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1 Expression of avgAMP, ITC, and POWavg

1.1 avgAMP
The square of avgAMP can be expanded as

N 2
avgAMP,, (t./)* = [i,}:lfm(tf)]
n=1
1 [ )
= 3z | 22 TP+ 3 [T (4 N T (811 |-
n=1 m#n
Its expectation yields
B [ovgAMP,, (607 = B[ NP+ (1 5 ) EIT e

BT (¢, ) + 3 Var [T, /)]

1.2 ITC
The square of ITC can be expanded as

1 7
ITCq, () = N N2 Z 100, (6,F) =02y, (8,5)]
m#n

Its expectation is given by
1.8\l J N

el e,

where we used the fact that, according to Equation (7) of the manuscript, we have
Var [e] = 1 [ [e0-07]

1.3 POWavg
We have

==

N 1 N *
Z%”]hZ%WJ

POWavg, . (t,f) = [

=1
N
5 D 1T & O+ D T (b )T, (2, f)]

n=1 m##n

Taking the expectation yields

E [POWavg,,  (t,f)] = NQ{ZE I Te (8 F)IP] + Y BT, (t )T, (8 £)* ]}-

n#m

Since the T}, (t, f)’s are i.i.d. realizations of T,(¢, f), we obtain

BT, (t, )T, ()] = E[L, (& BT, @ £
= B[ )]

(S-1)

(5-2)



and

B[POWave,, (1. /)] = ~E [|Tx<t,f>|2]+(1—> B )P
= BT, NI+ Var [T (0, )] (56)

1.4 Summary of properties

Results regarding the properties of the expectation of avgAMP?, ITC? and POWavg are summarized
here.

Expectation
Measure — - :
depends on limit as N — oo asymptotic expectation
avgAMP? | amplitude, [T,(t. /)| B(T.(L NI BT NP+ 0 ()
ITC? phase, 0,(t, f) E [e Wa(t:)] }2 |E [e B (t:)] ‘2 +0 (%)
POWavg both, Ty (t, f) BT 07 B[ NP +0(x)

2 Investigation of oscillatory model

2.1 Preliminary results

We need the values of the three following integrals. The first integral is

Lt f) = e~ 2 qu, (S-7)

V| E

It can be obtained as the characteristic function of a normal distribution (Polyanin and Manzhirov),
2007, Equation (20.2.4.6)) computed at —27 f,

L(t,a, f) = e 2 (2maf)? = 2imft, (S-8)
The second integral is
u—t 2
(Ot a, = /Q cos(2mvu + ¢ —2mfu qu,
tf) = o e
(5-9)

It can be computed by first using Euler formula for the cosine function (Polyanin and Manzhirov,
2007), §2.2.3-14)

1(2mru+o) —i(2mvuto) (u—t)2 )
IZ(Q’ t7 a’ f) = \/ﬁ / —;e 67 20‘2 6—27,7rfu du
2
_ Q / 2in(f—vyu gy 4 Lomio 1 / o et e 2im v gy,
\/ 27Ta2 2 V2o

(S-10)
and then integrating each exponential using ([S-8)):
Q i S
LYt f) = 7€ Li(t,a, f—v)+ 3¢ Li(t,o, f+v)

_ %6—%(2@ (f—V)2ei[¢—27r(f—V)t]+%e—%(2m)2(f+l/)2ei[—¢—27r(f—v)t]_ (S-11)

The third and last integral is

1 O Y ) L PR
I3(Q,t, o, to, T, f) N Qcos(2mvu+ ¢)e 272 e 2% e du.
T

(S-12)



It can be calculated by first reorganizing the quadratic terms of the exponential

1 9, 1 2
1 1Y 5 to t 2t
= - —oul =2 0 .2
<T2+Oé2>u u<72+a2) 72+a2
Setting
. B+ 5
t=73 10
Zta
we obtain
1 1 O 7 I = 1 1\ 5
= (S+=|@-0?+2+= (5 i,
Q <T2+a2>(“ ) +72+a2 72+a2

The term that does not depend on u can be expanded and simplified to yield

3t I 1Y\ L )
L+ |S5+5 ) = (-t
7'2+042 <T2+a2> %"F%( )
1 2
= 72+a2(t—t0) )
so that ( |
L1 ~o o (t—to
Q= (+ ) 0=+ 5
and
(t—t)? (A (D2 o
I3(t7 «, t()a f) = 62(T2+a2) 5 /Q COS(27TI/U —+ (]5) e 2 <72+02)(u t) 6727‘7er du.
TQ
Setting
1 1
=~ + —,
s 27 a2
we can then applying ((S-10):
B i) B
I3(t,0(,t(), f) = eArtHad) —— /QCOS 27TI/U + ¢) e i fu du
o 27r6
(t—tg)2
= §62(72+a ( B f)
«

(t—tg)?

