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Abstract
Resonant ultrasound spectroscopy is an experimental technique for measuring
the stiffness of anisotropic solid materials. The free vibration resonant fre-
quencies of a specimen are measured and the stiffness coefficients of the
material adjusted to minimize the difference between experimental and pre-
dicted frequencies. An issue of this inverse approach is that the measured
frequencies are not easily paired with their predicted counterpart, leading to
ambiguities in the definition of the objective function. In the past, this issue
has been overcome through trial-and-error methods requiring the experi-
mentalist to find the correct pairing, or through involved experimental methods
measuring the shapes of the normal vibration modes in addition to their fre-
quencies. The purpose of this work is to show, through a Bayesian formula-
tion, that the inverse problem can be solved automatically and without
requiring additions to the usual experimental setup. The pairing of measured
and predicted frequencies is considered unknown, and the joint posterior
probability distribution of pairing and stiffness is sampled using Markov chain
Monte Carlo. The method is illustrated on two published data sets. The first set
includes the exact pairing, allowing validation of the method. The second
application deals with attenuative materials, for which many predicted modes
cannot be observed, further complicating the inverse problem. In that case,
introduction of prior information through Bayesian formulation reduces
ambiguities.
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1. Introduction

Resonant ultrasound spectroscopy (RUS) is an experimental technique for measuring the
stiffness of anisotropic solid materials [1–4]. In RUS, the free vibration resonant frequencies
of a material specimen of simple shape (e.g. cylinder, sphere, parallelepiped) are measured
and the stiffness coefficients adjusted until model-predicted frequencies match the experi-
mental results. This inverse approach gives accurate elastic parameters because the resonant
frequencies, which are entirely determined by elasticity, specimen dimensions and material
mass density, can be measured with high accuracy.

An issue of the inverse approach is that each measured resonant frequency taken indi-
vidually does not carry information about which of the many predicted normal vibration
modes it corresponds to [3, 5–7]. As the inversion relies on the minimization of the differ-
ences between pairs of predicted and measured frequencies, ambiguities in the identification
of the frequencies lead to ambiguities in the stiffness estimation. Identification, or pairing, is
particularly difficult if the initial guess of the stiffness coefficients is far from the actual values
and if some predicted resonant modes are not observed experimentally. It is usually argued
that without knowledge of the pairing, RUS cannot lead to accurate estimates of the stiffness
coefficients. One purpose of this work is to show, through a Bayesian formulation of the
inverse problem, that knowledge of the exact pairing is not necessary to get precise and
accurate stiffness estimates.

Several experimental solutions have been proposed to find the frequency pairing, the
most popular being that of Ogi et al [7]. They proposed to image the vibration patterns of the
resonant modes on a face of the specimen using a laser interferometer. For homogeneous
materials and moderate stiffness anisotropy ratios (<10), these patterns are determined mainly
by the specimen shape. Hence, the observed resonant modes can be identified and the
stiffness coefficients evaluated from fitting of the resonant frequencies, even in the case of a
bad initial guess of their values. This method has been used by several groups [8–13] but
suffers from a number of limitations. (1) It requires specimens with a plane face large enough
to be correctly sampled by the laser dot. In consequence, it is not adapted to very small (sub-
millimeter) specimens nor to complex shapes. (2) The scanned face must be perfectly plane
and highly reflective, which is not always the case, particularly for biological materials such
as dentin [14] or bone [15, 16]. (3) The use of a Laser interferometer considerably increases
the cost and difficulty of implementation of RUS, preventing its use as a routine method for
material characterization in some contexts, e.g. industrial or biomedical. Although difficulties
(1) and (2) can be tackled respectively by using optical microscopy and by sputtering an
aluminum thin film on the surface of the sample, this further complicates the application of
RUS. The growing interest in applications of RUS where the above limitations are proble-
matic motivates the development of an alternative method.

Without measuring the modal shapes, the correct identification can be obtained through
trial-and-errors methods [2], or progressive approaches identifying modes one after another
[11, 16, 17]. Although each individual frequency does not bring information on its corre-
sponding vibration mode, the distribution of the frequencies does. Indeed, the correct pairing
is expected to lead to the best match between the experiment and the model. These methods
however are time-consuming and require the user to manually identify the frequencies.

In this work we propose a Bayesian formulation of the inverse problem that introduces
probability distributions for the possible pairings of predicted and measured frequencies and
for the stiffness coefficients. Estimating the joint posterior distribution given a set of measured
frequencies then solve the combined problem of finding the correct pairing and estimating
stiffness. This is done through Markov chain Monte Carlo (MCMC) sampling of the posterior
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distribution. It requires no input of the user, except for the specification of a priori probability
densities. We show on two examples that the method leads to results that are almost as
accurate and precise as with the exact known pairing.

2. Method

2.1. Forward problem

The Rayleigh–Ritz method is efficient to predict the resonant frequencies of a solid of simple
shape given its stiffness, geometry and mass density. This method has been extensively used
in RUS [1–5]. The general principles of the method are briefly presented here and some
details regarding its implementation for rectangular parallelepiped specimens are given, with
an emphasis on mathematical properties allowing an efficient computation.

The free-vibration natural frequencies of a solid body are the stationary points of the
Lagrangian 

 ∫ ρω ϵ ϵ= −⎡⎣ ⎤⎦u C V
1

2
d , (1)

V
i ijkl ij kl

2 2

where Cijkl are the stiffness coefficients, V and ρ are respectively the volume and mass
density, ui is a component of the displacement field, and ϵij is a component of the strain
tensor. The Rayleigh–Ritz method expands the displacement field as a finite sum of known
basis functions ϕλ with yet unknown coefficients α λi, , i.e.

∑α ϕ=
λ

λ λu . (2)i i,

in order to solve the stationary equation ∂ = 0 as a generalized eigenvalue problem

α αω =M K . (3)2

Details on the manipulations necessary to obtain equation (3) from the Lagrangian (1) and the
expansion (2) can be found in [1–3].

In equation (3), M and K are called respectively the mass and stiffness matrices of the
vibration problem. Their elements are

∫ρδ ϕ ϕ=′ ′λ λ λ λM Vd , and (4)i k ik
V

,

∫∑ ϵ ϕ ϵ ϕ= ′′λ λ λ λ
=

( ) ( )K C Vd , (5)i k

j l

ijkl
V

ij kl,

, 1

3

where δij is the Kronecker symbol. For simple shapes and well-chosen basis functions,
equations (4) and (5) reduce to simple analytical expressions and equation (3) is numerically
solved, giving the resonant pulsations ωn and the displacement patterns of the resonant modes
from the eigenvectors αn. The forward relation between the stiffness coefficients and the
vector containing the resonant frequencies ω π=f 2n n , denoted = Cf g( )ijkl , is nonlinear and
has no analytical expression.

