Supplementary material \#3 for manuscript "Time-frequency analysis of event-related brain recordings: Connecting power of evoked potential and inter-trial coherence"

Jonas Benhamou, Michel Le Van Quyen, and Guillaume Marrelec

Contents

2 Proof of general relationship

1 Oscillatory model

1.1 First result

We here provide bounds for the function

$$
\begin{equation*}
t \mapsto \frac{e^{-8 \pi^{2} \frac{\nu}{f}} \sin (2 \phi+4 \pi \nu t)}{1+e^{-8 \pi^{2} \frac{\nu}{f}} \cos (2 \phi+4 \pi \nu t)} \tag{S-1}
\end{equation*}
$$

We first set $b_{f}=e^{-8 \pi^{2} \frac{\nu}{f}}, u=2 \phi+4 \pi \nu t$ and

$$
\begin{equation*}
g(u)=\frac{b_{f} \sin u}{1+b_{f} \cos u} \tag{S-2}
\end{equation*}
$$

The derivative of g is given by

$$
\begin{aligned}
g^{\prime}(u) & =\frac{b_{f} \cos u\left(1+b_{f} \cos u\right)+b_{f}^{2} \sin ^{2} u}{\left(1+b_{f} \cos u\right)^{2}} \\
& =\frac{b_{f}^{2}+b_{f} \cos u}{\left(1+b_{f} \cos u\right)^{2}}
\end{aligned}
$$

We therefore have $g^{\prime}(u)=0$ if and only if $\cos u=-b_{f}$, i.e., $u= \pm \arccos \left(-b_{f}\right)$. For $b_{f}<1, g^{\prime}$ is strictily negative on $\left[-\pi,-\arccos \left(-b_{f}\right)[\right.$ and $\left.] \arccos \left(-b_{f}\right), \pi\right]$, and strictly positive on $]-\arccos \left(-b_{f}\right), \arccos \left(-b_{f}\right)\left[\right.$. As a consequence, g is strictly decreasing on $\left[-\pi,-\arccos \left(-b_{f}\right)[\operatorname{and}\right.$ $\left.] \arccos \left(-b_{f}\right), \pi\right]$, and strictly increasing on $]-\arccos \left(-b_{f}\right), \arccos \left(-b_{f}\right)[$. We also have $g(-\pi)=g(\pi)=0$, as well as

$$
\begin{aligned}
g\left[\arccos \left(-b_{f}\right)\right] & =\frac{b_{f} \sin \left[\arccos \left(-b_{f}\right)\right]}{1+b_{f} \cos \left[\arccos \left(-b_{f}\right)\right]} \\
& =\frac{b_{f} \sqrt{1-b_{f}^{2}}}{1-b_{f}^{2}} \\
& =\frac{b_{f}}{\sqrt{1-b_{f}^{2}}} \\
g\left[-\arccos \left(-b_{f}\right)\right] & =\frac{b_{f} \sin \left[-\arccos \left(-b_{f}\right)\right]}{1+b_{f} \cos \left[-\arccos \left(-b_{f}\right)\right]} \\
& =-\frac{b_{f}}{\sqrt{1-b_{f}^{2}}}
\end{aligned}
$$

Setting $g_{f}=b_{f} / \sqrt{1-b_{f}^{2}}$, we obtain that $-g_{f}$ is a lower bound of g, and g_{f} an upper bound. Finally, $|g(u)| \leq g_{f}$ for all u.

1.2 Second result

We prove that

$$
\begin{equation*}
f \mapsto \arctan \frac{e^{-8 \pi^{2} \frac{\nu}{f}} \sqrt{1-e^{-16 \pi^{2} \frac{\nu}{f}}}}{1-e^{-16 \pi^{2} \frac{\nu}{f}}} \tag{S-3}
\end{equation*}
$$

is a strictly increasing function of f. To show this result, we show that the function is the composition of three functions that are strictly positive. First, it is direct to see that $f \mapsto e^{-8 \pi^{2} \frac{\nu}{f}}$ is a strictly increasing function. We then consider

$$
\begin{equation*}
h(u)=\frac{u \sqrt{1-u^{2}}}{1-u^{2}} \tag{S-4}
\end{equation*}
$$

Its derivative is given by

$$
\begin{aligned}
h^{\prime}(u) & =\frac{\sqrt{1-u^{2}}}{1-u^{2}}+\frac{u}{1-u^{2}} \frac{-2 u}{2 \sqrt{1-u^{2}}}+u \sqrt{1-u^{2}} \frac{2 u}{\left(1-u^{2}\right)^{2}} \\
& =\frac{1}{\sqrt{1-u^{2}}}+\frac{u^{2}}{\left(1-u^{2}\right)^{\frac{3}{2}}} \\
& =\frac{1}{\left(1-u^{2}\right)^{\frac{3}{2}}},
\end{aligned}
$$

which is positive. So h is also strictly increasing. Finally, $u \mapsto \arctan u$ is strictly increasing.