(67

Note that, for 72 < a?, we have 82 ~ 72, whereas % ~ o2 for 72 > o?.

2.2 S-transform of oscillatory signal

(S-13)

(S-14)

_ B sy {Qe—é(2ﬂ5)2(f—V)2ei[¢—27r(f—1/)ﬂ 4 LB il -2n(f-0)] }
2 2

(S-15)

We here calculate the time-frequency transform of a signal of the form given by Equation (24) of the

manuscript. Application of (S-10) with o = 1/f yields

/] Qcos(2mvu + @) e
— Tvu e
V2m

Q —1en?(1-%)" is-2n(r-0g | O
J— _ 2 (A Y[ 14 o
2 ¢ *3

6—217rfu du

32 (144 ) i[—¢—2m(f—fo)t]

(S-16)



2.3 Approximation
2.3.1 General approach

We here provide an approximation for the modulus and argument of T, (¢, f) in (S-16]). We first express
T (t, f) as

2
T.(t, f) = Qe_%(QW)Q(I‘?> cilo—2m(f—v)t] [1_}_6*8“2%61'(724574#1/{/)}
9 2 .
Setting
2
T;(t, f) — %6_%(271-)2 (1—7> ei[¢—27r(f—1/)t] (8-17)
and L
e(t, f) — 67871' ?61(72(1)747”/@’ (S—18)

we can express T,(t, f) as
To(t f) = TH(t ) L+ et )] (S-19)
From there, the module and argument of T, (¢, f) can be calculated as
Tt ) = [T | L+ et 5] (8-20)

arg [Tu(t, f)] = arg [T](t,f)] +arg[L+e(t. £)]. (s-21)

The module and argument of T;(t, f) can be easily calculated, yielding

26‘5(2’”2(1‘?)2 (S-22)

Tl f)| =
arg [T;(t, f)} = ¢—2n(f —v)t. (S-23)

The module and argument of 1+ €(t, f) are not quite as straightforward to obtain. See Figure [1] for a

_8n2v
schematic description. Since we only consider f > 0, we have e 87 < 1, so that 0 < €(¢, f) < 1 and

1+ €(t, f) has modulus in ]0,2[ and argument in | — , 5. We define €,,(t, f) and €,(t, f) as

[1+et, /)l = 1+en(t f) (S-24)
arg [1 + G(t, f)] = Ea(t7 f) (8_25)
We now provide bounds for both quantities.
[1+€(, f)]
le(t, )]
arg[1 + (¢, f)] argle(t, f)]

1

Figure 1: Modulus and argument of 1+ €(t, f).



2.3.2 Bounds for ¢,,(t, f)

From (S-24)) and (S-18]), we have
L+emt O = L+et f)

_ ‘1 + e—8w2%€¢(72¢,4ﬂ-yt)

2

—8r2v

2

= [1 +e " T cos(2¢ + 47rut)]
—8m2L . 2

+ [e Fsin(2¢ + 47TI/t)]

= 142757 cos(2¢ + 4nvt)

—1-6_16”2%,
so that
L+ enlt, )2 < 14257 41077
< (1 + ei8ﬂ2%>2
Ltemt,f) < 14+e ™7 (S-26)
and
14+ en(t, ) > 1- 28 F 4 o167 F

V

(1 — 6_8ﬂ-2%>2
1+ emt, f) > 1—e 7, (S-27)
From ([S-26]) and (S-27)), we are led to

lem(t, ) < 77 (S-28)
Numerically, we have for f < fy = 10v

_ 2v _
lem(t, f)] < e 577 <

< ¥ h ~38x 107 (S-29)

2.3.3 Bounds for ¢,(t, f)

Since €4(t, f) is in | — F, 5], its argument can be expressed from (S-25) and (S-18)) in terms of the

tangent function, yielding
—8m2Y .
e F sin(2¢ + 4wt
tan e (1, )] = — o L
1+e F cos(2¢ + 4mvt)

The variations of the right-hand side of the expression as a function of ¢ can be investigated (see §1.1
of Supplementary Material #3), showing that

e—87r2%
|tan [E(Z(ta f)” S ) ’
/1 _ 6—1671' ?
or, equivalently,
6787‘,2%
lea(t, f)| < arctan —— - (S-30)
1— 671671' 7

Since the upper bound is an increasing function of f (see §1.2 of Supplementary Material #3), we
obtain in particular that, for f < fo,