For a rectangular parallelepiped, it is convenient to use the normalized Legendre poly-
nomials of the scaled Cartesian coordinates xi, i.e.
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where Pa is the normalized Legendre polynomial of order a, and Li is the length of the
parallelepiped in the direction i. Due to the orthogonality of the Legendre polynomials over
the interval −[ 1, 1], M is the unit matrix and equation (3) simplifies to a standard eigenvalue
problem, easier to solve numerically. Moreover, many elements of K are equal to zero and the
matrix turns to be block-diagonal, splitting equation (3) in several independent smaller
problems [2, 3, 5]. For an orthotropic elastic symmetry, involving three orthogonal symmetry
planes, the problem splits in eight smaller ones, each corresponding to a different combination
of symmetry or antisymmetry in the three directions of space. This split drastically reduces
the computation cost and allows labeling of the resonant modes according to their belonging
to one of the eight symmetry groups [18]. Additionally, we note that the matrix K has a linear
dependence to the stiffness constants, as it can be seen from equation (5). Hence, in an
iterative computation of the resonant frequencies for different sets of elastic properties and a
given geometry, elements of K are linearly obtained instead of being computed from scratch.

A RUS measurement usually focuses on a limited frequency band containing a few tenth
of resonant frequencies. Hence, it is not necessary to consider all the solutions of the
approximation (3) in the inverse problem, but only a number K slightly superior to the
number N of frequencies measured in the investigated band ( >K N to account for the
possibility of non-observed frequencies). For polynomials up to an order Λ = 10, the
accuracy on the K = 40–50 first resonant frequencies is sufficient [3] (i.e. errors due to the
truncation order are much smaller than other sources of error, such as imperfect geometry and
measurement uncertainty) and the computing time is of the order of a few hundredths of a
second.

2.2. Bayesian formulation of the inverse problem

The Bayesian formulation of the inverse problem includes the estimation of the stiffness
coefficients from measured resonant frequencies, as well as the estimation of the correct
pairing of the frequencies. We only briefly review the required concepts of Bayesian infer-
ence. Extensive descriptions can be found elsewhere [19, 20].

The purpose of Bayesian inference is to evaluate the posterior probability density
function (pdf) ∣p m f( ) of a d-dimensional vector of parameters m of a probabilistic model,
given some measured data f and some prior information on the parameters p m( ). In our
problem, m is a vector of elastic parameters defined from the stiffness coefficients Cijkl (see
section 2.3.2 and appendix) and f is a vector containing N measured resonant frequencies fn.
Bayes’ theorem expresses the posterior pdf as a normalized product of the prior density and
the likelihood ∣p f m( ) (the probability of having obtained the data given the parameters)

=p
p p

p
m f

m f m
f

( )
( ) ( )

( )
. (7)

The normalizing term is the marginal likelihood of the data and does not depend on the
parameters. The solution of the inference problem can then be obtained from the simpler
equation

∝p p pm f m f m( ) ( ) ( ). (8)

The likelihood ∣p f m( ) describes both the physics of the problem—the assumed relation
between the parameters and the measured data =f g m( )—and the statistics of measurement
and modeling errors. It is usually not possible to separate the sources of errors and their
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distribution is therefore difficult to specify. A common and convenient practice is to assume a
multivariate normal distribution of the errors [19]. We further assume that the errors are
uncorrelated and that the variance of each particular frequency is proportional to the squared
frequency, with a unique proportionality factor σ2. This assumption of a constant relative
error on the frequencies is popular in the usual formulation of the inverse problem in RUS
[3, 16], although the hypothesis of a constant absolute error was also used by some authors
[11]. In the present framework, choosing this last hypothesis would lead to a slightly different
expression of the likelihood (9), but would not implies changes in the sampling method that is
described in the following sections.

As previously stated, we do not know which of the overnumerous predicted frequencies
in the investigated band correspond to the measured frequencies. A correspondence between
the predicted and measured frequencies is called a pairing and is defined as follows: (1) N
predicted frequencies among K are selected, and are considered as present in the measurement
and (2) each of these selected frequencies is uniquely identified to one of the N measured
frequencies. Formally, the possible pairings are represented by a vector a of K integers. The
nth component of a is equal to 0 if the corresponding predicted frequency is not paired to a
measured frequency (frequency not observed during the experiment) and equal to k if the
corresponding frequency is paired to the kth measured frequency (see figure 1). With this
notation, the likelihood is

∑σ σ
σ

∝ −
−−

=

⎡

⎣
⎢⎢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟
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⎥⎥( ) ( )p

g f

f
f m a

m a
, , exp

1

2

( , )
, (9)

N

n

N
n n

n

2 2 2

2
1

2

where gn is the predicted frequency paired to the nth measured frequency fn for the pairing a.
If we want to estimate the pairing from the data and if we ignore the magnitude of the

errors, the inference problem is threefold. We want to obtain the joint posterior pdf of m, a,
and σ2,

σ σ σ∝( ) ( ) ( )p p p p pm a f m a f m a, , ( ) ( ) , , , (10)2 2 2

where we also introduce prior information on the pairing and the error term.
As often in Bayesian inference, the posterior pdf is too complex for being studied

analytically. A convenient strategy is then to sample the pdf using Monte Carlo simulations.
Then, from a large sample of the pdf, any quantity of interest (e.g. mean and covariances) can
be calculated. In the present work we use Gibbs sampling.

Figure 1. Example of a possible pairing for a simple fictitious case with N = 6
measured and K = nine predicted frequencies. The illustrated pairing a shows missing
of some predicted mode during measurement and different orders of appearance of the
vibration modes in the experiment and the model.
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Ideally, the prior distributions should reflect our exact state of knowledge on the para-
meters before the data has been collected. However, because that knowledge can be difficult
to translate perfectly into probability distributions and because some families of distribution
are more mathematically convenient for the sampling of the posterior distribution, the prior
distributions are constructed as a compromise between convenience and introduced infor-
mation. We describe the prior distributions p m( ), p a( ), and σp ( )2 in the next sections along
the description of the sampling strategy.

2.3. Gibbs sampling

MCMC methods provide a way to sample complicated and multidimensional probability
distributions such as the pdf (10). The idea of MCMC methods is to generate dependent
samples during a random exploration of the posterior pdf. At a given state, a move is
proposed based only on the current values of the variables (Markov property), and accepted or
rejected based on probabilistic rules. Different set of rules exist to generate and accept moves,
such as the Metropolis and Metropolis–Hasting algorithms [21–23], and Gibbs sampling [23–
25]. All ensure that the resulting Markov chain asymptotically samples the target distribution.

