν0

f

)2
ei[φ0−2π(f−ν0)t],

whose power is given by ∣∣∣E [T †x(t, f)
]∣∣∣2 =

[
Ω0ρ

2
e
− 1

2
(2π)2

(
1− ν0

f

)2]2

. (S-39)
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Equation (23) of the manuscript then implies

E
(

POWavg†
)

=

[
Ω0ρ

2
e
− 1

2
(2π)2

(
1− ν0

f

)2]2

+O

(
1

N

)
. (S-40)

2.5 Model with varying amplitude, frequency, and phase

2.5.1 Preliminary results

We first provide the expectation of three quantities:

E1(t, f) = E
[
e−2iπ(f−ν)t

]
(S-41)

E2(α, f) = E
[
e−

1
2

(2πα)2(f−ν)2
]

(S-42)

E3(t, α, f) = E
[
e−

1
2

(2πα)2(f−ν)2−2iπ(f−ν)t
]
, (S-43)

when ν is normally distributed with mean ν0 and variance τ2
ν .

Calculation of E1(t, f). The first quantity is given by

E1(t, f) =
1√

2πτ2
ν

∫ +∞

−∞
e−2iπ(f−ν)te

− 1

2τ2ν
(ν−ν0)2

dν

=
1√

2πτ2
ν

e−2iπft

∫ +∞

−∞
e2iπνte

− 1

2τ2ν
(ν−ν0)2

dν

=
1√

2πτ2
ν

e−2iπft

∫ +∞

−∞
e−2iπν(−t)e

− 1

2τ2ν
(ν−ν0)2

dν

= e−2iπftI1(ν0, τν ,−t)
= e−2iπfte−

1
2

(2πτνt)2e2iπν0t

= e−
1
2

(2πτνt)2e−2iπ(f−ν0)t,

where I1 is defined in (S-7).

Calculation of E2(α, f). The second quantity is given by

E2(α, f) =
1√

2πτ2
ν

∫ +∞

−∞
e−

1
2

(2πα)2(f−ν)2e
− 1

2τ2ν
(ν−ν0)2

dν.

We reorganize the quadratic terms in the exponential

Q = (2πα)2(f − ν)2 +
1

τ2
ν

(ν − ν0)2

=

[
(2πα)2 +

1

τ2
ν

]
ν2 − 2ν

[
(2πα)2f +

ν0

τ2
ν

]
+(2πα)2f2 +

ν2
0

τ2
ν

.

Setting

ν̂ =
(2πα)2f + ν0

τ2ν

(2πα)2 + 1
τ2ν

,

we obtain

Q =

[
(2πα)2 +

1

τ2
ν

]
(ν − ν0)2 + (2πα)2f2 +

ν2
0

τ2
ν

−
[
(2πα)2 +

1

τ2
ν

]
ν̂2.

8



The term that does not depend on ν can be expanded and simplified to yield

(2πα)2f2 +
ν2

0

τ2
ν

−
[
(2πα)2 +

1

τ2
ν

]
ν̂2 =

(2πα)2 1
τ2ν

(2πα)2 + 1
τ2ν

(f − ν0)2

=
(2πα)2

(2πα)2τ2
ν + 1

(f − ν0)2,

so that

Q =

[
(2πα)2 +

1

τ2
ν

]
(ν − ν0)2 +

(2πα)2

(2πα)2τ2
ν + 1

(f − ν0)2

and

E2(α, f) =
1√

2πτ2
ν

e
− 1

2
(2πα)2

(2πα)2τ2ν+1
(f−ν0)2

∫ +∞

−∞
e
− 1

2

[
(2πα)2+ 1

τ2ν

]
(ν−ν0)2

dν. (S-44)

The integral can be calculated using the fact that a normal distribution sums to 1 (Polyanin and
Manzhirov, 2007, Equation (20.2.4.5)), leading to∫ +∞

−∞
e
− 1

2

[
(2πα)2+ 1

τ2ν

]
(ν−ν0)2

dν =

√
2π

(2πα)2 + 1
τ2ν

and

E2(α, f) =
1√

(2πα)2τ2
ν + 1

e
− 1

2
(2πα)2

(2πα)2τ2ν+1
(f−ν0)2

.

Calculation of E3(t, α, f). E3(t, α, f) is given by

E3(t, α, f) =
1√

2πτ2
ν

∫ +∞

−∞
e−

1
2

(2πα)2(f−ν)2e
− 1

2τ2ν
(ν−ν0)2

e−2iπ(f−ν)t dν.

