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Consciousness is reduced during nonrapid eye movement (NREM)
sleep due to changes in brain function that are still poorly un-
derstood. Here, we tested the hypothesis that impaired conscious-
ness during NREM sleep is associated with an increased modularity
of brain activity. Cerebral connectivity was quantified in resting-
state functional magnetic resonance imaging times series acquired
in 13 healthy volunteers during wakefulness and NREM sleep. The
analysis revealed a modification of the hierarchical organization of
large-scale networks into smaller independent modules during
NREM sleep, independently from EEG markers of the slow oscilla-
tion. Such modifications in brain connectivity, possibly driven by
sleep ultraslow oscillations, could hinder the brain’s ability to inte-
grate information and account for decreased consciousness during
NREM sleep.

complexity | integration

During nonrapid eye movement (NREM) sleep, we are less
aware of ourselves and our environment and, if we awaken,

are less able to recollect any mental representation than during
full-blown wakefulness (1). The mechanisms underpinning the
reduction in conscious content during NREM sleep are still un-
certain. Consciousness has been associated with the ability of a
system to integrate information (2), which could be altered during
NREM sleep. Here, in contrast to previous work (3, 4), we quan-
tified changes in information integration from wakefulness to
NREM sleep in large-scale brain networks and computed both
their total integration and their degree of functional clustering.
Functional clustering estimates how integration is hierarchically
organized within and across the constituent parts of a system. It has
been proposed as an empirically tractable measure for complexity
of brain integration (5), which is considered a better estimate of the
capacity to integrate information than total integration (6).
We assessed brain functional connectivity on functional MRI

(fMRI) data, which reflect the slow dynamics of local field
potentials rather than instantaneous neural activities (7). Data
were collected in a single nocturnal session in 13 participants
who maintained periods of steady NREM sleep. At awakening,
none of the subjects could recall any mental conscious content
since sleep onset. From this dataset, we extracted for each sub-
ject two subsets of consecutive volumes recorded, respectively,
during wakefulness and NREM sleep. Six spatially independent
patterns, which we refer to as networks (Fig. 1A), were identified
at the group level on wakefulness data, using a data-driven
method (independent component analysis). These networks
[visual (VIS), motor (MOT), default mode (DM), dorsal at-
tentional (dATT), executive control (EC), and salience (SAL)]
were previously identified in many studies investigating resting-
state fMRI correlations in the literature (8–10). Network com-
position was very similar in data obtained during NREM sleep
compared with wakefulness, in terms of within-networks areas
distribution and Euclidian distance between networks (SI Results
and Fig. S1). The six networks consistently identified during
wakefulness were used only to select regions of interest (ROIs)

for further analyses. In total, 77 ROIs were selected around the
local maxima of these networks (Table S1). To quantify the
amount of functional interactions within and between these net-
works across vigilance states, we computed a hierarchical measure
of integration between brain regions during both NREM sleep
and wakefulness. First, an average ROI activity time course was
extracted and an averaged correlation matrix was computed for
each network on NREM sleep data. On the basis of the resulting
similarity tree, each network was further parsed in anatomically
and physiologically meaningful assemblies of bilateral homolo-
gous areas (Fig. S2). We then considered brain connectivity at
three nested levels: brain, networks, and assemblies of areas (Fig.
1B). The brain was divided into six networks and each network
into three to seven assemblies of two to five areas. Finally, we
probed the hierarchical structure of brain integration by com-
puting integration at whole-brain and network levels and derived
their respective functional clustering ratio (FCR), the proportion
of interactions within each subsystem, relative to between them.
Differences in FCR between wakefulness and NREMwere tested
in a Bayesian framework and inferences were conducted at a
probability of difference >0.95.

Results
Compared with wakefulness, NREM sleep was characterized by
a diffuse increase in FCR values, both at the whole-brain level and
in each and every brain network (Fig. 1C and Table 1). Rather
than the mere breakdown of functional connectivity (11), this
result reveals a profound modification of the hierarchical orga-
nization of functional integration. Total brain integration in-
creased during NREM sleep relative to wakefulness (Table 2) due
to an increase in both within- and between-network integration.
Within each network, a fairly consistent change consisted of
an increase in within-assembly integration (Iws), observed in all
networks except the MOT network (Table 3). In contrast, during
NREM sleep, the integration between assemblies (Ibs) increased
(VIS and ATT), remained stable (EC), or decreased (MOT,
DM, and SAL; Table 4). However, in all networks, the change in
within-assembly integration was proportionally larger than that
in between-assembly integration, resulting in a consistent in-
crease in FCR. Complementary analyses revealed that this
(fixed-effects) group result of an increase in FCR during NREM
sleep compared with wakefulness was reproducible across indi-
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viduals, both at the brain level and for each network (Table S2).
Additional results obtained using graph theory tools also con-
firmed that brain activity modularity was increased in NREM
sleep compared with wakefulness (Fig. 2). These findings in-
dicate that over and above changes in individual network in-
tegration or in total brain integration, an essential difference in
brain function between wakefulness and NREM sleep consists of

increased functional clustering of brain activity into assemblies
of homologous areas.
Within each network, we then quantified how much informa-

tion was exchanged between each node and the rest of the net-
work. We observed a moderate reordering of the importance of
the nodes in each network (Fig. 3). Although many areas changed
their within-network rank from wakefulness to NREM sleep, the
hierarchical organization of the networks was relatively preserved
with the transition between states.

Fig. 1. (A) The six networks extracted during wakefulness. (B) Levels of brain hierarchical integration. (C) Increases in functional clustering ratio in the brain
and the six networks (all significant with a probability >0.95). Networks: dATT, dorsal attentional; DM, default mode; EC, executive control; MOT, sensori-
motor; SAL, salience; VIS, visual.

Table 1. Functional clustering ratios (FCR) computed within
whole brain and within each network during wakefulness and
NREM sleep

Wakefulness NREM sleep–wakefulness Sleep

FCR = Iws/Ibs Mean SD Variations prob > 0.95 Mean SD

Brain level vs. networks
Brain 1.50 0.03 (+) 1.70 0.03

System level vs. assemblies
MOT 4.72 0.30 (+) 5.95 0.37
VIS 2.92 0.27 (+) 6.24 0.37
DM 0.93 0.06 (+) 1.24 0.06
dATT 1.35 0.12 (+) 1.93 0.09
EC 0.54 0.04 (+) 1.03 0.05
SAL 1.37 0.07 (+) 3.57 0.18

The central column in Tables 1 and 2 indicates the variations with a prob-
ability >0.95.