_8p2 1
e 8 %o

_ 2V
/1—6 167 o

lea(t, f)| < arctan ~3.8x107% (S-31)



2.3.4 Modulus of T,(t, f)
According to (S-20)), (S-22)), and (S-24]), the modulus of T,(t, f) is given by

QO _1en2(1-x)’
T p) = e 00 e ), (5-32)
with, according to ([S-28)),
lem(t, f)] <1 (S-33)
and, using (S-29) for f < 10v,
lem(t, )] < 3.8 x 1074 (S-34)
Note that, for f > 10v, we have
Q
T;(t,f)’ <L1x1077, (S-35)

which, together with (S-20)) the fact that €,,(t, f) €]0, 2], yields the following upper bound
Q
ITw(t, )] < 22x1077 5 (S-36)
As a consequence, values of modulus are not relevant for f > 10v.

2.3.5 Argument of T,(t, f)
According to (S-21)), (S-23)), and (S-25)), the argument of T, (¢, f) is given by

arg [To(t, )] = &—2m(f — )t + ealt, ), (8-37)
with, according to (S-30))
—87r2?
lea(t, f)| < arctan | ———
/1 . 6716”2%
and, using (S-31) for f > 10v,
lea(t, f)] < 3.8 x 107, (S-38)

2.3.6 Summary of bounds

Since we are interested in f > 0, we always have |e(t, f)| < 1. Furthermore, for f < fo = 10v,
le(t, £)] < 3.8 x 1074 For f > 10v, |e(t, f)| can be larger (up to the upper bound of 1, reached for
f = 00), but Ti(t, f) itself is then negligible, as \Tg(t, fl <11x1077Q/2.

For the amplitude, |ex,(t, f)| < e 87 and, for f < fo, |em(t, f)| < 3.8 x 107*. For the phase,

ltaneq(t, f)] < e 57 F /\/1— e 197 and, for f < fo, ea(t, f)| < 3.8 x 10~

2.4 Model with varying amplitude and phase

To derive an asymptotic form for E(POWavg'), we first need to calculate the expectation of the
time-frequency transform. Using Equation (46) of the manuscript, we obtain

1—-%0

)] = LN g (g )

_ ;eé(Zw)Q(l”;))26—2m(f—yo)t E(Q,)E <6i¢”)
920/’65(2“)2(1?)26i[¢o—2ﬂ(f—1/o)t]7
whose power is given by

)E [T;(t, f)} ’2 - [920,)65(2”)2(1@2} g (S-39)
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Equation (23) of the manuscript then implies

2
E (POWavg*) = [onpeé(%)%l?f] +0 <]b> .

2.5 Model with varying amplitude, frequency, and phase
2.5.1 Preliminary results

We first provide the expectation of three quantities:
Ei(t,f) = E [a%w(fw)t]
Bola,f) = E[ems@re=]
E3 (t7 a, f) = E [67%(2ﬂa)2(ffy)272iﬂ'(f*’/)t:| )

when v is normally distributed with mean v and variance 72.

Calculation of Ey(t, f). The first quantity is given by

(v—rp)?
“Wte  2r 2 dv

e o2 (f
Eit, f) = \/ﬁ /
= \/;TWQQW% :o e2imvt T3 (u )2 dv
- ;e—szt o e_z“r”(—t)efﬁ(yfyo)2 dv

/2772 o
= 6_2l7rft11 (1/0, Tu, —t)
e—217rft —7(271'7'1, )2 e?iﬂ'l/ot

—Li@rnt)? —2in(f-w)t
e 2( V) e (f 0)’

where I is defined in ([S-7]).

Calculation of Es(«, f). The second quantity is given by

Foo — L (v—w0)?
Ex(a,f) = / T A W)

W

We reorganize the quadratic terms in the exponential
2 2, 1 2
Q = QCra)*(f-v)*+ ﬁ(u—yg)
v

- {(27104)2 + :2] V2 — 2w [(27ra)2 f+ jyg}

v
22 W
+(2ma)* f° + 2
Setting
(2ma)?f + %
C (2ma)? + 5

v

>

?

we obtain

(S-40)

(S-41)
(S-42)
(S-43)



The term that does not depend on v can be expanded and simplified to yield

2 2 Vg 2 Lo (27ra)2le 2
(2ma)” f +T—3— (27ar) +T—3 0’ = m(f_yo)
M 2
(2ma)?72 + 1(f v)”,
so that ( )2
1 2o
_ 2, 4 o2, lama)t
Q - |:(27TO¢) + 7_3:| (V VO) + (27_‘_&)27_3 + 1(f VO)
and
1 (@ra? —u +00  _1|(9na)24+ L | (v—w0)?
EQ(Oé,f) — 1 e é(zm)%gﬂ(f 0)2/ e 2[(2 )+73]( ) dv. (8_44)
V2nr? .