We use (S-44) to express the real term in the exponential, yielding

E3(t, α, f) =
1√

2πτ2
ν

e
− 1

2
(2πα)2

(2πα)2τ2ν+1
(f−ν0)2

∫ +∞

−∞
e
− 1

2

[
(2πα)2+ 1

τ2ν

]
(ν−ν0)2

e−2iπ(f−ν)t dν.

The integral in this expression rereads∫ +∞

−∞
e
− 1

2

[
(2πα)2+ 1

τ2ν

]
(ν−ν0)2

e−2iπ(f−ν)t dν = e−2iπft

∫ +∞

−∞
e
− 1

2

[
(2πα)2+ 1

τ2ν

]
(ν−ν0)2

e2iπνt dν.

Performing the parameter change ξ = −ν, we obtain∫ +∞

−∞
e
− 1

2

[
(2πα)2+ 1

τ2ν

]
(ν−ν0)2

e2iπνt dν =

∫ +∞

−∞
e
− 1

2

[
(2πα)2+ 1

τ2ν

]
(ξ+ν0)2

e−2iπξt dξ.

This integral can be calculated using (S-8), leading to∫ +∞

−∞
e
− 1

2

[
(2πα)2+ 1

τ2ν

]
(ξ+ν0)2

e−2iπξt dξ =

√
2πτ2

ν

(2πα)2τ2
ν + 1

e
− 1

2
(2πt)2

(2πα)2+ 1
τ2ν e2iπν0t.

We therefore have∫ +∞

−∞
e
− 1

2

[
(2πα)2+ 1

τ2ν

]
(ν−ν0)2

e−2iπ(f−ν)t dν =

√
2πτ2

ν

(2πα)2τ2
ν + 1

e
− 1

2
(2πt)2

(2πα)2+ 1
τ2ν e−2iπ(f−ν0)t

and

E3(t, α, f) =
1√

(2πα)2τ2
ν + 1

e
− 1

2
(2πα)2

(2πα)2τ2ν+1
(f−ν0)2

e
− 1

2
(2πτν )

2

(2πα)2τ2ν+1
t2

e−2iπ(f−ν0)t

=
1√

(2πα)2τ2
ν + 1

e−2iπ(f−ν0)t e
− 1

2
(2πα)2

(2πα)2τ2ν+1

[
(f−ν0)2+( τνα )

2
t2
]
.
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2.5.2 Expectation of |T †x(t, f)|

With the definition of T †x(t, f) from Equation (28) from the manuscript, we obtain that

E
[∣∣∣T †x(t, f)

∣∣∣] = E

[
Ω

2
e
− 1

2
(2π)2

(
1− ν

f

)2]
= E

[
Ω

2

]
E

[
e
− 1

2
(2π)2

(
1− ν

f

)2]
,

since Ω and ν are independent. The first expectation in the right-hand is straightforward to calculate,
yielding

E

[
Ω

2

]
=

Ω0

2
. (S-45)

The second expectation in the right-hand side needs to be calculated explicitly as

E

[
e
− 1

2
(2π)2

(
1− ν

f

)2]
=

∫
e
− 1

2
(2π)2

(
1− ν

f

)2
p(ν) dν

=
1√

2πτ2
ν

∫
e
− 1

2
(2π)2

(
1− ν

f

)2
e
− 1

2τ2ν
(ν−ν0)2

dν

= E2

(
1

f
, f

)

=
1√(

2πτ2ν
f

)2
+ 1

e

− 1
2

(2π)2(
2πτ2ν
f

)2

+1

(
1− ν0

f

)2
. (S-46)

2.5.3 Expectation of e
i arg

[
T †x(t,f)

]
We have

E

{
e
i arg

[
T †x(t,f)

]}
= E

{
ei[φ−2π(f−ν)t]

}
= E

(
eiφ
)

E
[
e−2iπ(f−ν)t

]
, (S-47)

since φ and ν are independent. According to Equation (35) of the manuscript, the value of the first
expectation of the right-hand side is given by ρeiφ0 . As to the second expectation, it yields

E
[
e−2iπ(f−ν)t

]
= E1(t, f)

= e−
1
2

(2πτνt)2e−2iπ(f−ν0)t. (S-48)