Table 2. Total brain integration computed within whole brain
and within each network during wakefulness and NREM sleep

Wakefulness NREM sleep–wakefulness Sleep

Itot Mean SD Variations prob > 0.95 Mean SD

Brain level vs. networks
Brain 5.45 0.08 (+) 6.37 0.07

System level vs. assemblies
MOT 0.83 0.02 (−) 0.76 0.02
VIS 0.32 0.02 (+) 0.74 0.02
DM 0.56 0.02 (=) 0.57 0.02
dATT 0.32 0.02 (+) 0.63 0.02
EC 0.40 0.02 (+) 0.55 0.02
SAL 0.84 0.03 (−) 0.73 0.02
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Because the slow oscillation is a fundamental rhythm of NREM
sleep potentially associated with a breakdown in cerebral con-
nectivity (11), slow-wave activity (SWA) was regressed to inte-
gration measures. Total brain integration was negatively corre-
lated to SWA during NREM sleep (Tables 4 and 5 and Fig. S3).
However, there was no significant relation between FCR and
SWA (Table 6).

Discussion
Content of Consciousness During NREM Sleep. The current work is
based on the theoretical prediction that consciousness is related to
the ability of the brain to integrate information. This ability is
related to the mathematical construct of complexity, which we
approached by computing the functional clustering ratio. To test
this hypothesis, we contrasted two polygraphically identified states
of vigilance that substantially differ in mental content, namely
resting wakefulness and NREM sleep. The reduction of mental
content duringNREM sleepwas confirmed during debriefing after
awakening and we are confident that the mental content differed
between wakefulness and sleep in our volunteers. Importantly, we
do not claim that NREM sleep is associated with a total obliter-
ation of conscious mental representations. The brain remains re-
sponsive to external stimuli during NREM sleep (12, 13) and
dreams have been reported after NREM sleep awakenings (14).
However, the aim of the current paper was not to characterize the
neural correlates of these mental representations but rather to
contrast brain function during normal wakefulness to that ob-
served during a state of impoverished conscious content such as
NREM sleep.

Neurobiological Interpretation of Total-, Within-, and Between-System
Integration and Functional Clustering Ratio. Total integration
assesses the sum of information (in the Shannon sense) exchanged
between the main functional brain networks and within each of
them. Our results show that total integration is larger during
NREM sleep than during resting wakefulness. This is an un-
expected result. Indeed, although previous studies investigating
resting-state fMRI connectivity during states of altered con-
sciousness produced conflicting results (3, 4), they previously
mainly revealed a decrease in connectivity. The present results
also contrast with previous findings of a globally decreased brain
connectivity that has been reported in other altered states of
consciousness such as in coma (15) or during anesthesia (ref. 16, in
a study performed using the same brain integration quantification
technique).
The central point of this paper is to show that beyond these

changes in total brain integration, functional interactions are
hierarchically modified throughout the brain during NREM
sleep, relative to wakefulness. The increase in total brain in-
tegration results from a combined increase in both within- and
between-network integration. In turn, such changes in in-
tegration within each network are due to modifications of the
integration both within and between their constituent systems
(i.e., their assemblies). In all networks during NREM sleep, the
within-system integration becomes proportionally larger than
between-system integration, resulting in a consistent increase in
FCR. Increased functional clustering of brain activity in small
independent modules appears as a general phenomenon and
reflects deep, hierarchical modifications in information flow
during NREM sleep.
Theoretical considerations predict that increased clustering of

brain activity should be associated with a decreased ability to
integrate information (6). Information integration should de-
crease for modular compared with more homogeneously inter-
connected systems because integrated information is predicted to
be maximal for systems that are both highly connected and not
decomposable in individual subsystems. Integrated information
indeed refers to the information generated by the causal inter-
actions in a whole system, over and above the information gen-
erated by the parts (17). Increased functional modularity
potentially results in a decrease in information integration at the
systemic level (2) and, according to the tested hypothesis, this
result could then account for the decrease in consciousness during
NREM sleep, despite preserved total information processing in
the brain. According to this theory, the ability of a system to in-
tegrate information appears to be a function not only of the total
amount of connectivity in the system, but also of the complexity of
the interactions leading to the observed dynamics (5). Functional
clustering has been proposed as one empirically tractable mea-
sure for the complexity of brain integration, which is supposed to
characterize conscious processes (5). Our measure of brain ac-
tivity functional clustering, defined by the ratio of between- and
within-subsystems integration, quantifies the degree of functional
segregation of a given system into subsystems. An increase of
functional clustering ratio means that the architecture of the
system is modified toward a greater proportion of exchanges
within subsystems, rather than at the system level—i.e., that the
subsystems (networks or assemblies in each network) become
more independent from one another. The fact that we observe
this phenomenon both at the brain and at the networks level
suggests a pervasive presence of this phenomenon during NREM
sleep. Additional analyses using classical graph partitioning tools
confirmed our result of an increase in brain modularity during
NREM sleep compared with wakefulness (Fig. 2). However, to be
reliable, such graph theoretical tools have to be applied on a rel-
atively large number of regions. We thus could not apply this
same technique to fine network substructure characterization as
provided by the use of FCR.

Table 3. Within-subsystems integration values computed for
whole brain and for each network during wakefulness and
NREM sleep

Wakefulness NREM sleep–wakefulness Sleep

Iws Mean SD Variations prob > 0.95 Mean SD

Brain level vs. networks
Brain 3.27 0.06 (+) 3.98 0.05

System level vs. assemblies
MOT 0.69 0.02 (=) 0.66 0.02
VIS 0.24 0.01 (+) 0.64 0.02
DM 0.27 0.01 (+) 0.31 0.01
dATT 0.18 0.01 (+) 0.42 0.01
EC 0.14 0.01 (+) 0.28 0.01
SAL 0.49 0.02 (+) 0.57 0.02

Fig. 2. Brain connectivity modularity indexes (group mean result ± SDs)
during wakefulness and during NREM sleep. The modularity index, calcu-
lated by using the Louvain algorithm, quantifies the degree to which a sys-
tem may be subdivided into clearly delineated clusters.
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Altogether, these findings are in line with a recent modeling
work, showing that reaching high information integration values
in a given system requires a subtle balance between functional
specialization and integration between the elements constituting
the system (6). Following this model, increased clustering of brain
activity would result in a decrease in the information integration
ability of the system, despite preserved total information pro-
cessing in the brain. Theoretical predictions indeed state that not
only the richness of connectivity, but also its spatial organization
matter and that a system that is strongly modular is unlikely to
generate high levels of integrated information (6) that has been
related to the level of consciousness (2). In this view, investigating
general properties of the system, like its modularity, is more rel-
evant to the assessment of the ability of a system to integrate
information than merely assessing the amount of information
present within this system.