The integral can be calculated using the fact that a normal distribution sums to 1 (Polyanin and
Manzhirov, 2007, Equation (20.2.4.5)), leading to

/"FOO 7% |:(27ra)2+7'i2:| (U*V())Q 271—

e 1 dl/ _ T
- (2ma)? + %
and 2

(2ma)
Eg(a,f) = ! e_%m(f—Vo)Q‘

(2ra)?r2 +1

Calculation of Es(t,«, f). FEs(t,«, f) is given by

—1(2ma)?(f-v)? e_ﬁ(l’ )? 672i7r(f71/)td

E3 (ta «, f) = & V.

-~ aall

We use ([S-44) to express the real term in the exponential, yielding

(271'04)2 + _ 1 2, 1 _ 2
Bt f) = —me bt [ s
272 o
The integral in this expression rereads
/+OO 6_% {(m@%%} (”_"0)26—2m(f—u)t dy — e 2irft /+OO e_% [(2”0‘)%“%} (V_VO)2e2i7rut v
—0oQ —0o0

Performing the parameter change £ = —v, we obtain

/+oo 6_% |:(27ra)2+é} (V_VO)2€2i7wt G - /Jroo 6_% |:(27ra)2 } (&+ 0) 72“_& df

—0o0 —0o0
This integral can be calculated using (S-8)), leading to
1 (2m)?
/*“ ] (e 272 TEEP R simer
e (2ma)?12 + 1°
We therefore have
1 (27Tt)2
/+OO 6—% {(2“a)2+$} (V_VO)2672i7r(ffu)t dv = 2mT2 2 <2m>2+% o~ 2im(f—10)t
o (2ma)?72 + 1°
and
T T 2
Eg(t,Oé, ) — 1 e ;@W(ifgﬂ(f v)? e %mﬁef%ﬂ(ffuo)t
VvV (2ma)?tz + 1

ra)? Ty
1 o~ 2im(f—1o)t e*%%i)ﬁ[(ffw)“(z)%z]_
(2ma)?r2 +1




2.5.2 Expectation of ]T;(t,f)|

With the definition of T;r(t, f) from Equation (28) from the manuscript, we obtain that

|

Tl )] = E[ge_;(%)Q(l_?)T
- sl

since €2 and v are independent. The first expectation in the right-hand is straightforward to calculate,

yielding

1
2 2

The second expectation in the right-hand side needs to be calculated explicitly as

B {e—%@ﬂf(l—;)?] = [0 ) an

, t
2.5.3 Expectation of ¢'™® [TI (t’f)]

We have
E{ez‘arg[Tl(t,f)]} _ E{ez’[¢>—27r(f—u)t]}

- E (ew) E [6—2i7r(f—u)t} ’

(S-45)

(S-46)

(S-47)

since ¢ and v are independent. According to Equation (35) of the manuscript, the value of the first

expectation of the right-hand side is given by pe’®0. As to the second expectation, it yields

E[e*%ﬂf*“)t} — Bt f)

—%(271'71,15)2 —2im(f—vo)t

= € (& .

2.5.4 Expectation of T;I(t, f)

We have
E {T;i (t, f)} - E {26‘5(2’T>2(1—?)26i[¢2ﬂ(fu)t]}
= E <Q> E <ei¢) E |:e_é(27r)2(1_;)Q_Qin(f—u)t] ’
2

10

(S-48)

(S-49)



with E(Q/2) = Qo/2, E(e'®) = pe’®0, and
2 .
E e—%(%r)?(l—?) —217r(f—l/)t:| _ E3 <t,17 >
/
(2m)?

_1_en? T _wn\?, 39}
= e-2im(fm)t o (B7) 1 {( P .