In Gibbs sampling only one variable or sub-group of variables is moved at a time. The
new state of the updated variable is generated from the conditional distribution of this variable
given the data and all other variables at their current values. Our algorithm is initialized at

σm( , )0 0
2 and then samples alternatively from each conditional distribution:

σ

σ

σ

σ

σ

∼

∼

∼

∼

…

( )
( )
( )
( )

p

p

p

p

a a f m

f m a

m m f a

a a f m

step 1: , , ,

, , ,

, , ,

step 2: , , ,

. (11)

1 0 0
2

1
2 2

0 1

1 1
2

1

2 1 1
2

After an appropriate number of iterations, the σa m( , , )n n n
2 are samples of the joint pdf (10).

One advantage is that there is no need to choose and fine tune a rule to generate new states, on
which the efficiency of many MCMC algorithms is dependent [23]. Particularly, we want to
sample jointly continuous (m, σ2) and discrete (a) variables, and it might be difficult to find
efficient jumping rules. However, there are convenient ways to sample from the conditional
distributions, which make Gibbs sampling a sensible choice. The three following sections
expose how we sample from the conditional distributions σ∣p a m f( , , )2 , σ∣p m a f( , , )2 , and

σ ∣p m a f( , , ).2

2.3.1. Sampling the conditional distribution of a. The conditional distribution of a is
proportional to the product of the likelihood (with known m and σ2) and the prior on a:

σ σ∝( ) ( )p p pa m f a f m a, , ( ) , , . (12)2 2

Due to the complicated dependence of the likelihood on a, there is no simple way to sample
from this distribution directly. A solution is to sample it using a MCMC method embedded
inside Gibbs sampling (i.e. called at each iteration of the Gibbs sampler). Because a is a
discrete vector, finding the best a or exploring its distribution is a combinatorial problem
which is in some aspects similar to classical combinatorial problems such as the traveling
salesman problem [26] (TSP; find the shortest route that visits each city in a given list exactly
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once and returns to the origin city). An efficient way to solve this kind of problem is
simulated annealing [26, 27], briefly explained here.

From an initial state (a route in the TSP, a pairing in our problem), a new state is
generated and randomly accepted or rejected based on the ratio of the probabilities of the
proposed and current states and on an additional temperature parameter T. For high
temperature, almost all states can be reached, even those of low probability, while for low
temperature only the moves leading to states of higher probability are accepted. Temperature
is then slowly reduced from high to low values, mimicking the cooling of materials and
ensuring convergence to the global optimum of the problem. Here, we are not interested only
in the best solution but in the distribution of the solutions. We will therefore stop the
temperature decrease at T = 1, the value for which the chain samples the target distribution,
much before ‘freezing’ of the chain in the most probable state.

From a given state a j, a new state +a j 1 is generated by inverting two randomly selected
successive components of a j. For that purpose a random integer n is uniformly generated in

N[1, ] and the index i of the component n in a is determined. Then this component is moved
to the right or left with probability 1/2. For a move to the right we have

+ = =
= +
= ∀ ≠ +

+

+

+

⎧
⎨⎪

⎩⎪

i i n

i i

l l l i i

a a

a a

a a

[ 1] [ ] ,

[ ] [ 1],

[ ] [ ] ; ( , 1),

(13)

j j

j j

j j

1

1

1

and similarly for a move to the left. If i = 1 or i = K, the moves to the left and right
respectively are not possible; the only possible move is then selected with probability 1.

The chain moves to the new state with probability

σ

σ
=

→

→

+ + +

+

⎧
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⎫
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( )
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a a a f m a

a a a f m a
min 1,

( ) ( ) , ,

( ) ( ) , ,
. (14)

j j j j
T

j j j j
T

1 1
2

1
1

1
2 1

The ratio of the proposal probabilities →p (• •) is equal to 1 except for moves involving a
component at index 1 or K, in which cases it can be 1/2 or 2. In all other cases, only the ratio
of the prior probabilities +p pa a( ) ( )j j1 and the ratio of the likelihoods need to be calculated.
We start the chain at T = 1000 and then decrease T using a scheme similar to that of
Kirkpatrick et al [27]: after × N10 accepted moves or × N100 attempted moves (first
reached) T is multiplied by 0.9. This is iterated until T = 1, the temperature for which the
chain samples the conditional distribution of a. The same stopping criterion is used at T = 1
and the last sampled pairing is then selected as the sample from the conditional posterior of a
(12).

Since it is done for fixed elasticity, running the simulated annealing algorithm requires no
evaluation of the forward problem, but only computation of the squared difference in
equation (9), a much less costly operation. Therefore, running a simulated annealing chain
long of ∼104 samples at each step of the Gibbs sampling only accounts for a small portion of
the total computation time.

The formal representation of the pairings considers a fixed number K of predicted
frequencies, that is superior to the number of measured frequencies N to account for the
possibility of non-observed frequencies. However, the number of frequencies that have been
actually missed during the measurement is not always − =K N the total number of zeros in a.
The number of missed frequencies is equal to the number of zeros before the last non-null
component of a. Indeed, the zeros after this component represents resonant modes whose
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frequency is higher than the highest measured frequency, so that they are beyond the
investigated frequency band. For example, on the simple case depicted on figure 1 there is
three zeros in the vector a, but the last one does not count as a missed frequency because it
corresponds to a frequency predicted above the last measured frequency. Another approach
could have been to consider a fixed frequency band instead of a fixed number of frequencies.
However, this would have made the length of the paring vector variable, which would not
have been convenient for the implementation.

Our prior distribution on a depends on the (positive) number k of missed resonant
frequencies, i.e. on the number of zeros in a before its last non-null component. This prior is a
truncated Poissonʼs distribution

λ λ∝ − ⩽

= >

⎧
⎨⎪
⎩⎪

p k
k

k k

p k k k

( )
!

exp( ) if ,

( ) 0 if ,
(15)

k

max

max

where = −k K Nmax and λ is the expected number of missed frequencies. The Poissonʼs
distribution describes the number of occurrences of a random event in a fixed interval of time
if this event occurs at random, independently of the time since the last occurrence. In our case,
this means that we consider the probability of missing the frequency to be equal for all modes
and independent of whether the preceding has been missed or not. For a given k, all the
possible pairings are considered equiprobable a priori, at the exception of pairings that
identify the first predicted frequency as missed, which are not considered, i.e =p a( ) 0 if

=a(1) 0. Indeed, in our experience with RUS measurement, the first resonant mode is
usually easy to observe, hence we excluded the possibility of having missed it in our
treatment of the inverse problem.

The Poissonʼs distribution (15) can be rather sharply peaked around λ, which may not be
adequate if only vague information is known about k. In that case, a gamma prior probability
can be attributed to λ instead of a determined value

λ β
Γ α

λ βλ= −
α

α−p ( )
( )

exp( ). (16)1

In (16), α and β are positive parameters called the shape and rate parameter, respectively.
They determine the mean of the distribution (α β) and its variance (α β2, for β > 0). Using
α = 1 2 and β = 0 provide a non-informative prior distribution [28]. In the case where λ is
not fixed, an additional Gibbs step must be done to update λ according its conditional
distribution. Given the pairing a (which sets the value of k), it writes

∑
λ λ λ

λ
∝

=

p p
k

l
a( ) ( )

!