2 Proof of general relationship

We expand avgAMP ${ }^{2} \times$ ITC 2 from Equations (80) and (82) of the manuscript:

$$
\begin{align*}
& \operatorname{avgAMP} \\
&= \underbrace{\frac{1}{N^{2}}\left[\sum_{k=1}^{N}\left|T_{x_{k}}(t, f)\right|^{2}+\sum_{k \neq l}\left|T_{x_{k}}(t, f)\right|\left|T_{x_{l}}(t, f)\right|\right]\left\{\frac{1}{N}+\frac{1}{N^{2}} \sum_{m \neq n} e^{i\left[\theta_{x_{m}}(t, f)-\theta_{x_{n}}(t, f)\right]}\right\}}_{x_{1: N}(t, f)^{2} \times \operatorname{ITC}_{x_{1: N}}(t, f)^{2}} \\
&=\underbrace{\frac{1}{N^{3}} \sum_{k=1}^{N}\left|T_{x_{k}}(t, f)\right|^{2}}_{S_{2}}+\underbrace{\frac{1}{N^{3}} \sum_{k \neq l}\left|T_{x_{k}}(t, f)\right|\left|T_{x_{l}}(t, f)\right|}_{P_{2}}+\underbrace{\frac{1}{N^{4}}\left[\sum_{k=1}^{N}\left|T_{x_{k}}(t, f)\right|^{2}\right]\left\{\sum_{m \neq n} e^{i\left[\theta_{x_{m}}(t, f)-\theta_{x_{n}}(t, f)\right]}\right\}}_{P_{1}} \\
&+\underbrace{\frac{1}{N^{4}}\left[\sum_{k \neq l}\left|T_{x_{k}}(t, f)\right|\left|T_{x_{l}}(t, f)\right|\right]\left\{\sum_{m \neq n} e^{i\left[\theta_{x_{m}}(t, f)-\theta_{x_{n}}(t, f)\right]}\right\}}_{P^{4}} . \tag{S-5}
\end{align*}
$$

P_{1} of Equation $\mathrm{S}-5$ needs to be further expanded, yielding

$$
\begin{align*}
P_{1} & =\frac{1}{N^{4}} \sum_{m \neq n} e^{i\left[\theta_{x_{m}}(t, f)-\theta_{x_{n}}(t, f)\right]} \sum_{k=1}^{N}\left|T_{x_{k}}(t, f)\right|^{2} \\
& =\underbrace{\frac{1}{N^{4}} \sum_{m \neq n} e^{i\left[\theta_{x_{m}}(t, f)-\theta_{x_{n}}(t, f)\right]}\left[\left|T_{x_{m}}(t, f)\right|^{2}+\left|T_{x_{n}}(t, f)\right|^{2}+\sum_{k \notin\{m, n\}}\left|T_{x_{k}}(t, f)\right|^{2}\right]}_{S_{3}} \\
& =\underbrace{\frac{1}{N^{4}} \sum_{m \neq n}\left|T_{x_{m}}(t, f)\right|^{2} e^{i\left[\theta_{x_{m}}(t, f)-\theta_{x_{n}}(t, f)\right]}}_{S_{4}}+\underbrace{\frac{1}{N^{4}} \sum_{m \neq n}\left|T_{x_{n}}(t, f)\right|^{2} e^{i\left[\theta_{x_{m}}(t, f)-\theta_{x_{n}}(t, f)\right]}}_{S_{5}}+\underbrace{}_{N^{4} \sum_{m \neq n} e^{i\left[\theta_{x_{m}}(t, f)-\theta_{x_{n}}(t, f)\right]} \sum_{k \notin\{m, n\}}\left|T_{x_{k}}(t, f)\right|^{2}} \tag{S-6}
\end{align*}
$$