2.5.4 Expectation of T †x(t, f)

We have

E
[
T †x(t, f)

]
= E

{
Ω

2
e
− 1

2
(2π)2

(
1− ν

f

)2
ei[φ−2π(f−ν)t]

}
= E

(
Ω

2

)
E
(
eiφ
)

E

[
e
− 1

2
(2π)2

(
1− ν

f

)2
−2iπ(f−ν)t

]
,

(S-49)
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with E(Ω/2) = Ω0/2, E(eiφ) = ρeiφ0 , and

E

[
e
− 1

2
(2π)2

(
1− ν

f

)2
−2iπ(f−ν)t

]
= E3

(
t,

1

f
, f

)

=
1√(

2πτν
f

)2
+ 1

e−2iπ(f−ν0)t e
− 1

2
(2π)2

( 2πτν
f )

2
+1

[(
1− ν0

f

)2
+τ2ν t

2

]
. (S-50)

2.6 Summary of results

The results regarding the S-transform of an oscillatory model of increasing complexity are summarized
here.

Model Section Distributions Relationship between quantities

varying φ §II-D4


φn ∼ VonMises(φ0, κ)
Ωn = Ω0

νn = ν0

POWavg = avgAMP2 × ITC2

varying φ and Ω §II-D5


φn ∼ VonMises(φ0, κ)
Ωn ∼ N (Ω0, τ

2
Ω)

νn = ν0

E[POWavg − avgAMP2 × ITC2] = O
(

1
N

)

varying φ, Ω, and ν §II-D6


φn ∼ VonMises(φ0, κ)
Ωn ∼ N (Ω0, τ

2
Ω)

νn ∼ N (ν0, τ
2
ν )

Nontrivial, see Equation (70)

3 Proof of general relationship between avgAMP, ITC, and POWavg

We here provide a sketch of proof. Detailed results can be found in §2 of Supplementary Material #3.
We expand avgAMP2 × ITC2 from (S-1) and (S-3), yielding

avgAMPx1:N (t, f)2 × ITCx1:N (t, f)2 =
1

N3

N∑
k=1

|Txk(t, f)|2︸ ︷︷ ︸
S1

+
1

N3

∑
k 6=l
|Txk(t, f)| |Txl(t, f)|︸ ︷︷ ︸

S2

+
1

N4

∑
m6=n

ei[θxm (t,f)−θxn (t,f)]


[
N∑
k=1

|Txk(t, f)|2
]

︸ ︷︷ ︸
P1

+
1

N4

∑
m6=n

ei[θxm (t,f)−θxn (t,f)]


×

∑
k 6=l
|Txk(t, f)| |Txl(t, f)|


︸ ︷︷ ︸

P2

. (S-51)
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P1 of (S-51) can be further expanded, yielding

P1 =
1

N4

∑
m 6=n
|Txm(t, f)|2 ei[θxm (t,f)−θxn (t,f)]

︸ ︷︷ ︸
S3

+
1

N4

∑
m 6=n
|Txn(t, f)|2 ei[θxm (t,f)−θxn (t,f)]

︸ ︷︷ ︸
S4

+
1

N4

∑
m 6=n

ei[θxm (t,f)−θxn (t,f)]
∑

k 6∈{m,n}

|Txk(t, f)|2

︸ ︷︷ ︸
S5

.

(S-52)

P2 of (S-51) can also be expanded:

P2 =
2

N4

∑
m 6=n
|Txm(t, f)| |Txn(t, f)| ei[θxm (t,f)−θxn (t,f)]

︸ ︷︷ ︸
S6

+
2

N4

∑
m 6=n
|Txm(t, f)| ei[θxm (t,f)−θxn (t,f)]

∑
l 6∈{m,n}

|Txl(t, f)|

︸ ︷︷ ︸
S7

+
2

N4

∑
m 6=n
|Txn(t, f)| ei[θxm (t,f)−θxn (t,f)]

∑
l 6∈{m,n}

|Txl(t, f)|

︸ ︷︷ ︸
S8

+
1

N4

∑
m 6=n

ei[θxm (t,f)−θxn (t,f)]

×
∑

l 6∈{m,n}

|Txl(t, f)|
∑

k 6∈{l,m,n}

|Txk(t, f)|

︸ ︷︷ ︸
S9

.