Changes in the Relative Importance of Key Nodes Within Networks. In
addition to an increased clustering of brain activity, NREM sleep
was also associated to a reordering of brain areas in each network—
typically placing the network node presenting the highest number of
connections during wakefulness at a lowest rank of the hierarchy of
areas participating in within-network integration. This result is in
line with the proposed role of key integration nodes for normal

consciousness (18). However, this modification was not present in
all networks (e.g., VIS or DM), and the hierarchical architecture
of the networks seemed relatively preserved in NREM sleep
compared with wakefulness. Nevertheless, it is possible that these
qualitative modifications of within-networks interactions could be

Fig. 3. Within-network key node density maps (quantifying the integration between each ROI and the rest of the network) during wakefulness and NREM
sleep. The values were sorted for the two conditions to allow one to compare the relative importance of different nodes in each network. Values are dis-
played on a scatter plot to allow comparison between wakefulness and NREM sleep. The lengths of ellipsoid axes correspond to condition-specific group
results SDs. Color codes correspond to the areas for which the rank in the hierarchy is the same (black), higher (blue), or lower (red) during NREM sleep
compared with wakefulness. Please refer to Table S1 for ROI coordinates and name abbreviations.

Table 4. Between-subsystems integration values computed
at the whole brain level (between networks) and within each
network (between assemblies) during wakefulness and
NREM sleep

Wakefulness NREM sleep–wakefulness Sleep

Ibs Mean SD Variations prob > 0.95 Mean SD

Brain level vs. networks
Brain 2.18 0.04 (+) 2.39 0.03

System level vs. assemblies
MOT 0.15 0.01 (−) 0.11 0.01
VIS 0.08 0.01 (+) 0.10 0.01
DM 0.29 0.01 (−) 0.25 0.01
dATT 0.14 0.01 (+) 0.22 0.01
EC 0.25 0.01 (=) 0.27 0.01
SAL 0.36 0.02 (−) 0.16 0.01
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another contributing mechanism to altered consciousness during
NREM sleep.

Brain Integration, Slow Oscillation, and Influence of Other Unidentified
Factors.Changes in brain integration during NREM sleep seem to
result from two antagonistic influences. On the one hand, in-
tegration decreases in proportion to SWA. This result is consis-
tent with a breakdown of brain connectivity resulting from the
bistable neural response associated with the slow oscillation, the
fundamental NREM sleep rhythm (11). However, this slow os-
cillation, as assessed by SWA, does not account for the global
increase in total brain integration or for the pervasive increase in
functional clustering. With deepening of sleep, a decrease of total
brain connectivity could be an additive mechanism to functional
clustering, leading to a decrease in the brain’s ability to generate
conscious perception. Indeed, theoretically, if not only the system
becomes more modular, but also the total connectivity of the
system further diminishes, information integration is likely to
decrease even more at the system level (6).
The processes underlying the increase in total brain integra-

tion and functional clustering remain unidentified. NREM sleep is
associated with considerable changes in aminergic and peptidergic
neuromodulation (19). Although a change in neuromodulation is
a plausible hypothesis, its impact on regional cortical function
remains unknown. An alternative hypothesis would assume that
total brain integration and functional clustering result from
changes in infra-slow oscillations. This hypothesis is supported by
a number of experimental data. Infra-slow oscillations (<0.1 Hz)
are known to modulate cortical activity in animals (20, 21) as well
as human behavior (22) and human brain activity during both
wakefulness (23) and sleep (24). Moreover, infra-slow oscil-
lations of neural activity are also consistent with spontaneous
fluctuations of fMRI blood oxygen level dependent signal during
resting state in animals (21) and similar oscillations are observed
in human fMRI recordings (25). Critically, the infra-slow

oscillations, as measured in humans by magneto-encephalogra-
phy, are noticeably stronger during sleep than during resting
wakefulness and tend to synchronize over a long spatial distance,
especially between bilaterally homologous regions in opposite
hemispheres (26). These functional features are remarkably con-
sistent with our fMRI findings: an enhanced integration between
homologous brain areas during NREM sleep, relative to wake-
fulness. From a functional standpoint, infra-slow oscillations are
thought to coordinate thalamo-cortical processing in distant brain
regions (21), thereby promoting functional integration. The
mechanisms of infra-slow oscillations are not yet identified but
seem to be related to modulation of cortical activity by brainstem
nuclei (27), as well as to network properties of thalamic neurons
possibly driven by nonneural mechanisms (28).
In conclusion, we speculate that part of our results can be

explained by the modulation of brain function by infra-slow
oscillations during NREM sleep. The hierarchical modifications
in the organization of brain integration, reflected as an increased
functional clustering, support the hypothesis that the altered
conscious content during NREM sleep is related to a decrease in
the ability of the brain to integrate information.

Materials and Methods
Population and Experimental Design. Young healthy participants (n = 25; 11
females; age range, 18–25 y; mean age, 21.96 y) were recruited by adver-
tisement. From this group, 13 participants maintained periods of steady
NREM sleep, and thus the data of these subjects were used in this study.
None were on medication or sleep deprived (SI Materials and Methods and
SI Results). After the experimental session, volunteers were asked to report
the occurrence of relevant thoughts, mentation, or dreams that they might
have had during scanning.