P_{2} of Equation (S-5 also needs to be expanded:

$$
\begin{align*}
& P_{2}=\frac{1}{N^{4}} \sum_{m \neq n} e^{i\left[\theta_{x_{m}}(t, f)-\theta_{x_{n}}(t, f)\right]} \sum_{k \neq l}\left|T_{x_{k}}(t, f)\right|\left|T_{x_{l}}(t, f)\right| \\
& =\frac{1}{N^{4}} \sum_{m \neq n} e^{i\left[\theta_{x_{m}}(t, f)-\theta_{x_{n}}(t, f)\right]} \sum_{k=1}^{N}\left|T_{x_{k}}(t, f)\right| \sum_{l \neq k}\left|T_{x_{l}}(t, f)\right| \\
& =\frac{1}{N^{4}} \sum_{m \neq n} e^{i\left[\theta_{x_{m}}(t, f)-\theta_{x_{n}}(t, f)\right]}\left[\left|T_{x_{m}}(t, f)\right| \sum_{l \neq m}\left|T_{x_{l}}(t, f)\right|+\left|T_{x_{n}}(t, f)\right| \sum_{l \neq n}\left|T_{x_{l}}(t, f)\right|+\sum_{k \notin\{m, n\}}\left|T_{x_{k}}(t, f)\right| \sum_{l \neq k}\left|T_{x_{l}}(t, f)\right|\right] \\
& =\frac{1}{N^{4}} \sum_{m \neq n} e^{i\left[\theta_{x_{m}}(t, f)-\theta_{x_{n}}(t, f)\right]}\left\{\left|T_{x_{m}}(t, f)\right|\left|T_{x_{n}}(t, f)\right|+\left|T_{x_{m}}(t, f)\right| \sum_{l \notin\{m, n\}}\left|T_{x_{l}}(t, f)\right|+\left|T_{x_{n}}(t, f)\right|\left|T_{x_{m}}(t, f)\right|+\left|T_{x_{n}}(t, f)\right| \sum_{l \notin\{m, n\}}\left|T_{x_{l}}(t, f)\right|\right. \\
& \left.+\sum_{l \notin\{m, n\}}\left|T_{x_{l}}(t, f)\right|\left[\left|T_{x_{m}}(t, f)\right|+\left|T_{x_{n}}(t, f)\right|+\sum_{k \notin\{l, m, n\}}\left|T_{x_{k}}(t, f)\right|\right]\right\} \\
& =\frac{1}{N^{4}} \sum_{m \neq n} e^{i\left[\theta_{x_{m}}(t, f)-\theta_{x_{n}}(t, f)\right]}\left[2\left|T_{x_{m}}(t, f)\right|\left|T_{x_{n}}(t, f)\right|+2\left(\left|T_{x_{m}}(t, f)\right|+\left|T_{x_{n}}(t, f)\right|\right) \sum_{l \notin\{m, n\}}\left|T_{x_{l}}(t, f)\right|+\sum_{l \notin\{m, n\}}\left|T_{x_{l}}(t, f)\right| \sum_{k \notin\{l, m, n\}}\left|T_{x_{k}}(t, f)\right|\right] \\
& =\underbrace{\frac{2}{N^{4}} \sum_{m \neq n}\left|T_{x_{m}}(t, f)\right|\left|T_{x_{n}}(t, f)\right| e^{i\left[\theta_{x_{m}}(t, f)-\theta_{x_{n}}(t, f)\right]}}_{S_{6}}+\underbrace{\frac{2}{N^{4}} \sum_{m \neq n}\left|T_{x_{m}}(t, f)\right| e^{i\left[\theta_{x_{m}}(t, f)-\theta_{x_{n}}(t, f)\right]} \sum_{l \notin\{m, n\}}\left|T_{x_{l}}(t, f)\right|}_{S_{7}} \\
& +\underbrace{\frac{2}{N^{4}} \sum_{m \neq n}\left|T_{x_{n}}(t, f)\right| e^{i\left[\theta_{x_{m}}(t, f)-\theta_{x_{n}}(t, f)\right]} \sum_{l \notin\{m, n\}}\left|T_{x_{l}}(t, f)\right|}_{S_{8}}+\underbrace{\frac{1}{N^{4}} \sum_{m \neq n} e^{i\left[\theta_{x_{m}}(t, f)-\theta_{x_{n}}(t, f)\right]} \sum_{l \notin\{m, n\}}\left|T_{x_{l}}(t, f)\right| \sum_{k \notin\{l, m, n\}}\left|T_{x_{k}}(t, f)\right|}_{S_{9}} . \tag{S-7}
\end{align*}
$$