!
. (17)

k

l

k l
0

max

2.3.2. Sampling the conditional distribution of m. The conditional distribution of m is
proportional to the product of the likelihood (with known a and σ2) and the prior on m

σ σ∝( ) ( )p p pm a f m f m a, , ( ) , , . (18)2 2

For fixed a, g m a( , ) is still a nonlinear function and the conditional probability has no simple
exact analytical expression. However, nonlinearities are moderate, particularly around the
point of maximal conditional probability for m. A sensible strategy for this kind of situations,
advocated by Tarantola [19], is to find the point of maximal probability using an iterative
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gradient-based method and then to approximate the distribution around this point using the
partial derivatives of the function. This is indeed what it is usually done in RUS, where the
stiffness coefficients are found by minimizing the differences between experimental and
predicted frequencies in a least-square sense using the Levenberg–Marquardt algorithm, and
the uncertainties are obtained from an expansion of the quadratic cost function around the
solution [3].

A method to find the point maximizing the probability in equation (18) and to
approximate the conditional around this point for a multivariate normal prior on the elastic
parameters m was exposed in a previous work [17] based on Tarantola [19]. It consists of a
quasi-Newton iterative algorithm where m is updated using

= + + − + −+
− − − − −⎡⎣ ⎤⎦( )m m G C G C G C g m f C m m( ( ) ) ( ) , (19)n n n

t
n n

t
nf m f m1

1 1 1 1 1
prior

where Gn is the matrix of partial derivatives of the resonant frequencies with respect to each
elastic parameter at step n, Cf is the (diagonal) covariance matrix of the data and mprior and
Cm are respectively the mean and covariance of the prior distribution of m. The
conditional (18) is then approximated by a multivariate normal centered on mfinal with
covariance

≈ +− − −( )C G C G C˜ . (20)t
m f m

1 1 1

A sample of the approximate conditional can then be generated using the Cholesky
decomposition of C̃m [29]. The quasi-Newton method is stopped when the relative change in
m or in the misfit become smaller than a specified value, set to −10 2. Because we generate a
sample in a normal approximation of the conditional, a more precise estimation of the center
of the distribution (relative to its width) is useless. It usually requires 1–8 computations of the
forward problem. These few forward problem solving steps at each iteration of the Gibbs
sampler account for the main part of the total computation time.

Due to the approximation, the random sample drawn that way is not a sample of the full
conditional (18), which causes the stationary distribution of the Gibbs sampler to be different
from the target distribution (10). To ensure that we sample the target distribution, the
approximation is corrected by introducing a Metropolis–Hasting rejection step for the samples
m, considering the approximation as a proposal density [23, 30]. If we denote p m˜ ( ) the

proposal density, the probability of accepting the move from m to m* is

σ

σ
=

⎧
⎨⎪

⎩⎪

⎫
⎬⎪

⎭⎪
( ) ( ) ( )

( ) ( )
P

p p p

p p p
m m

m m f m a

m m f m a
*, min 1,

˜ ( ) * *, ,

˜ * ( ) , ,
. (21)

2

2

Strictly speaking, we no longer use Gibbs sampling but a Metropolis–Hasting-within-Gibbs
algorithm [23]. However, since the normal approximation of the full conditional is actually
very good, the rejection rate is low and we continue to refer to Gibbs sampling for simplicity.

The described approach requires a multivariate normal prior on the d-dimensional vector
of the elastic parameters m, where d depends on the elastic symmetry of the material (e.g. for
isotropic material d = 2). However, a normal prior on the components of the elastic tensor
tensor Cij is not consistent with the thermodynamical constraints on the tensor. We therefore
did not use the Cij coefficients, but a set of transformed elastic parameters for which a normal
prior is more consistent. The new elastic parameters are described in appendix for symmetries
ranging from isotropy to orthotropy (d = 9).
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2.3.3. Sampling the conditional distribution of σ2. The conditional distribution of σ2 is
proportional to the product of the likelihood (with known a and m) and the prior σp ( )2 :

σ σ
σ σ

∝ −
⎡
⎣⎢

⎤
⎦⎥( ) ( )p p

NS
m a f, ,

1
exp

2
, (22)

N
2 2

2

2
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∑=
−

=

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟S

N

g f

f

m a1 ( , )
. (23)

n

N
n n

n

2

1

2

A convenient family of prior distribution σp ( )2 is the scaled-inverse-chi-square
distribution, which is conjugate to the likelihood. It means that the conditional equation (22)
is scaled inverse-chi-square as well [30]. Formally if,

σ χ σ ν σ= −( ) ( )p Inv , , (24)2 2 2
prior
2

where we use the notation from Gelman et al [30], then the conditional writes

σ χ σ ν
νσ

ν
= − +

+
+

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( )p N

NS

N
m a f, , Inv , . (25)2 2 2 prior

2 2

0

This choice is particularly convenient since it is easy to sample directly from the χ−Inv 2

distribution, as it is a particular case of the inverse gamma distribution [30], allowing one to
build a sampler from any routine sampling the gamma distribution. For ν → 0 the prior
distribution is σ σ=p ( ) 12 2 and is noninformative, as the conditional (25) then depends only
on N and S and the parameter σprior becomes irrelevant. This value (ν = 0) was used in the
applications (sections 3 and 4).

In practice, we found useful to truncate the prior on σ2 to an upper bound. It is useful in
the early states of the chain, when no pairings producing good fit have yet been reached. The
sampled values of σ2 then tend to be large, which makes the likelihood flat and the chain to
stay in states of poor fit. Truncating the prior on σ2 breaks this vicious cycle and prevents the
chain from staying for a long time in states of low probability before reaching by chance a
state of good fit. The upper bound is set larger than the expected misfit in a successful RUS
experiment, so that truncation only improves convergence with no effect on the stationary
distribution.

2.3.4. Initialization and convergence. To diagnose convergence, L parallel Gibbs chains
starting from dispersed points were run. Since the algorithm starts by sampling the
distribution of the pairings (11), we have to choose or generate L initial values m0 and σ0

2.
The initial variance was set to σ = 0.010

2 2 for each chain. It corresponds to an assumption of
relative standard deviation of 1% on the resonant frequencies, which is of the order of the
misfit usually obtained in RUS [4]. A simple way to generate initial stiffness coefficients is to
sample the prior distribution, but in the case of a broad prior, this starts the chains very far
from the high probability zone and leads to slow convergence. To overcome this problem, we
generated L initial values m0 using importance re-sampling [30]. ≫M L samples were
generated in the prior distribution, and the distribution of the pairing explored for each sample
using the simulated annealing algorithm (section 2.3.1). The probabilities of all the distinct
pairings sampled at T = 1 were summed, giving an approximation of the marginal probability
of each proposed m0
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∑σ σ∝( ) ( )p pm f a m f, , , . (26)
a

0 0
2

0 0
2

The marginal probabilities (26) were used as weights to randomly select L values among the
M proposed, each having a chance proportional to its weight to be selected.