EEG Acquisition and Analysis. EEG was recorded using two MR-compatible
32-channel amplifiers and an MR-compatible EEG cap with 64 ring-type
electrodes (SI Materials and Methods). Sleep staging of scanning artifacts-
corrected EEG (SI Materials and Methods) followed standard criteria and
identified periods of stages 2–4 NREM sleep, free of any artifact, duringwhich
the EEG and fMRI data were analyzed. EEGs were subjected to spectral
analysis on a frontal electrode (Fz), using a Fast Fourier Transform (4-s win-
dow, 2-s steps, Hanning window), resulting in a 0.25-Hz spectral resolution.
SWA activity corresponded to the power within the 0.5- to 4-Hz band. Rela-
tive power was obtained by normalizing absolute power to total power.
Sleep parameters are summarized in Table S3.

fMRI Data Acquisition and Analysis. Functional MRI time series were acquired
using a 3-Tesla MR scanner (Allegra; Siemens). Multislice T2*-weighted fMRI
images and a structural T1-weighted 3D Magnetization Prepared RApid
Gradient Echo (MP-RAGE) sequence were acquired from all subjects. From
this dataset, we extracted consecutive volumes recorded during wakefulness
and NREM sleep. To do so, we chose the longest series during the two
conditions for each subject (limited to a maximum of 300 vol for computa-
tional reasons). One hundred fifty-six to 300 vol were selected for wake-
fulness series (total of 33 runs) and 132–300 vol for NREM sleep series (total
of 46 runs).
Network and assembly identification. Overview. Using all datasets acquired
during wakefulness for all subjects, functional networks whose spatial
structure was reproducible across subjects were identified using the NEDICA
method (29) freely available in NetBrainWork (http://www.imed.jussieu.fr/fr/
equipes/e1/netbrainwork/netbrainwork.php) (SI Materials and Methods). The
latter comprised six functional networks representing an incomplete parti-
tion of the whole brain (VIS, MOT, DM, dATT, EC, and SAL networks; cf. refs.
8–10). We defined the ROIs from the peaks of the t-maps of the functional
networks.

Before extracting BOLD signal within ROIs, structured noise (related to,
e.g., respiration, heartbeat, and movements) was reduced with CORSICA (30)
(SI Materials and Methods). Complementary analyses were performed to
rule out that differences in within-session movement amplitude could ex-
plain our results (SI Results, Fig. S4, and Tables S4–S7).

Networks parcellation into assemblies. After preprocessing and removal
of structured noise, all functional datasets were registered into the MNI
standardized space. The spatial average BOLD signals within each ROI were
then extracted for all subjects and for the two conditions (wakefulness and

Table 5. Correlation coefficient R between total Integration (I)
and slow-wave activity during NREM sleep for brain and the six
networks

Itot vs. SWA R P value (two-tailed)

Brain level vs. networks
Brain −0.42 0.0037*

Network level vs. assemblies
MOT −0.25 0.0938
VIS −0.07 0.6439
DM −0.32 0.0301*
dATT −0.43 0.0029*
EC −0.36 0.0140*
SAL −0.43 0.0029*

*Significant correlation with a P value <0.05.

Table 6. Correlation coefficient R between functional clustering
ratios (FCR) for brain and the six networks

FCR vs. SWA R P value (two-tailed)

Brain level vs. networks
Brain −0.11 0.4668

Network level vs. assemblies
MOT 0.00 0.9879
VIS 0.15 0.3197
DM −0.02 0.8950
dATT −0.15 0.3197
EC −0.06 0.6920
SAL 0.00 0.9968
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NREM sleep). The averaged correlation matrix was computed for each net-
work during NREM sleep and thresholded at P < 0.05. The thresholded
correlation structure was computed for each network during NREM sleep
and their structure was assessed by a hierarchical clustering that maximized
intraclass similarity, defined as sqrt(1 − r), where r was the correlation be-
tween two regions. By thresholding the similarity trees, the networks were
divided into assemblies of areas. The results presented in the main text are
based on a qualitative neuroanatomy-based threshold (Fig. S2, SI Materials
and Methods). Similar results were obtained using another data-driven
partition of the networks, thresholding the similarity trees at the level of the
highest increase of intracluster distance (Fig. S5 and Table S8). Results were
not modified by using several alternative approaches a sub-systems orga-
nization defined from NREM sleep data (Table S10) or by using wakefulness
sub-systems organization in the hierarchical clustering (Table S11).
Functional clustering ratio. To quantify functional interactions within and be-
tween networks during the two conditions we used total correlation (31),
a measure also known as integration in neurocomputing (32) and fMRI
data analysis (33) (SI Materials and Methods).

We defined the FCR as the ratio between the integration within sub-
systems (Iws), compared with the integration present between these sub-
systems (Ibs). It is a measure of clustering inside a given system because an
increase in FCR indicates that subsystems become functionally more in-
dependent of each other. In other words, it quantifies the degree of func-
tional segregation of a given system into subsystems:

FCR ¼ Iws=Ibs: [1]

Bayesian estimation and comparison between conditions. Probable values of in-
tegration and FCR were inferred from the data using a fixed-effects group
approach (33) and a Bayesian group analysis with numerical sampling
scheme (1,000 samples per estimate) (34) for these analyses (SI Materials and
Methods). During the sampling procedure to estimate the group covariance
matrix for each group (wakefulness and NREM sleep), a covariance matrix is
estimated for each individual. Thus, similarly to the group analysis, we