As a summary, we were able to expand avgAMP ${ }_{x_{1: N}}(t, f)^{2} \times \operatorname{ITC}_{x_{1: N}}(t, f)^{2}$ into 9 terms: two $\left(S_{1}\right.$ and $\left.S_{2}\right)$ from Equation S-5 , three $\left(S_{3}\right.$ to $\left.S_{5}\right)$ from Equation (S-6), and $4\left(S_{6}\right.$ to $\left.S_{9}\right)$ from Equation (S-7). We can now calculate the expectation of avgAMP $\operatorname{lin}_{x_{1: N}}(t, f)^{2} \times \operatorname{ITC}_{x_{1: N}}(t, f)^{2}$ term by term:

- The first term, $\mathrm{E}\left(S_{1}\right)$, yields

$$
\begin{aligned}
\mathrm{E}\left(S_{1}\right) & =\mathrm{E}\left[\frac{1}{N^{3}} \sum_{k=1}^{N}\left|T_{x_{k}}(t, f)\right|^{2}\right] \\
& =\frac{1}{N^{3}} \sum_{k=1}^{N} \mathrm{E}\left[\left|T_{x_{k}}(t, f)\right|^{2}\right] \\
& =\frac{1}{N^{3}} \sum_{k=1}^{N} \mathrm{E}\left[\left|T_{x}(t, f)\right|^{2}\right] \\
& =\frac{1}{N^{2}} \mathrm{E}\left[\left|T_{x}(t, f)\right|^{2}\right],
\end{aligned}
$$

for a resulting contribution to the general sum that is $O\left(1 / N^{2}\right)$.

- The second term, $\mathrm{E}\left(S_{2}\right)$, is equal to

$$
\begin{aligned}
\mathrm{E}\left(S_{2}\right) & \left.=\mathrm{E}\left[\frac{1}{N^{3}} \sum_{k \neq l}\left|T_{x_{k}}(t, f)\right|\left|T_{x_{l}}(t, f)\right|\right]\right] \\
& =\frac{1}{N^{3}} \sum_{k \neq l} \mathrm{E}\left[\left|T_{x_{k}}(t, f)\right|| | T_{x_{l}}(t, f) \mid\right] \\
& =\frac{1}{N^{3}} \sum_{k \neq l} \mathrm{E}\left[\left|T_{x_{k}}(t, f)\right|\right] \mathrm{E}\left[\left|T_{x_{l}}(t, f)\right|\right] \\
& =\frac{1}{N^{3}} \sum_{k \neq l} \mathrm{E}\left[\left|T_{x}(t, f)\right|\right]^{2} \\
& =\frac{N-1}{N^{2}} \mathrm{E}\left[\left|T_{x}(t, f)\right|\right]^{2},
\end{aligned}
$$

for a global contribution that is $O(1 / N)$.

- The third term, $\mathrm{E}\left(S_{3}\right)$, is given by

$$
\begin{aligned}
\mathrm{E}\left(S_{3}\right) & =\mathrm{E}\left\{\frac{1}{N^{4}} \sum_{m \neq n}\left|T_{x_{m}}(t, f)\right|^{2} e^{i\left[\theta_{x_{m}}(t, f)-\theta_{x_{n}}(t, f)\right]}\right\} \\
& =\frac{1}{N^{4}} \sum_{m \neq n} \mathrm{E}\left\{\left|T_{x_{m}}(t, f)\right|^{2} e^{i\left[\theta_{x_{m}}(t, f)-\theta_{x_{n}}(t, f)\right]}\right\} \\
& =\frac{1}{N^{4}} \sum_{m \neq n} \mathrm{E}\left[\left|T_{x_{m}}(t, f)\right|^{2} e^{i \theta_{x_{m}}(t, f)}\right] \mathrm{E}\left[e^{-i \theta_{x_{n}}(t, f)}\right] \\
& =\frac{1}{N^{4}} \sum_{m \neq n} \mathrm{E}\left[\left|T_{x}(t, f)\right|^{2} e^{i \theta_{x}(t, f)}\right] \mathrm{E}\left[e^{-i \theta_{x}(t, f)}\right] \\
& =\frac{N-1}{N^{3}} \mathrm{E}\left[\left|T_{x}(t, f)\right|^{2} e^{i \theta_{x}(t, f)}\right] \mathrm{E}\left[e^{i \theta_{x}(t, f)}\right]^{*},
\end{aligned}
$$

which is $O\left(1 / N^{2}\right)$.