2.6 Summary of results

The results regarding the S-transform of an oscillatory model of increasing complexity are summarized

here.
Model Section Distributions Relationship between quantities
¢n ~ VonMises(¢po, k)
varying ¢ §11-D4 Q, = W POWavg = avgAMP? x ITC?
Vn = g
¢n ~ VonMises(¢o, k)
varying ¢ and Q  §II-D5 Qn ~ N(Q,73) E[POWavg — avgAMP? x ITC? = O (

p = 10
¢n ~ VonMises(¢po, k)

varying ¢, Q, and v §II-D6 Qn ~ N(Q,73) Nontrivial, see Equation (70)
v~ N(vo, 7))

3 Proof of general relationship between avgAMP, ITC, and POWavg

We here provide a sketch of proof. Detailed results can be found in §2 of Supplementary Material #3.
We expand avgAMP? x ITC? from (S-1)) and (S-3)), yielding

avgAMP, . (t, f)2 X ITCy, (1, f)2 - N3 Z Ty, (£, ) ‘ + Z Ty, (&, )T, (2, )

kAl
S1 Sa
1 ‘ al
+ Vi Z 0z (6,1) =02y, (2,1)] Z T, (t, f)’2]
m#n k=1
Py
1 i1 (61) O, (1,
+m Z U0z, (8:1) (1)
m#n
Z|Tzk(ta f)’ |sz(tvf>| : (8'51)
k£l

-~

Py
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Py of (S-51)) can be further expanded, yielding

m#n
S3
_ 2 i[eﬂ—"m(tVf)_Hxn(taf)]
m#n
Sa
1 A
- Z[ezm (tvf)_emn (tvf)] 2
+N4 Z € Z ’ka(tmf” :
Ss
(S-52)
P, of (S-51)) can also be expanded:
Po = st 3 B (b D) [Ty (1 )] 0o ()0 )
m#n
Se
+7 Z T, i[O, (8,.f) =0 (£,£)] Z Ty, (t, )]
m#n lg{mnn}
S7
< Z T, (2, f)] el0em (t:F)=Oan (£.1)] Z Ty, (£, f)]
m#n lg{mnn}
Ss
1 [0z, (t,f)—0z,, (t,
LS il (60 1)
m#n
X Y Tt Tt f)]-
I¢{m,n} kg{l,m,n}
Sy
(S-53)

We were able to expand avgAMP, (¢, f)? xITCy, (¢, f)? into 9 terms: two (S; and S2) from (S-51)),

three (S5 to Ss) from (S-52), and 4 (Sg to Sy) from (S-53|). We can now calculate the expectation of
avgAMP, (¢, f)? X ITCy, (¢, f)? term by term.

1

E(51) = 5»E [|Tw(ta f)|2] ;

for a global contribution that is O(1/N?);
N -1
E(S2) = WE | Ta(t, P,

for a global contribution that is O(1/N);

N -1 i i *

B(S) = Sy B [[Tult, )P %D B [e(00)]

which is O(1/N?);

N

B(Si) =~ [T ) e 0] B[]

N3

12



which is also O(1/N?);

B(s) = MUV Dp i pp] e [0 ][
which is O(1/N);
Biso) = 2w e,

which is O(1/N?);

Bsy) = 2DV =D pyefen-en) BT nl,
which is O(1/N);

Bss) = 2DV =D py g o) Bl Hl,
which is O(1/N);

B(sy) = oW AN [ o) B, ),

which is the only term to be O(1). Putting all expressions together, we are led to

E(avgAMP? x ITC?) = ’E [eiez(tam} ‘2E T (t, £)|)* + O (;) : (S-54)

We now need to express POWavg. From ([S-6)), we have

E [POWavgxl:N(t, )] = E[Tx(t, f)]\2 +0 (]1[) )

The expectation can be expressed by using Equation (11) of the manuscript,
B[L(t £)] = B |ITu(t )] %00
and further developed using Equation (6) of the manuscript,
B|[Tu(t, )] D] = B[ CD| BT, f)]] + Cov |00, 1T, 1)
Consequently,

BIL@AE = [B[%OD] BT, 1)) + Cov [0, muge, )] [
(S-55)

As a conclusion, we have from (S-54) and (S-55|) that

E [POWavg, (¢, f)] — E [ITCy, (¢, f)* x avgAMP, (¢, f)?]

- ‘E (D] BTyt )] + Cov |00, Tk, 1] ‘2 = ‘E [0 ‘2 BTt P> + 0 (1> .

N
(S-56)
This is in general not O(1/N). A particular case occurs when
Cov [0, |, (¢, £)|] =0, (S-57)

13



which does make the difference of O(1/N). Since independence implies a zero covariance,
independence of €= (b/) and | T, (¢, f)| has the same effect on (S-56). Considering more general solutions
is more challenging. For instance, considering the first moments of e=(tf) and |T, (¢, f)| fixed, the
difference is O(1/N) only if we have a relation of the form

|z — zo|2 =72,
with
z = Cov [eie”’(t’f), T (t, f)@
2w = —B [ BIT )]

- \E [ei0-.0)] \ E[| T4 (t, f)]].

The complex numbers z that respect are on a circle of center zy and radius r. The case of zero
covariance mentioned above corresponds to the case z = 0.
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