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1 Oscillatory model

1.1 First result

We here provide bounds for the function
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We first set by = 6_87T2%, u = 2¢ + 4wt and
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The derivative of g is given by
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We therefore have ¢'(u) = 0 if and only if cosu = —bf, ie., u = Farccos(—by). For by < 1, ¢ is strictily negative on [—m, —arccos(—bys)|
and ]arccos(—bys),n], and strictly positive on | — arccos(—by),arccos(—bs)[. As a consequence, g is strictly decreasing on [—m, —arccos(—bs)[ and

| arccos(—by), ], and strictly increasing on | — arccos(—by), arccos(—bs)[. We also have g(—m) = g(m) = 0, as well as
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Setting gy = bg/y/1 — b%, we obtain that —gy is a lower bound of g, and g¢ an upper bound. Finally, |g(u)| < gf for all w.
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1.2 Second result

We prove that
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is a strictly increasing function of f. To show this result, we show that the function is the composition of three functions that are strictly positive. First,
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it is direct to see that f — e 7 is a strictly increasing function. We then consider
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Its derivative is given by
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which is positive. So h is also strictly increasing. Finally, u +— arctanu is strictly increasing.
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2 Proof of general relationship
We expand avgAMP? x ITC? from Equations (80) and (82) of the manuscript:
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Py of Equation (S-5) needs to be further expanded, yielding
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P, of Equation (S-5|) also needs to be expanded:
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As a summary, we were able to expand avgAMP, (¢, f)? x ITC,, (¢, f)? into 9 terms: two (S; and S2) from Equation (S-5), three (S3 to S5) from
Equation ([S-6)), and 4 (S to Sg) from Equation (S-7). We can now calculate the expectation of avgAMP, (¢, f)? x ITC,, (¢, f)* term by term:



e The first term, E(S), yields

for a resulting contribution to the general sum that is O(1/N?).

e The second term, E(Ss), is equal to

for a global contribution that is O(1/N).
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e The third term, E(S3), is given by
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which is O(1/N?).

e The fourth term, E(Sy), is similar to the previous,
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e The fifth term, E(S5), yields
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which is O(1/N).



e The sixth term, E(Sg), yields

which is O(1/N?).
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e The seventh term, E(S7), yields
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which is O(1/N).
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e The eight term, E(Sg), yields

m#n I¢{m,n}

E(Ss) = {N4 > T, (t, f)] effem B =Een(B1] N Txl(tﬂf)}
= 4ZE{Txntf> Hom () ~0en (1] Tm<t,f>}

|y wwn@’”}E[ewm“’”}E[ > Tx,@,f)]

mn Ig¢{mn}
- = g B [T (t, )" B [ei%n (1] lg%n}E[lTx,(t,f)I]

_ Ni ; B[L(t, /)] B[] ZQ{Z }E (T2 (t, £)]

- A g, g [ei;’z“’f)} B(T:(t, 1)l
= 2NN =D, ¢, 1)) B [0 BT .

which is O(1/N).
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e Finally, the ninth term, E(Sy), yields

E(Sy)

This is the only term that is O(1).
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Putting all calculations together, we obtain the following

E(avgAMP? x ITC?) = E
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