(S-53)

We were able to expand avgAMPx1:N (t, f)2×ITCx1:N (t, f)2 into 9 terms: two (S1 and S2) from (S-51),
three (S3 to S5) from (S-52), and 4 (S6 to S9) from (S-53). We can now calculate the expectation of
avgAMPx1:N (t, f)2 × ITCx1:N (t, f)2 term by term.

E(S1) =
1

N2
E
[
|Tx(t, f)|2

]
,

for a global contribution that is O(1/N2);

E(S2) =
N − 1

N2
E [|Tx(t, f)|]2 ,

for a global contribution that is O(1/N);

E(S3) =
N − 1

N3
E
[
|Tx(t, f)|2 eiθx(t,f)

]
E
[
eiθx(t,f)

]∗
,

which is O(1/N2);

E(S4) =
N − 1

N3
E
[
|Tx(t, f)|2 e−iθx(t,f)

]
E
[
eiθx(t,f)

]
,
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which is also O(1/N2);

E(S5) =
(N − 1)(N − 2)

N3
E
[
|Tx(t, f)|2

] ∣∣∣E [eiθx(t,f)
]∣∣∣2 ,

which is O(1/N);

E(S6) =
2(N − 1)

N3
|E [Tx(t, f)]|2 ,

which is O(1/N2);

E(S7) =
2(N − 1)(N − 2)

N3
E [Tx(t, f)] E

[
eiθx(t,f)

]∗
E [|Tx(t, f)|] ,

which is O(1/N);

E(S8) =
2(N − 1)(N − 2)

N3
E [Tx(t, f)]∗ E

[
eiθx(t,f)

]
E [|Tx(t, f)|] ,

which is O(1/N);

E(S9) =
(N − 1)(N − 2)(N − 3)

N3

∣∣∣E [eiθx(t,f)
]∣∣∣2 E [|Tx(t, f)|]2 ,

which is the only term to be O(1). Putting all expressions together, we are led to

E(avgAMP2 × ITC2) =
∣∣∣E [eiθx(t,f)]

]∣∣∣2 E [|Tx(t, f)|]2 +O

(
1

N

)
. (S-54)

We now need to express POWavg. From (S-6), we have

E
[
POWavgx1:N (t, f)

]
= |E [Tx(t, f)]|2 +O

(
1

N

)
.

The expectation can be expressed by using Equation (11) of the manuscript,

E [Tx(t, f)] = E
[
|Tx(t, f)| eiθx(t,f)

]
,

and further developed using Equation (6) of the manuscript,

E
[
|Tx(t, f)| eiθx(t,f)

]
= E

[
eiθx(t,f)

]
E [|Tx(t, f)|] + Cov

[
eiθx(t,f), |Tx(t, f)|

]
.

Consequently,

|E [Tx(t, f)]|2 =
∣∣∣E [eiθx(t,f)

]
E [|Tx(t, f)|] + Cov

[
eiθx(t,f), |Tx(t, f)|

]∣∣∣2 .
(S-55)

As a conclusion, we have from (S-54) and (S-55) that

E
[
POWavgx1:N (t, f)

]
− E

[
ITCx1:N (t, f)2 × avgAMPx1:N (t, f)2

]
=

∣∣∣E [eiθx(t,f)
]

E [|Tx(t, f)|] + Cov
[
eiθx(t,f), |Tx(t, f)|

]∣∣∣2 − ∣∣∣E [eiθx(t,f)
]∣∣∣2 E [|Tx(t, f)|]2 +O

(
1

N

)
.

(S-56)

This is in general not O(1/N). A particular case occurs when

Cov
[
eiθx(t,f), |Tx(t, f)|

]
= 0, (S-57)
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which does make the difference of (S-56) O(1/N). Since independence implies a zero covariance,
independence of eiθx(t,f) and |Tx(t, f)| has the same effect on (S-56). Considering more general solutions
is more challenging. For instance, considering the first moments of eiθx(t,f) and |Tx(t, f)| fixed, the
difference is O(1/N) only if we have a relation of the form

|z − z0|2 = r2,

with

z = Cov
[
eiθx(t,f), |Tx(t, f)|

]
z0 = −E

[
eiθx(t,f)

]
E[|Tx(t, f)|]

r =
∣∣∣E [eiθx(t,f)

]∣∣∣E[|Tx(t, f)|].

The complex numbers z that respect (3) are on a circle of center z0 and radius r. The case of zero
covariance mentioned above corresponds to the case z = 0.
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