compared the resulting 1,000 estimates of FCR at the individual level be-
tween wakefulness and NREM sleep, at the brain level, and for each net-
work. As for group analyses, a probability of difference >0.95 was
considered significant.
Brain modularity computation during wakefulness and NREM sleep. From the group
correlation matrices computed during wakefulness and NREM sleep, we
defined a weighted graph where the weights between nodes i and j were
(1 − rij)/(1 + rij). The modularity index, which quantifies the degree to which
a system may be subdivided in clearly delineated clusters, was calculated
using the Louvain algorithm (35) provided in the Brain Connectivity Toolbox
(http://www.brain-connectivity-toolbox.net) (36).
Node density maps in wakefulness and NREM sleep datasets. Within each net-
work, we computed the integration between each ROI and the rest of the
network (i.e., the other ROIs of the same network) during wakefulness and
NREM sleep. These values were sorted for the two conditions to allow one to
compare the relative importance of each node in the network. Fig. 3 displays
integration values and SD for each node of each network, hierarchically
ordered in wakefulness and NREM sleep. Ellipsoids correspond to SDs of
integration value, conjointly displayed for each area for wakefulness and
NREM sleep datasets.
SWA and functional integration. SWA was evaluated for each NREM run as the
EEG spectral power within the (0.5–4 Hz) frequency band relative to the total
spectral power. This measure was regressed to the interaction measures of
interest (I, Iws, Ibs, and FCR) computed in the corresponding fMRI sessions.
Correlation was considered significant at P < 0.05.
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SI Materials and Methods
Population and Experimental Design. Healthy, young participants
(n = 25; 11 females; age range, 18–25 y; mean age, 21.96 y) were
recruited by advertisement. From this group, 13 participants
could maintain periods of steady NREM sleep—the data of these
subjects are used in this study. A semistructured interview es-
tablished the absence of medical, traumatic, or psychiatric history
or of sleep disorders. All participants were nonsmokers and
moderate caffeine and alcohol consumers. None were on medi-
cation. None had worked on night shifts during the last year or
traveled through more than one time zone during the last 2 mo.
Extreme morning and evening types, as assessed by the Horne–
Ostberg Questionnaire (1), were not included. None complained
of excessive daytime sleepiness as assessed by the Epworth
Sleepiness Scale (2) and of sleep disturbances as determined by
the Pittsburgh Sleep Quality Index Questionnaire (3). All par-
ticipants had normal scores in the 21-item Beck Anxiety In-
ventory and the 21-item Beck Depression Inventory II (4).
Participants gave their written informed consent and received
a financial compensation for their participation. The study was
approved by the Ethics Committee of the Faculty of Medicine of
the University of Liège. Volunteers followed a 4-d constant sleep
schedule before their first visit to the laboratory and were not
sleep deprived. Compliance to the schedule was assessed using
wrist actigraphy (Actiwatch; Cambridge Neuroscience) and sleep
diaries. Volunteers were requested to refrain from all caffeine
and alcohol-containing beverages and intense physical activity for
3 d before participating in the study. On the experimental even-
ing, volunteers reported to the laboratory at 9:00 PM. Actigraphy
and sleep diaries were checked for compliance with the sleep
schedule. These non-sleep–deprived volunteers were scanned
during the first half of the night, starting at around midnight.
They stayed until they indicated by a button press that they would
like to go out or for a maximum of 4,000 scans (∼164 min). The
number of scans acquired varied between 534 and 4,000 [2,565 ±
950 scans or 105.2 min ± 39.00 min (mean ± SD)]. After the
experimental session, volunteers were asked to report the oc-
currence of relevant thoughts, mentation, or dreams that they
might have had during scanning.

EEG Acquisition. EEG was recorded using two MR-compatible 32-
channel amplifiers (Brainamp MR plus; Brain Products) and an
MR-compatible EEG cap (Braincap MR; Falk Minow Services)
with 64 ring-type electrodes. The EEG cap included 62 scalp
electrodes that were online referenced to a frontocentral electrode
(FCz), as well as one electrooculogram (EOG) and one electro-
cardiogram (ECG) channel. Using abrasive electrode paste
(ABRALYT 2000; FMS), electrode–skin impedance was kept
below 5 kOhm in addition to the 5-kOhm resistor built into the
electrodes. To avoid movement-related EEG artifacts, subjects’
heads were immobilized in the head coil by a vacuum pad. EEG
was digitized at a 5,000-Hz sampling rate with a 500-nV reso-
lution. Data were analog filtered by a band-limiter low-pass filter
at 250 Hz (30 dB per octave) and a high-pass filter with 10-s time
constant corresponding to a high-pass frequency of 0.0159 Hz.
Data were transferred outside the scanner room through fiber-
optic cables to a personal computer where the EEG system
running Vision Recorder Software v1.03 (Brain Products) was
synchronized to the scanner clock. Sleep EEG was monitored
online with BrainProducts RecView Software. For analysis,
EEG data were low-pass filtered (finite impulse response filter,
−36 dB at 70 Hz), down-sampled to 250 Hz, and rereferenced to

linked mastoids. Scanner artifacts were removed in Vision An-
alyzer, using an adaptive average subtraction. Ballistocardio-
graphic artifacts were removed using an algorithm based on
independent component analysis (ICA).

fMRI Data Acquisition. Functional MRI time series were acquired
using a 3-Tesla MR scanner (Allegra; Siemens). Multislice T2*-
weighted fMRI images were obtained with a gradient echo-
planar sequence using axial slice orientation [32 slices; voxel
size, 3 × 3.4 × 3 mm3; matrix size, 64 × 64 × 32; repetition time
(TR) = 2,460 ms; echo time (TE) = 40 ms; flip angle = 908;
field of view (FOV) = 220 mm; delay = 0]. The three initial
scans were discarded to avoid magnetic saturation effects. A
structural T1-weighted 3D Magnetization Prepared RApid
Gradient Echo (MP-RAGE) sequence (TR = 1,960 ms; TE =
4.43 ms; inversion time, 1,100 ms; FOV = 230 × 173 mm2; matrix
size, 256 × 192 × 176; voxel size, 0.9 × 0.9 × 0.9 mm3) was also
acquired in all subjects. Part of this dataset has been used to
characterize the neural correlates of NREM sleep spindles (5)
and slow waves (6) and has already been reported but the
present study, resorting to completely different analytic methods,
does not overlap with these earlier reports.

Network identification. Forty spatially independent components
were first calculated for each subject fMRI wakefulness data set,
using the Infomax ICA algorithm (7). After registration into the
Montreal Neurological Institute standardized space, the 40
components × 13 subjects were then clustered using a hierar-
chical clustering algorithm. Networks were defined from the
similarity tree as they were the most representative of the pop-
ulation. A group t map was associated with each network class.
The maps involving regions distributed around blood vessels,
sinus, ventricles, or the outline of the brain were discarded and
the other ones, whose spatial structures were located in gray
matter, were used for subsequent analysis.
We defined the ROIs from the peaks of the t-maps of the

functional networks. A semiautomatic procedure was used. An
automated selection algorithm identified the maximal peaks of
t values for each network at the population level. The peaks were
then manually verified for each network, leaving the automatic
selection mostly unchanged. The ROIs were then built from
these selected peaks, using a region-growing algorithm that re-
cursively added to the region the adjacent voxel with the highest
t score. The algorithm stopped when the region was of 10-voxel size.