- The fourth term, $\mathrm{E}\left(S_{4}\right)$, is similar to the previous,

$$
\begin{aligned}
\mathrm{E}\left(S_{4}\right) & =\mathrm{E}\left\{\frac{1}{N^{4}} \sum_{m \neq n}\left|T_{x_{n}}(t, f)\right|^{2} e^{i\left[\theta_{x_{m}}(t, f)-\theta_{x_{n}}(t, f)\right]}\right\} \\
& =\frac{N-1}{N^{3}} \mathrm{E}\left[\left|T_{x}(t, f)\right|^{2} e^{i \theta_{x}(t, f)}\right]^{*} \mathrm{E}\left[e^{i \theta_{x}(t, f)}\right]
\end{aligned}
$$

which is also $O\left(1 / N^{2}\right)$.

- The fifth term, $\mathrm{E}\left(S_{5}\right)$, yields

$$
\begin{aligned}
\mathrm{E}\left(S_{5}\right) & =\mathrm{E}\left\{\frac{1}{N^{4}} \sum_{m \neq n} e^{i\left[\theta \theta_{x_{m}}(t, f)-\theta_{x_{n}}(t, f)\right]} \sum_{k \notin\{m, n\}}\left|T_{x_{k}}(t, f)\right|^{2}\right\} \\
& =\frac{1}{N^{4}} \sum_{m \neq n} \mathrm{E}\left\{e^{i\left[\left(\theta_{x_{m}}(t, f)-\theta_{x_{n}}(t, f)\right]\right.} \sum_{k \notin\{m, n\}}\left|T_{x_{k}}(t, f)\right|^{2}\right\} \\
& =\frac{1}{N^{4}} \sum_{m \neq n} \mathrm{E}\left[e^{i \theta_{x_{m}}(t, f)}\right] \mathrm{E}\left[e^{-i \theta_{x_{n}}(t, f)}\right] \mathrm{E}\left[\sum_{k \notin\{m, n\}}\left|T_{x_{k}}(t, f)\right|^{2}\right] \\
& =\frac{1}{N^{4}} \sum_{m \neq n} \mathrm{E}\left[e^{i \theta_{x_{m}}(t, f)}\right] \mathrm{E}\left[e^{i \theta_{x_{n}}(t, f)}\right]^{*} \sum_{k \notin\{m, n\}} \mathrm{E}\left[\left|T_{x_{k}}(t, f)\right|^{2}\right] \\
& =\frac{1}{N^{4}} \sum_{m \neq n} \mathrm{E}\left[e^{i \theta_{x}(t, f)}\right] \mathrm{E}\left[e^{i \theta_{x}(t, f)}\right]^{*} \sum_{k \notin\{m, n\}} \mathrm{E}\left[\left|T_{x}(t, f)\right|^{2}\right] \\
& =\frac{N(N-1)(N-2)}{N^{4}} \mathrm{E}\left[\left|T_{x}(t, f)\right|^{2}\right]\left|\mathrm{E}\left[e^{i \theta_{x}(t, f)}\right]\right|^{2} \\
& =\frac{(N-1)(N-2)}{N^{3}} \mathrm{E}\left[\left|T_{x}(t, f)\right|^{2}\right]\left|\mathrm{E}\left[e^{i \theta_{x}(t, f)}\right]\right|^{2},
\end{aligned}
$$

which is $O(1 / N)$.