After letting the chains run for a while, we assessed convergence using the criterion from
Gelman et al [30]. For each scalar parameter, a ratio R of the between-chain to within-chain
variance was computed. A ratio close to one indicates that all the chains are sampling the
same area of the posterior pdf. Although it is not our purpose to discuss the difficult problem
of assessing convergence of MCMC, we note that it is only an indication of possible
convergence, but in no way a proof. We considered that convergence was reached when

<R 1.1 for all scalar parameters (stiffness and variance).
All the computations in this paper were performed on a desktop computer with eight

computing cores (two quad-core Intel Xeon E5620 @2.4 GHz processors), with a chain
running independently on each core. The algorithm was coded using Matlab®. To assess
convergence, it was necessary to regularly pause the chains and pool them to compute the
ratios R. This was done after each segment of 100 iterations. The L = 8 starting points were
selected from M = 1000 draws from the prior.

3. Application 1—data from Ogi et al 2002

For the first illustration of the proposed method we used the resonant frequencies published
by Ogi et al [7] for a specimen of polycrystalline aluminum alloy (isotropic symmetry). The
paper contains all the necessary information about the specimen: dimensions, mass, and the
values of the 42 first measured resonant frequencies. Additionally, the exact mode identifi-
cation obtained by laser interferometry is given, in the form of a group symmetry label
identifying uniquely each measured resonant mode [18]. The group symmetry labels are an
output of the forward model (section 2.1), and can be unambiguously attributed to the
experimental frequencies in laser-based RUS from a comparison of the predicted and
experimental modal shapes. This application is an interesting test for our method, since this
dataset was initially presented to demonstrate the ability of laser-based RUS to solve the
inverse problem in a case where, according to the authors, it would have been very difficult
with the measurement of the frequencies alone. We report here that the method presented
above can be used to estimate accurate stiffness coefficients without using the laser data and
without requiring an informative prior on the stiffness.

3.1. Prior distributions

Ogi et al [7] emphasize on the ability of laser-based RUS to find the correct pairing of
frequencies even in difficult situation by starting with very unrealistic guess of the stiffness
constants: =C 30011 and =C 5044 Gpa (‘true’ values are close to 109 and 27 Gpa, respec-
tively). We therefore centered our prior distribution on these values by fixing

=m [0 ; 0]prior , with (see appendix)

=
−

−

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟m
C C

alog

4

3

300
4

3
50

, (27 )1

11 44
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50
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44

We then constructed a weakly informative prior by choosing the covariance matrix to be 0.1
times the 2 × 2 identity matrix I2, which gives a broad distribution in the stiffness space
(figure 2).

For the pairing, we considered the K = 50 first predicted frequencies, letting room for up
to =k 8max potentially non-observed frequencies. The expectation λ was set to 1. It gave
equally high prior probability (≈0.37) of having missed k = 0 and k = 1 resonant frequencies
and a decreasing probability for larger k, thus reflecting our prior knowledge that the fre-
quencies are easily measured on a very low damping material.

We used the noninformative prior σ σ=p ( ) 12 2 for the variance by setting ν = 0 in
equation (25). We set an upper boundary of σ < 0.032 2, corresponding to a misfit of 3%
between predicted and measured frequencies, much larger that what can be expected from a
successful RUS experiment.

3.2. Results and discussion

The eight starting points generated from the procedure described in section 2.3.4 are located
by crosses in figure 2. We see that the eight starting values ofC44 are close. This is due to the
fact that the first predicted mode is usually an almost pure shear mode, depending mainly on
C44. Since this mode is always paired with the first measured frequency, it has the effect of
almost fixing the shear coefficient C44 close to the correct value. The coefficient C11 remains
largely undetermined at this step.

Convergence of the eight parallel chains was observed at the first convergence test, after
100 iterations of the Gibbs sampler, but we let them run for 900 more iterations (∼4 min of

Figure 2. Application 1: prior probability in the space of the stiffness coefficients
corresponding to the bivariate normal prior distribution on m, centered on m1 and m2

with covariance equal to × I0.1 2. The contour lines enclose respectively 10, 68, 95,
99, and 99.99% of the distribution. The crosses locate the random starting points of the
eight Gibbs chains.
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computation time). The convergence was indeed reached after about 40 iterations, as it can be
seen on figure 3. After discarding the 100 first samples, chains were pooled and the sampled
m transformed back to stiffness coefficients to evaluate the posterior distribution. Any other
elastic modulus (e.g. Youngʼs modulus or Poissonʼs ratio) could also have been calculated.

The histograms for C11, C44, and σ are plotted on figure 4. It can be observed that the
marginal posterior distributions of the stiffness constants have a normal shape while the
marginal for σ is asymmetric. The posterior means and standard deviations for C11, C44 were
respectively taken as the estimate of the stiffness constant and uncertainties. For σ, the point
of maximum marginal posterior probability was estimated from the histogram. The results are
given in table 1, and compared to the estimates obtained assuming the exact pairing. These
estimates were obtained from the quasi-Newton method described in section 2.3.2. In that
case the estimated standard deviation is the relative root means square error between mea-
sured and predicted frequencies at the end of the fit. The result obtained with uncertain and
exact pairing are almost identical and the uncertainties are only slightly larger in the first case,
which shows that the approach proposed here produces results that are almost as accurate and
precise as the results obtained using the exact pairing deduced from laser measurements. We
also recall the values obtained by Ogi et al using more than 80 frequencies with exact pairing

Figure 3. Application 1: values of C11 sampled for the 100 first iterations of the eight
Gibbs chain. After 40 iterations, all the chains have converged to the same location.

Figure 4. Application 1: histograms of the stiffness coefficients and error term σ
obtained from Gibbs sampling using the frequency data of the alluminium alloy
specimen from Ogi et al [7].
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(only the 42 first frequencies were given in the paper). The values are slightly different but
agree with the uncertainty intervals.