Removal of structured noise.Before extracting BOLD signal within
ROIs, structured noise (related to, e.g., respiration, heartbeat,
and movements) was reduced with CORSICA (7), which uses the
ability of spatial ICA decomposition to separate processes re-
lated to structured noise from the others. Automatic selection
of noise-related components was based on their spatial distri-
bution. CORSICA identifies maps with a spatial distribution of
Z values maximal around ventricles or edges of the brain as likely
movements or physiological noise and subtracts these compo-
nents of signal from the original data.

Networks parcellation into assemblies. The results presented in the
main text are based on a qualitative neuroanatomy-based threshold
(Fig. S2). Recent structural connectivity measures in humans
reported that between 9% and 14% of all binary connections are
interhemispheric (7). A consistent aspect of resting -state fMRI
connectivity is also the correlation across homotopic sides of the
two hemispheres (8–11). In line with these considerations, we

Boly et al. www.pnas.org/cgi/content/short/1111133109 1 of 12

www.pnas.org/cgi/content/short/1111133109


selected the clustering threshold to partition each network into
assemblies including homotopic areas from both hemispheres.
Similar results were obtained using another data-driven partition
of the networks, thresholding the similarity tress at the level of
highest increase of intracluster distance (Fig. S5, Table S9).

Computation of integration. Considering N ROIs characterized by
their mean time courses y ¼ ðy1; . . . ; yNÞ gathered into K systems
S ¼ fS1; . . . ; SKg, integration is defined as

I½y1; . . . ; yN � ¼
XN

n¼1

HðpðynÞÞ−Hðpðy1; . . . ; yNÞÞ; [1]

where H(.) is the entropy measure.
For multivariate normal data with mean mu and covariance

matrix Sigma, entropy can easily be computed as

HðpðyÞÞ ¼ 1=2 lnðjSigmajÞ; [2]

where j.j stands for the determinant.
Interestingly, the total integration can be decomposed,

according the organization of ROIs into systems, as the sum of
between-system integration and within-system integration:

I½y1; . . . ; yN � ¼ Ibs þ Iws; with Ibs ¼ I
�
yS1 ; . . . ; ySK

�
and Iws

¼
XK

k¼1

I
�
ðynÞn∈Sk

�
:

Bayesian estimation and comparison between conditions. Probable
values of integration and FCR were inferred from data as fol-
lows. Using a Bayesian group analysis with numerical sampling
scheme, we first obtained L= 1,000 samples ðSigmalÞl¼1;...;L from
the posterior distribution of the group covariance matrix in ei-
ther condition (wakefulness or NREM sleep). From each sample
Sigmal, we computed the corresponding values of integration
(Iws and Ibs) and FCR using Eqs. 1–3. For each measure and
condition, we therefore obtained a frequency histogram that, by
construction, approximated the posterior distribution of that
measure given the data. The samples were then used to provide
approximations of either statistics (e.g., mean and SD approxi-
mated as their sample counterparts) or probabilities [e.g.,
probability of an increase between wakefulness (W) and NREM
sleep] approximated as the frequency of that increase observed
in the sample. The values of integration and FCR were inferred
in a Bayesian framework. For example, it was possible to ap-
proximate the posterior probability p(Ajy) of the assertion A =
{FCR_network1_wake > FCR_network1_NREMsleep} given
the mean time courses within ROIs y. p(Ajy) is approximated
using a Bayesian group analysis with numerical sampling scheme
as detailed in ref. 39: L= 1,000 samples, ðSigmalÞl¼1;...;L from the
posterior distribution of the group covariance matrix in either
condition (wakefulness or NREM sleep) were obtained from the
data. Finally, p(Ajy) was approximated by

fFCR network1 wakeflg>FCR network1 sleepflgg=L;
where l = (1, . . . , L) and # stands for the cardinal function of
a set. This procedure was already used in refs. 14 and 15.

SI Results
Influence of Region-of-Interest (ROI) Selection and Hierarchical
Clustering Procedure on Functional Clustering Ratio (FCR) Changes
Between Wakefulness and NREM Sleep. We performed comple-
mentary analyses to ensure that our results were not biased by the
analytic procedures [independent component analysis (ICA)
system identification based on wakefulness data; hierarchical
clustering in subsystems based on NREM sleep data]. First, we
computed ICA from NREM sleep data. Eight networks consis-
tently observed across subjects were identified and compared with
those identified from wakefulness data (Fig. S1). This comparison
showed the following:

Three networks were spatially similar (spatial correlation up to
0.7) between wakefulness and NREM sleep: default mode
(DM), attentional (ATT), and executive control (EC). Our
results on FCR were therefore not modified for these systems.

Two networks were split into two parts from wakefulness to
NREM sleep: motor (MOT) into MOT1 and MOT2 and vi-
sual (VIS) into VIS1 and VIS2. By directly using these results
to define the system–subsystems organizations for MOT and
VIS, we showed that the FCR still increased from wakefulness
to NREM sleep (Table S9).

One network could not be considered spatially identical be-
tween wakefulness and NREM sleep: salience (SAL). We then
defined specific system–subsystems organization for the SAL
system identified from NREM sleep data. We showed once
again that FCR increased from wakefulness to NREM sleep
(Table S9).

Second, we examined whether the hierarchical clustering
originally conducted on NREM sleep data could have influenced
the observed change in FCR between states of vigilance. We
defined subsystems by computing hierarchical clustering on
wakefulness data, instead of NREM sleep data. The functional
clustering ratio still increased from wakefulness to NREM sleep
using this new set of subsystems (Table S10).