- The sixth term, $\mathrm{E}\left(S_{6}\right)$, yields

$$
\begin{aligned}
S_{6} & =\mathrm{E}\left\{\frac{2}{N^{4}} \sum_{m \neq n}\left|T_{x_{m}}(t, f)\right|\left|T_{x_{n}}(t, f)\right| e^{i\left[\theta_{x_{m}}(t, f)-\theta_{x_{n}}(t, f)\right]}\right\} \\
& =\frac{2}{N^{4}} \sum_{m \neq n} \mathrm{E}\left\{\left|T_{x_{m}}(t, f)\right|\left|T_{x_{n}}(t, f)\right| e^{i\left[\theta_{x_{m}}(t, f)-\theta_{x_{n}}(t, f)\right)}\right\} \\
& =\frac{2}{N^{4}} \sum_{m \neq n} \mathrm{E}\left[\left|T_{x_{m}}(t, f)\right| e^{i \theta_{x_{m}}(t, f)}\right] \mathrm{E}\left[\left|T_{x_{n}}(t, f)\right| e^{-i \theta_{x_{n}}(t, f)}\right] \\
& =\frac{2}{N^{4}} \sum_{m \neq n} \mathrm{E}\left[T_{x_{m}}(t, f)\right] \mathrm{E}\left[T_{x_{n}}(t, f)^{*}\right] \\
& =\frac{2}{N^{4}} \sum_{m \neq n} \mathrm{E}\left[T_{x}(t, f)\right] \mathrm{E}\left[T_{x}(t, f)\right]^{*} \\
& =\frac{2}{N^{4}} \sum_{m \neq n}\left|\mathrm{E}\left[T_{x}(t, f)\right]\right|^{2} \\
& =\frac{2 N(N-1)}{N^{4}}\left|\mathrm{E}\left[T_{x}(t, f)\right]\right|^{2} \\
& =\frac{2(N-1)}{N^{3}}\left|\mathrm{E}\left[T_{x}(t, f)\right]\right|^{2},
\end{aligned}
$$

which is $O\left(1 / N^{2}\right)$.

- The seventh term, $\mathrm{E}\left(S_{7}\right)$, yields

$$
\begin{aligned}
\mathrm{E}\left(S_{7}\right) & =\mathrm{E}\left\{\frac{2}{N^{4}} \sum_{m \neq n}\left|T_{x_{m}}(t, f)\right| e^{i\left[\theta_{x_{m}}(t, f)-\theta_{x_{n}}(t, f)\right]} \sum_{l \notin\{m, n\}}\left|T_{x_{l}}(t, f)\right|\right\} \\
& =\frac{2}{N^{4}} \sum_{m \neq n} \mathrm{E}\left\{\left|T_{x_{m}}(t, f)\right| e^{i\left[\theta_{x_{m}}(t, f)-\theta_{x_{n}}(t, f)\right]} \sum_{l \notin\{m, n\}}\left|T_{x_{l}}(t, f)\right|\right\} \\
& =\frac{2}{N^{4}} \sum_{m \neq n} \mathrm{E}\left[\left|T_{x_{m}}(t, f)\right| e^{i \theta_{x_{m}}(t, f)}\right] \mathrm{E}\left[e^{-i \theta_{x_{n}}(t, f)}\right] \mathrm{E}\left[\sum_{l \notin\{m, n\}}\left|T_{x_{l}}(t, f)\right|\right] \\
& =\frac{2}{N^{4}} \sum_{m \neq n} \mathrm{E}\left[T_{x_{m}}(t, f)\right] \mathrm{E}\left[e^{i \theta_{x_{n}}(t, f)}\right]^{*} \sum_{l \notin\{m, n\}} \mathrm{E}\left[\left|T_{x_{l}}(t, f)\right|\right] \\
& =\frac{2}{N^{4}} \sum_{m \neq n} \mathrm{E}\left[T_{x}(t, f)\right] \mathrm{E}\left[e^{i \theta_{x}(t, f)}\right]^{*} \sum_{l \notin\{m, n\}} \mathrm{E}\left[\left|T_{x}(t, f)\right|\right] \\
& =\frac{2 N(N-1)(N-2)}{N^{4}} \mathrm{E}\left[T_{x}(t, f)\right] \mathrm{E}\left[e^{i \theta_{x}(t, f)}\right]^{*} \mathrm{E}\left[\left|T_{x}(t, f)\right|\right] \\
& =\frac{2(N-1)(N-2)}{N^{3}} \mathrm{E}\left[T_{x}(t, f)\right] \mathrm{E}\left[e^{i \theta_{x}(t, f)}\right]^{*} \mathrm{E}\left[\left|T_{x}(t, f)\right|\right],
\end{aligned}
$$

which is $O(1 / N)$.