The 42 published frequencies correspond to the actual 42 first resonant modes of the
specimen (no missed frequencies). Our algorithm correctly and unambiguously identified that
no frequency was missed, i.e. we obtained = =p k( 0) 1. Moreover, since the exact pairing
is known we can compare the pairings obtained through Gibbs sampling to the correct
pairing. In table 2, the sampled group symmetry labels for each mode are listed against the
exact label obtained from Laser interferometry. We can see that 18 out of 42 modes are
uniquely paired and that a total of 32 modes are confidently identified (>95% probability)
with the correct predicted mode. The other modes are identified with larger uncertainties and
with up to 4 possibilities of pairing. However, the most probable mode label is always the
correct one, except for two pairs of modes that were inverted (modes 38–39 and −41 42). All
cases of uncertain or inexact identifications correspond to resonant frequencies that are very
close to each others, compared to the estimated standard deviation of the experimental fre-
quencies (0.24%). It is then not surprising that these frequencies cannot be confidently paired
to a unique predicted frequency. But we argue that it is precisely in those cases that the exact
pairing matters the less. Indeed, inverting two or more frequencies that are separated by less
than the standard deviation can only have a negligible influence on the estimated stiffness.

The correct pairing was obtained by the method (except for some very close modes)
using only the frequencies, which shows that the information on the vibration modes is indeed
contained in the distribution of the frequencies. Then, getting the modal shapes experimen-
tally only provides redundant information here.

3.3. Additional results

We solved the inverse problem for the same data set but for a more general assumption of
orthotropic elastic symmetry. The prior distribution was centered on =C 10011 , =C 15022 ,

=C 20033 , =C 7012 , =C 6013 , =C 5023 , =C 2044 , =C 3055 , =C 4066 , with a covariance
matrix again equal to 0.1 times the identity matrix. After about 1000 iterations the eight
chains were eventually sampling the same peak of the pdf and were run for 20 000 additional
samples. The sampled values of the orthotropic elastic coefficients, presented in table 3, are
very similar to the isotropic ones and to those obtained with the exact pairing. It shows that
the proposed algorithm is able to accurately and automatically estimates nine orthotropic
stiffness constants, without requiring to measure the modal shape of the modes nor to specify
an informative prior. Convergence could have been greatly improved with the use of an
informative prior, which may actually be available in many practical applications.

We also applied the method to two additional data sets, published in another paper
proposing an experimental method for the measurement of the modal shapes of the modes [6].
The data consists in 15 resonant frequencies measured on an isotropic Ni80P20 alloy specimen

Table 1. Application 1: parameters estimated from the proposed Gibbs sampling
method for the data from Ogi et al [7], compared to estimations knowing the exact
pairing of the frequencies.

Gibbs Exact pairing Ogi et al [7]

Nb freq. 42 42 >80
C11 (GPa) 108.8 (0.9) 109.0 (0.7) 109.26
C44 (GPa) 26.68 (0.03) 26.68 (0.02) 26.72
Std (%) 0.24 0.23 0.2
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Table 2. Application 1: experimental resonant frequencies and group symmetry label
from Laser-based RUS measurement [7] and group symmetry labels proposed during
Gibbs sampling with their percentage of occurrence. Labels indicate belongings to one
of the eight distinct symmetry groups and the ordering in each group, following the
notation introduced by Mochizuki [18].

# fmeas (kHz) Mode (laser) [7] Modes Gibbs (% of occurrence)

1 116.716 Au-1 Au-1 (100) — — —

2 143.783 Au-2 Au-2 (100) — — —

3 158.081 B u1 -1 B u1 -1 (100) — — —

4 166.500 B u2 -1 B u2 -1 (100) — — —

5 169.523 B g1 -1 B g1 -1 (100) — — —

6 177.846 B g2 -1 B g2 -1 (100) — — —

7 183.875 B u3 -1 B u3 -1 (99.2) B g3 -1 (0.8) — —

8 186.047 B g3 -1 B g3 -1 (99.2) B u3 -1 (0.8) — —

9 190.341 Ag-1 Ag-1 (100) — — —

10 197.386 B u1 -2 B u1 -2 (100) — — —

11 201.136 Ag-2 Ag-2 (100) — — —

12 207.386 B g3 -2 B g3 -2 (100) — — —

13 209.836 Ag-3 Ag-3 (100) — — —

14 214.753 B g2 -2 B g2 -2 (100) — — —

15 223.548 B u3 -2 B u3 -2 (100) — — —

16 231.266 B u2 -2 B u2 -2 (100) — — —

17 233.538 B g3 -3 B g3 -3 (99.1) B g1 -2 (0.9) — —

18 234.717 B g1 -2 B g1 -2 (99.1) B g3 -3 (0.9) — —

19 250.980 Ag-4 Ag-4 (55.0) Au-3 (44.7) B g2 -3 (0.3) —

20 251.256 Au-3 Au-3 (54.6) Ag-4 (44.7) B g2 -3 (0.7) —

21 252.742 B g2 -3 B g2 -3 (99.0) Au-3 (0.7) Ag-4 (0.3) —

22 256.122 B u1 -3 B u1 -3 (98.4) B u3 -3 (1.5) Ag-5 (0.1) B u2 -3 (0.0)

23 257.595 B u3 -3 B u3 -3 (72.6) Ag-5 (19.6) B u2 -3 (6.3) B u1 -3 (1.5)

24 258.118 Ag-5 Ag-5 (51.0) B u2 -3 (25.9) B u3 -3 (23.0) B u1 -3 (0.1)

25 259.035 B u2 -3 B u2 -3 (67.9) Ag-5 (29.3) B u3 -3 (2.8) —

26 268.540 B g1 -3 B g1 -3 (100) — — —

27 277.113 B u2 -4 B u2 -4 (99.9) B u3 -4 (0.1) — —

28 278.762 B u3 -4 B u3 -4 (99.9) B u2 -4 (0.1) — —

29 282.311 B u1 -4 B u1 -4 (100) — — —

30 293.686 B u3 -5 B u3 -5 (100) — — —

31 304.159 B u2 -5 B u2 -5 (58.9) B u1 -5 (41.1) — —

32 304.464 B u1 -5 B u1 -5 (58.9) B u2 -5 (41.1) — —

33 310.109 B u1 -6 B u1 -6 (100) — — —

34 316.197 B g1 -4 B g1 -4 (97.7) B g2 -4 (2.3) — —

35 317.392 B g2 -4 B g2 -4 (97.7) B g1 -4 (2.3) — —

36 326.462 Au-4 Au-4 (100) B g3 -4 (0.0) — —

37 329.034 B g3 -4 B g3 -4 (100) Au-4 (0.0) — —

38 332.441 Ag-6 B u2 -6 (70.9) Ag-6 (29.1) — —

39 333.364 B u2 -6 Ag-6 (70.9) B u2 -6 (29.1) — —
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and 31 frequencies measured on a cubic YbAl specimen. In both case the algorithm per-
formed very well and accurately estimated the stiffness constants, starting from a broad prior
distribution (results not shown). The first of these two data sets is particularly interesting since
three predicted resonant frequencies were not measured. The algorithm unambiguously
identified k = 3 missing frequencies: = =p k( 3) 1.