Influence of Movement on FCR Computation During NREM Sleep and
Wakefulness.As described in ref. 13, we computed for each subject
and each session the mean motion metric from the estimated
translation and rotation parameters from the rigid body correction
(Statistical Parametric Mapping version 5). To do so, we com-
puted for each brain volume the root-mean square (RMS) of the
translation parameters and of the rotation parameters (expressed
in millimeters). Then, the mean motion of a time series is calcu-
lated as the mean of the absolute RMS difference between ad-
jacent volumes (for translation and rotation independently).
Rotation and translation movement amplitude was not statistically
different in sleep compared with wakefulness (Fig. S4). In an
additional analysis, we added to the main FCR and integration
computation a preprocessing step to remove residual variance
induced by movement to the areas’ time series. This step consists
of regressing out the six parameters obtained by rigid body and
head motion correction from each region-of-interest time course
after their computation. The finding of diffuse increase in FCR,
both at the brain level and at each network level, present during
sleep compared with wakefulness, remained unchanged after this
procedure (Tables S4–S7).
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Fig. S1. Multidimensional scaling representation of relative spatial similarities of ICA networks. Blue flags: the six wakefulness networks derived from waking
data. Black flags: the eight networks derived from NREM sleep data.
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Fig. S2. The color-coded assemblies of the default mode network, projected in tridimensional brain space (Left in each box) and the assemblies defined from
the thresholded similarity trees for each network (Right in each box). Neuroanatomy-based segregation is shown.
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Fig. S3. (A–F) Slow-wave activity decreases total brain integration. *Significant at P < 0.05; ns, not significant.
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Fig. S4. Rotation and translation movement amplitude during wakefulness and NREM sleep fMRI acquisition sessions.
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Fig. S5. The color-coded assemblies of the default mode network, projected in tridimensional brain space (Left in each box) and the assemblies defined from
the thresholded similarity trees for each network (Right in each box). Homogenous assembly distribution threshold is shown.
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Table S1. Talairach coordinates and labels of regions of interest selected within each network

Region name Abbrev. x y z

Network MOT
Presupplementary motor area PreSMA 0 2 51
Left precentral gyrus L_preCent −50 −9 40
Right precentral gyrus R_preCent 47 −7 38
Left anterior inferior parietal lobule L_infParLob −61 −14 14
Right anterior inferior parietal lobule R_infParLob 57 −14 14
Left posterior insula L_postIns −47 −4 −1
Right posterior insula R_postIns 42 −11 15
Left caudate nucleus L_Caud −6 1 10
Right caudate nucleus R_Caud 6 3 10
Left putamen L_put −23 −2 2
Right putamen R_put 22 3 0
Left cerebellum, VI L_Cer6 −16 −60 −22
Right cerebellum, VI R_Cer6 18 −61 −19

Network DM
Left middle frontal gyrus L_MidFront −40 17 44
Right middle frontal gyrus R_MidFront 42 27 41
Left polar superior frontal gyrus L_SupFront −16 65 13
Right polar superior frontal gyrus R_SupFront 14 66 11
Pregenual medial prefrontal cortex MedPreFront −3 45 −5
Left angular gyrus L_Ang −49 −62 36
Right angular gyrus R_Ang 51 −56 33
Posterior cingulate cortex PCC 0 −53 32
Middle cingulate cortex MCC 2 −14 36
Left anterior middle temporal gyrus L_antMT −59 −14 −14
Right anterior middle temporal gyrus R_antMT 59 −16 −14
Left hippocampus L_Hipp −22 −21 −13
Right hippocampus R_Hipp 22 −21 −17

Network EC
Left inferior frontal sulcus L_infFront_s −44 12 29
Right inferior frontal sulcus R_infFront_s 44 15 30
Left middle frontal gyrus L_midFront −33 15 54
Right middle frontal gyrus R_midFront 40 16 52
Cingulate motor area CMA 0 27 42
Left inferior frontal gyrus L_infFront_g −44 45 −3
Right inferior frontal gyrus R_infFront_g 46 50 −2
Left posterior intraparietal sulcus L_postIPS −29 −68 47
Right posterior intraparietal sulcus R_postIPS 33 −65 47
Left anterior intraparietal sulcus L_antIPS −39 −43 48
Right anterior intraparietal sulcus R_antIPS 41 −45 50
Left superior temporal sulcus L_supTemp −60 −51 −9
Right superior temporal sulcus R_supTemp 65 −43 −3
Left cerebellum, Crus2 L_Crus2 −9 −80 −25
Right cerebellum, Crus2 R_Crus2 10 −83 −23

Network VIS
Left calcarine fissure L_calc −6 −97 5
Right calcarine fissure R_calc 13 −80 −4
Left lingual gyrus L_Ling −4 −73 2
Right lingual gyrus R_Ling 9 −73 −3
Left middle occipital gyrus L_MidOcc −26 −81 30
Right middle occipital gyrus R_MidOcc 31 −80 28
Left inferior occipital gyrus L_InfOcc −32 −90 16
Right inferior occipital gyrus R_InfOcc 40 −78 15
Left posterior middle temporal sulcus L_postMT −45 −73 5
Right posterior middle temporal sulcus R_postMT 51 −64 7

Network dATT
Left dorsolateral prefrontal cortex L_DLPF −27 0 61
Right dorsolateral prefrontal cortex R_DLPF 29 −3 62
Left postcentral gyrus L_postCent −51 −23 39
Right postcentral gyrus R_postCent 50 −21 41
Left intraparietal sulcus L_IPS −34 −38 55
Right intraparietal sulcus R_IPS 41 −32 52
Left posterior middle temporal gyrus L_postMidTemp −50 −62 −4
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Table S1. Cont.

Region name Abbrev. x y z

Right posterior middle temporal gyrus R_postMidTemp 51 −64 −4
Left anterior insula L_antIns −41 −2 8
Right anterior insula R_antIns 40 0 5
Left cerebellum, VI L_Cer6 −29 −47 −25
Right cerebellum, VI R_Cer6 29 −49 −23

Network SAL
Left polar middle frontal gyrus L_midFront −27 57 25
Right polar middle frontal gyrus R_midFront 29 56 22
Precuneus Precuneus 2 −71 49
Left inferior parietal lobule L_infPar −56 −44 44
Right inferior parietal lobule R_infPar 56 −49 39
Anterior cingulate cortex ant_ACC 0 41 13
Anterior cingulate cortex ACC 0 27 32
Middle cingulate cortex MCC 0 −14 30
Left caudate nucleus L_Caud −7 7 1
Right caudate nucleus R_Caud 12 11 5
Left putamen L_put −21 7 8
Right putamen R_put 19 10 7
Left thalamus L_Thal −8 −13 9
Right thalamus R_Thal 6 −12 7

Abbrev., abbreviation.