- The eight term, $\mathrm{E}\left(S_{8}\right)$, yields

$$
\begin{aligned}
\mathrm{E}\left(S_{8}\right) & =\mathrm{E}\left\{\frac{2}{N^{4}} \sum_{m \neq n}\left|T_{x_{n}}(t, f)\right| e^{i\left[\theta_{x_{m}}(t, f)-\theta_{x_{n}}(t, f)\right]} \sum_{l \notin\{m, n\}}\left|T_{x_{l}}(t, f)\right|\right\} \\
& =\frac{2}{N^{4}} \sum_{m \neq n} \mathrm{E}\left\{\left|T_{x_{n}}(t, f)\right| e^{i\left[\theta_{x_{m}}(t, f)-\theta_{x_{n}}(t, f)\right]} \sum_{l \notin\{m, n\}}\left|T_{x_{l}}(t, f)\right|\right\} \\
& =\frac{2}{N^{4}} \sum_{m \neq n} \mathrm{E}\left[\left|T_{x_{n}}(t, f)\right| e^{-i \theta_{x_{n}}(t, f)}\right] \mathrm{E}\left[e^{i \theta_{x_{m}}(t, f)}\right] \mathrm{E}\left[\sum_{l \notin\{m, n\}}\left|T_{x_{l}}(t, f)\right|\right] \\
& =\frac{2}{N^{4}} \sum_{m \neq n} \mathrm{E}\left[T_{x_{n}}(t, f)^{*}\right] \mathrm{E}\left[e^{i \theta_{x_{m}}(t, f)}\right] \sum_{l \notin\{m, n\}} \mathrm{E}\left[\left|T_{x_{l}}(t, f)\right|\right] \\
& =\frac{2}{N^{4}} \sum_{m \neq n} \mathrm{E}\left[T_{x}(t, f)\right]^{*} \mathrm{E}\left[e^{i \theta_{x}(t, f)}\right] \sum_{l \notin\{m, n\}} \mathrm{E}\left[\left|T_{x}(t, f)\right|\right] \\
& =\frac{2 N(N-1)(N-2)}{N^{4}} \mathrm{E}\left[T_{x}(t, f)\right]^{*} \mathrm{E}\left[e^{i \theta_{x}(t, f)}\right] \mathrm{E}\left[\left|T_{x}(t, f)\right|\right] \\
& =\frac{2(N-1)(N-2)}{N^{3}} \mathrm{E}\left[T_{x}(t, f)\right]^{*} \mathrm{E}\left[e^{i \theta_{x}(t, f)}\right] \mathrm{E}\left[\left|T_{x}(t, f)\right|\right],
\end{aligned}
$$

which is $O(1 / N)$.