Finally, we tested the robustness of the method to the expected number of missed
frequencies λ. We attributed to λ a noninformative prior, in the form of a gamma prior—
equation (16)—with α = 1 2 and β = 0 [28]. For all the applications described above, the
algorithm converged to the same results, although convergence was somewhat longer. It
shows that the method is weakly sensitive to λ for these data sets. Hence, setting λ = 1 or
another low value should be adequate for applications to low damping materials.

4. Application 2—data from Bernard et al 2013

The second application deals with the recently developed application of RUS to highly
attenuating materials [17] and in particular to cortical bone [16]. This application leads to an
even more difficult identification problem. Indeed, due to the high amount of vibration
damping, the spectrum of the specimen is not composed of sharp resonant peaks, but of broad
and overlapping peaks. The frequencies must then be estimated through signal processing
[16, 17, 31]. Due to overlapping, it is likely that some frequencies are missed during the
measurement and there is no simple way to tell which modes are more likely to be missed
[17]. We do not discuss here signal processing and we consider the resonant frequencies as
given input data.

Table 2. (Continued.)

# fmeas (kHz) Mode (laser) [7] Modes Gibbs (% of occurrence)

40 336.650 B g1 -5 B g1 -5 (69.6) Ag-7 (18.8) B g2 -5 (11.6) —

41 337.359 B g2 -5 Ag-7 (38.1) B g2 -5 (36.7) B g1 -5 (25.1) —

42 338.276 Ag-7 B g2 -5 (51.7) Ag-7 (43.1) B g1 -5 (5.2) —

Table 3. Application 1: stiffness constants (in GPa) estimated from the data from Ogi
et al [7] for a more general orthotropic elasticity assumption (see section 3.3).

Gibbs Exact pairing Ogi et al [7]

C11 108.9 ± 0.8 109.3 ± 0.6 109.26
C22 108.7 ± 0.6 109.0 ± 0.5
C33 109.3 ± 0.6 109.5 ± 0.4

C12 55.5 ± 0.7 55.9 ± 0.5 55.82
C13 55.5 ± 0.7 55.8 ± 0.5

C23 56.3 ± 0.6 56.6 ± 0.4

C44 26.95 ± 0.06 26.96 ± 0.05 26.72
C55 26.52 ± 0.06 26.52 ± 0.05

C66 26.85 ± 0.05 26.84 ± 0.04
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We applied the method described above to the 20 resonant frequencies measured by
Bernard et al [16] for a specimen of human femoral cortical bone. In that case, the exact
pairing of the measured frequencies was not known, but an independent measurement of the
stiffness coefficients was available to evaluate the results.

4.1. Prior distributions

The measured specimen was taken in a population of 21 femoral bone specimens whose
diagonal elastic coefficients ( = …C i, 1, , 6ii ) were previously measured using ultrasonic
bulk waves velocities [32]. It was then possible to construct a prior distribution using the
previous results obtained for the whole population. For the transformed parameters m cor-
responding to the diagonal coefficients (see appendix) the center of the prior distribution was
fixed using the mean values of the measured coefficients, which are =C 19.311 , =C 19.822 ,

=C 29.233 , =C 5.844 , =C 5.655 , and =C 4.366 (in GPa). Since the three off-diagonal
coefficients C12, C13, and C13 were not measured, their prior were centered on

= − × =C C C2 10.7ij 11 66 GPa. Variances and covariances of the parameters corresponding
to the diagonal coefficients were estimated from the population results. No covariances were
assumed between the off-diagonal and the diagonal coefficients, nor between the three off-
diagonal coefficients. Their variances were fixed to 0.05. This gives the following prior
covariance matrix for m:

η η η

×

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

C C C C C C

0.01

1.35 1.24 1.19 0 0 0 1.41 1.71 1.72
1.24 1.40 1.19 0 0 0 1.48 1.63 1.79
1.19 1.19 1.27 0 0 0 1.42 1.66 1.64

0 0 0 5 0 0 0 0 0
0 0 0 0 5 0 0 0 0
0 0 0 0 0 5 0 0 0

1.41 1.48 1.42 0 0 0 1.84 1.93 2.04
1.71 1.63 1.66 0 0 0 1.93 2.48 2.40
1.72 1.79 1.64 0 0 0 2.04 2.40 2.58

. (28)

11 22 33 12 13 23 44 55 66

Figure 5. Application 2: prior probability in the space of the stiffness coefficients
corresponding to the multivariate normal prior distribution on m. The contour lines
embed respectively 10, 68, 95, 99, and 99.99% of the distribution. The cross locate the
randomly generated starting points of the eight Gibbs chains.
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Three 2D sections of the prior distribution are plotted on figure 5. The assumed a priori
correlation between C11 and C33 on one hand, and C55 and C66 on the other hand, can be
observed.

For σ2, the same noninformative prior as in application 1 was used. The expected number
of missed frequencies λ was not fixed, but an noninformative prior was attributed to it
(section 3.3).

4.2. Results and discussion

The eight randomly generated starting points are shown on figure 5. In that case, all coef-
ficients show some scattering. This is due to anisotropy. Indeed, although the first predicted
mode is still an almost pure shear mode, it depends on a combination of the three shear
coefficients.

Figure 6. Application 2: histograms of the stiffness coefficients and error term σ
obtained from Gibbs sampling using the frequency data of the bone specimen from
Bernard et al [16].

Table 4. Application 2: stiffness constants (in GPa) estimated using Gibbs sampling
and using a fixed pairing, and results from bulk wave velocity measurements. Data for
a human femoral cortical bone specimen [16].

Gibbs Fixed pairing [16] BWV [16]

C11 20.9 ± 0.6 20.3 ± 0.6 21.6
C22 21.3 ± 0.7 20.2 ± 0.6 21.4
C33 31.7 ± 0.9 31.7 ± 0.8 31.3

C12 11.6 ± 0.6 10.7 ± 0.6 —

C13 13.8 ± 0.6 13.4 ± 0.7 —

C23 14.1 ± 0.7 13.4 ± 0.7 —

C44 6.38 ± 0.06 6.38 ± 0.02 6.5
C55 6.31 ± 0.07 6.32 ± 0.03 6.5

C66 4.79 ± 0.04 4.80 ± 0.02 4.8

Std (%) 0.43 0.30 —
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Convergence of the Gibbs chains was indicated after about 500 iterations, but the chains
were stopped after 5000 samples (about 20 min of computing time). The values of the elastic
parameters sampled after convergence were transformed back to the coefficients Cij. Histo-
grams of the nine stiffness coefficients and the standard deviation σ are represented on
figure 6. Again, the marginal posterior distributions for the elastic coefficient look normal,
while the distribution of σ is asymmetric. The mean values of the Cij are given in table 4. They
are compared to the results obtained for a fixed pairing, that was obtained manually [16] and
to the independent results obtained from wave velocities measurements. Good agreement is
observed between the three results. Particularly, no significant difference is observed between
results from RUS with fixed pairing and from Gibbs sampling.