Table S2. Individual FCR results

FCR variations prob > 0.95

Networks Sub 1 Sub 2 Sub 3 Sub 4 Sub 5 Sub 6 Sub 7 Sub 8 Sub 9 Sub 10 Sub 11 Sub 12 Sub 13 Num (+)

Brain (+) (−) (+) (−) (=) (+) (=) (+) (=) (+) (+) (+) (+) 8
MOT (+) (+) (+) (−) (+) (+) (+) (+) (+) (+) (+) (+) (+) 12
VIS (+) (+) (+) (+) (−) (+) (+) (+) (+) (+) (+) (+) (+) 12
DM (+) (+) (+) (−) (−) (+) (+) (+) (+) (+) (+) (+) (+) 11
dATT (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) 13
EC (+) (+) (+) (+) (+) (+) (+) (+) (=) (+) (+) (+) (+) 12
SAL (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) 13
Num (+) 7 6 7 4 4 7 6 7 5 7 7 7 7

(+) denotes a probability of increase of FCR in NREM sleep compared with wakefulness >0.95. Sub, subject.

Table S3. Sleep parameters

Parameter Mean (SD)

Total sleep time, min 71.10 (26.91)
N2 sleep latency 10.52 (8.80)
N2 sleep duration, min 44.79 (23.95)
N3 sleep duration, min 26.29 (15.92)
REM sleep duration, min 0 (0)
Sleep efficiency, % 0.70 (0.18)

N2, stage 2; N3, stage 3.
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Table S4. Functional clustering ratios (FCR) computed within
whole brain and within each network during wakefulness and
NREM sleep after regression of movement parameters during
the computation of regions-of-interest time series

Wakefulness NREM sleep–wakefulness Sleep

FCR = Iws/Ibs Mean SD Variations prob > 0.95 Mean SD

Brain level vs. networks
Brain 1.53 0.03 (+) 1.70 0.03

System level vs. assemblies
MOT 4.87 0.29 (+) 6.26 0.37
VIS 3.02 0.28 (+) 6.70 0.42
DM 0.96 0.05 (+) 1.28 0.06
dATT 1.32 0.10 (+) 1.99 0.09
EC 0.54 0.04 (+) 1.02 0.05
SAL 1.39 0.07 (+) 3.77 0.18

The central column in Tables S6–S9 indicates the variations with a proba-
bility >0.95.

Table S5. Total integration values computed within whole brain
and within each network during wakefulness and NREM sleep
after regression of movement parameters during the
computation of regions-of-interest time series

Wakefulness NREM sleep–wakefulness Sleep

Itot Mean SD Variations prob > 0.95 Mean SD

Brain level vs. networks
Brain 5.40 0.07 (+) 6.15 0.07

System level vs. assemblies
MOT 0.83 0.02 (−) 0.73 0.02
VIS 0.31 0.02 (+) 0.68 0.02
DM 0.56 0.02 (=) 0.55 0.02
dATT 0.32 0.02 (+) 0.64 0.02
EC 0.40 0.02 (+) 0.56 0.02
SAL 0.84 0.02 (−) 0.70 0.02

Table S6. Within-subsystems integration values computed
for whole brain and for each network during wakefulness and
NREM sleep after regression of movement parameters during
the computation of regions-of-interest time series

Wakefulness NREM sleep–wakefulness Sleep

Iws Mean SD Variations prob > 0.95 Mean SD

Brain level vs. networks
Brain 3.27 0.06 (+) 3.98 0.05

System level vs. assemblies
MOT 0.69 0.02 (−) 0.63 0.02
VIS 0.23 0.01 (+) 0.59 0.02
DM 0.27 0.01 (+) 0.31 0.01
dATT 0.18 0.01 (+) 0.43 0.01
EC 0.14 0.01 (+) 0.28 0.01
SAL 0.49 0.02 (+) 0.56 0.01
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Table S7. Between-subsystems integration values computed
for whole brain and for each network during wakefulness and
NREM sleep after regression of movement parameters during
the computation of regions-of-interest time series

Wakefulness NREM sleep–wakefulness Sleep

Ibs Mean SD Variations prob > 0.95 Mean SD

Brain level vs. networks
Brain 2.18 0.04 (+) 2.39 0.03

System level vs. assemblies
MOT 0.14 0.01 (−) 0.10 0.01
VIS 0.08 0.01 (=) 0.09 0.01
DM 0.29 0.01 (−) 0.24 0.01
dATT 0.14 0.01 (+) 0.22 0.01
EC 0.26 0.01 (=) 0.28 0.01
SAL 0.35 0.02 (−) 0.15 0.01

Table S8. Functional clustering ratios (FCR) computed within
whole brain and within each network during wakefulness (W)
and NREM sleep, using the network partitions defined from the
homogenous assembly distribution method

Wakefulness NREM sleep–wakefulness Sleep

FCR = Iws/Ibs Mean SD Variations prob > 0.95 Mean SD

Brain level vs. networks
Brain 1.50 0.03 (+) 1.70 0.03

Network level vs. assemblies
MOT 4.72 0.30 (+) 5.95 0.37
VIS 2.92 0.27 (+) 6.24 0.37
DM 15.48 2.03 (+) 40.88 6.70
dATT 4.37 0.47 (+) 8.98 0.70
EC 1.52 0.12 (+) 3.54 0.22
SAL 3.80 0.23 (+) 14.44 1.36

The central column indicates the variations with a probability >0.95.

Table S9. Functional clustering ratios (FCR) for MOT, VIS, and
SAL networks using the system–subsystems organization
defined from NREM sleep data

Wakefulness NREM sleep–wakefulness Sleep

FCR = Iws/Ibs Mean SD Variations prob > 0.95 Mean SD

Network level vs. assemblies
MOT 4.48 0.36 (+) 13.00 0.92
VIS 4.23 0.38 (+) 5.50 0.28
SAL 1.51 0.08 (+) 2.84 0.13

The central column indicates the variations with a probability >0.95.
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Table S10. Functional clustering ratios (FCR) using the FCR values
for each system of interest using subsystems defined from
wakefulness data for hierarchical clustering

Wakefulness NREM sleep–wakefulness Sleep

FCR = Iws/Ibs Mean SD Variations prob > 0.95 Mean SD

Brain level vs. networks
Brain 1.50 0.03 (+) 1.70 0.03

Network level vs. assemblies
MOT 13.23 1.28 (+) 19.78 2.21
VIS 2.92 0.27 (+) 6.24 0.37
DM 0.93 0.06 (+) 1.24 0.06
dATT 2.68 0.21 (+) 3.97 0.24
EC 0.55 0.04 (+) 0.68 0.03
SAL 3.79 0.23 (+) 13.72 1.24

The central column indicates the variations with a probability >0.95.
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