- Finally, the ninth term, $\mathrm{E}\left(S_{9}\right)$, yields

$$
\begin{aligned}
\mathrm{E}\left(S_{9}\right) & =\mathrm{E}\left\{\frac{1}{N^{4}} \sum_{m \neq n} e^{i\left[\theta_{x_{m}}(t, f)-\theta_{x_{n}}(t, f)\right]} \sum_{l \notin\{m, n\}}\left|T_{x_{l}}(t, f)\right| \sum_{k \notin\{l, m, n\}}\left|T_{x_{k}}(t, f)\right|\right\} \\
& =\frac{1}{N^{4}} \sum_{m \neq n} \mathrm{E}\left\{e^{i\left[\theta_{x_{m}}(t, f)-\theta_{x_{n}}(t, f)\right]} \sum_{l \notin\{m, n\}}\left|T_{x_{l}}(t, f)\right| \sum_{k \notin\{l, m, n\}}\left|T_{x_{k}}(t, f)\right|\right\} \\
& \left.=\frac{1}{N^{4}} \sum_{m \neq n} \mathrm{E}\left[e^{\left.i \theta_{x_{m}}(t, f)\right]}\right] \mathrm{E}\left[e^{-i \theta_{x_{n}}(t, f)}\right] \mathrm{E} \sum_{l \neq\{m, n\}}\left|T_{x_{l}}(t, f)\right| \sum_{k \notin\{l, m, n\}}\left|T_{x_{k}}(t, f)\right|\right] \\
& =\frac{1}{N^{4}} \sum_{m \neq n} \mathrm{E}\left[e^{\left.i \theta_{x_{m}}(t, f)\right]}\right] \mathrm{E}\left[e^{i \theta_{x_{n}}(t, f)}\right]^{*} \sum_{l \notin\{m, n\}} \mathrm{E}\left[\left|T_{x_{l}}(t, f)\right| \sum_{k \notin\{l, m, n\}}\left|T_{x_{k}}(t, f)\right|\right] \\
& \left.=\frac{1}{N^{4}} \sum_{m \neq n} \mathrm{E}\left[e^{\left.i \theta_{x_{m}}(t, f)\right]}\right] \mathrm{E}\left[e^{i \theta_{x_{n}}(t, f)}\right]^{*} \sum_{l \notin\{m, n\}} \mathrm{E}\left[\left|T_{x_{l}}(t, f)\right|\right] \mathrm{E} \sum_{k \notin\{l, m, n\}}\left|T_{x_{k}}(t, f)\right|\right] \\
& =\frac{1}{N^{4}} \sum_{m \neq n} \mathrm{E}\left[e^{\left.i \theta_{x_{m}}(t, f)\right]}\right] \mathrm{E}\left[e^{\left.i \theta_{x_{n}}(t, f)\right]^{*}} \sum_{l \notin\{m, n\}} \mathrm{E}\left[\left|T_{x_{l}}(t, f)\right|\right] \sum_{k \notin\{l, m, n\}} \mathrm{E}\left[\left|T_{x_{k}}(t, f)\right|\right]\right. \\
& \mathrm{E}\left[e^{\left.i \theta_{x}(t, f)\right]}\right] \mathrm{E}\left[e^{i \theta_{x}(t, f)}\right]^{*} \sum_{l \neq\{m, n\}} \mathrm{E}\left[\left|T_{x}(t, f)\right|\right] \sum_{k \notin\{l, m, n\}} \mathrm{E}\left[\left|T_{x}(t, f)\right|\right] \\
& \frac{1}{N^{4}} \sum_{m \neq n}\left|\mathrm{E}\left[e^{\left.i \theta_{x}(t, f)\right]}\right]\right|^{2} \sum_{l \notin\{m, n\}} \mathrm{E}\left[\left|T_{x}(t, f)\right|\right] \sum_{k \notin\{l, m, n\}} \mathrm{E}\left[\left|T_{x}(t, f)\right|\right] \\
= & \frac{N(N-1)(N-2)(N-3)}{N^{4}}\left|\mathrm{E}\left[e^{\left.i \theta_{x}(t, f)\right]}\right]\right|^{2} \mathrm{E}\left[\left|T_{x}(t, f)\right|\right]^{2} \\
= & \frac{(N-1)(N-2)(N-3)}{N^{3}}\left|\mathrm{E}\left[e^{\left.i \theta_{x}(t, f)\right]}\right]\right|^{2} \mathrm{E}\left[\left|T_{x}(t, f)\right|\right]^{2} .
\end{aligned}
$$

This is the only term that is $O(1)$.

Putting all calculations together, we obtain the following

$$
\begin{aligned}
\mathrm{E}\left(\operatorname{avgAMP}{ }^{2} \times \mathrm{ITC}^{2}\right) & =\mathrm{E}\left[\sum_{i=1}^{9} S_{i}\right] \\
& =\sum_{i=1}^{9} \mathrm{E}\left[S_{i}\right] \\
& =\frac{(N-1)(N-2)(N-3)}{N^{3}}\left|\mathrm{E}\left[e^{\left.\left.i \theta_{x}(t, f)\right)\right]}\right]\right|^{2} \mathrm{E}\left[\left|T_{x}(t, f)\right|\right]^{2}+O\left(\frac{1}{N}\right) \\
& =\left(1-\frac{1}{N}\right)\left(1-\frac{2}{N}\right)\left(1-\frac{3}{N}\right)\left|\mathrm{E}\left[e^{\left.i \theta_{x}(t, f)\right]}\right]\right|^{2} \mathrm{E}\left[\left|T_{x}(t, f)\right|\right]^{2}+O\left(\frac{1}{N}\right) \\
& =\left|\mathrm{E}\left[e^{\left.i \theta_{x}(t, f)\right]}\right]\right|^{2} \mathrm{E}\left[\left|T_{x}(t, f)\right|\right]^{2}+O\left(\frac{1}{N}\right) .
\end{aligned}
$$