Despite the non-informative prior on λ, the number of missed frequencies was unam-
biguously identified to k = 10 [ = =p k( 10) 0.988], the same number that was obtained from
manual pairing [16].

In this application to a highly attenuating material, an informative prior on the stiffness is
necessary for the identification of the pairing and then the estimation of the stiffness. Due to
the low number of measured frequencies (20) relative to the number of elastic parameters (9),
the pairing cannot be entirely determined from the distribution of the frequencies, contrary to
the previous application. This is a limitation of the proposed approach, however compensated
by the potential availability of prior information in many applications.

The prior distribution of the elastic parameters was constructed from available results for
a population of similar samples. In some practical applications, this might be done through
review of reported elasticity for similar materials. In some context, like composites materials,
a prior distribution might also be obtained from theoretical predictions of elasticity. If no prior
is available, it might be necessary to perform preliminary measurements, for instance of
ultrasonic bulk wave velocities in some material directions.

5. Conclusion

We presented a method based on Bayesian inference and MCMC sampling to automatically
solve the inverse problem in RUS, including the identification of the resonant frequencies,
without requiring the measurement of the modal shapes associated to each resonant fre-
quency. The proposed statistical approach required more forward problem solving than the
conventional optimization method, but convergence was obtained within a very reasonable
time: about a few minutes or a few tens of minutes, depending on the application. In our
experience with RUS, this is less than the time required for specimen preparation and
spectrum measurement, so that computing time should not be considered as a limitation.

In the context of RUS applied to weakly attenuative materials (application 1), where
many resonant frequencies are easily measured, we showed that the method allows estimating
the stiffness constants with high accuracy and precision, without requiring introduction of
prior information. For the more difficult application of RUS to attenuating materials (appli-
cation 2), less resonant frequencies can be measured. The joint estimation of the pairing and
stiffness constants can then be ambiguous. However, the Bayesian formalism allows to
including the available prior information to resolve the ambiguities.

The method was illustrated for anisotropy up to the orthotropic symmetry (nine stiffness
coefficients). In principle, there is no restriction on the number of parameters that can be
estimated, and the method could therefore be generalized to lower elastic symmetry and/or to
the joint estimation of the Eulerʼs angles in the case of misoriented specimens [33] (i.e. when
the principal axis of elastic symmetry are not aligned with the edges of the specimen) or to the
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measurement of piezoelectric properties of materials [8, 9, 34]. In such applications, the
simple sampling method proposed here might be less efficient and the use of methods
particularly dedicated to sampling highly complex distributions, such as parallel tempering
[35], could be necessary. This is a possible direction for future research.
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Appendix. Transformed elastic parameters

A.1. Isotropic symmetry

The isotropic stiffness tensor is, in the two index notation:

=

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟

C

C C C
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, (A.1)ij

11 12 12

12 11 12

12 12 11

44

44

44

with the relation = −C C C212 11 44. It involves two parameters. Thermodynamics constraints
requiring the tensor to be positive-definite are

> >C C
4

3
0. (A.2)11 44

The use of C11 and C44 as random variables in the Bayesian formulation implies two
difficulties in the definition of a prior distribution: (1) their positiveness is not consistent with
a normal distribution and (2) they must satisfy >C C(4 3)11 44, and should then be statistically
dependent variables. Constraints (A.2) transform to:

= − > = >{ }K C C G C
4

3
0 ; 0 , (A.3)11 44 44

where K and G are respectively the bulk and shear modulus, two statistically independent
random variables. Their logarithms

= ( )m K K alog , (A.4 )1 0

= ( )m G G blog , (A.4 )2 0

with arbitrary constants K0 and G0 are consistent with a normal distribution on
= m mm [ ; ].1 2

A.2. Cubic symmetry

The cubic elastic tensor is (A.1), without the relation between C12 and the two other para-
meters. Positive-definiteness is obtained with positiveness of the bulk modulus K and of the
two shear modulus G1 and G2, defined as [36]:

Inverse Problems 31 (2015) 065010 S Bernard et al

20



= +( )K C C a2 3, (A.5 )11 12

= −( )G C C b2, (A.5 )1 11 12

=G C c. (A.5 )2 44

The logarithms m1, m2, and m3 of K, G1 and G2 are statistically independent variables
consistent with a normal distribution.

A.3. Transversely isotropic symmetry

The transversely isotropic stiffness tensor is:

=

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟

C

C C C

C C C

C C C

C

C

C

0 0 0
0 0 0
0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

, (A.6)ij

11 12 13

12 11 13

13 13 33

44

44

66

with the relation = −C C C212 11 66, and therefore involves five parameters. A necessary and
sufficient set of conditions for positive-definiteness is [37]

> > > − >{ }( )C C C C C C C0; 0; . (A.7)11 66 44 33 11 66 13
2

Denoting κ = −C C11 66, it transforms to

κ > > > >{ }C C C a0 ; 0; 0; 0 , and (A.8 )66 44 33

κ
− < = <x

C

C
b1 1. (A.8 )13

33

This last variable x can be transformed to a positive variable using η = + −x x(1 ) (1 ), and
we then have five independent positive variables κ η{ }C C C; ; ; ;33 44 66 that can be mapped
onto variables mi ( = …i 1, , 5) defined from −∞ to +∞ by taking their logarithm.

A.4. Orthotropic symmetry

The orthotropic stiffness tensor is:

=

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟

C

C C C

C C C

C C C

C

C

C

0 0 0
0 0 0
0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

, (A.9)ij

11 12 13

12 22 23

13 23 33

44

55

66

with no relation between the coefficients. It involves nine parameters. The conditions for
positive-definiteness are that all the principal minors (determinants of the ×k k sub-matrices
for = …k 1, , 6) of (A.9) are positives [37]. Although it may exists a set of nine independent
real-valued variables that satisfies this conditions, we did not find a simple transformation
leading to such a parametrization. Instead, we use the logarithms of the positives parameters

η η η{ }C C C C C C; ; ; ; ; ; ; ; ;11 22 33 12 13 23 44 55 66 with
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η =
+

−

C C C

C C C

1

1
. (A.10)ij

ij ii jj

ij ii jj

This parametrization ensures that all the principal minors of order 1 and 2 are positive but
does not guaranty

>
⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

C C C

C C C

C C C
det 0. (A.11)

11 12 13

12 22 23

13 23 33

Hence the prior distribution on m must be a truncated normal, attributing zero probability for
non-positive-definite tensors. It was obtained by rejecting the non-positive-definite samples
during Gibbs sampling.
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