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Abstract—This paper deals with the estimation of the blood is related to the total amount of deoxygenated hemoglobin
oxygen level-dependent response to a stimulus, as measured ipresent irthevoxel. The subject is submitted to an experimental
functional magnetic resonance imaging (fMRI) data. A precise a:44igm consisting of different conditions designed to study a
estimation is essential for a better understanding of cerebral ticular brai t | L hil
activations. The most recent works have used a nonparametric par 'Cl‘_' ar brain sy_s em (e.g. memory, a”guage' vision), W '_e
framework for this estimation, considering each brain region @ continuous acquisition of brain volumes is performed. This is
as a system characterized by its impulse response, the so-calledcalled arun or sessiorand lasts for approximately 5-10 min. A

hemodynamic response functiofHRF). However, the use of these session is generally repeated several times—typically between
techniques has remained limited since they are not well-adapted to three and seven—for a given subject

real fMRI data. Here, we develop a threefold extension to previous This techni h I d to detect and | lize d .
works. We consider asynchronousevent-related paradigms, ac- IS technique has allowed (o detect and localize€ dynamic

count for different trial types and integrate several fMRI sessions brain processes for various stimulations or tasks [3] with a

into the estimation. high spatial resolution (of the order of a millimeter), but a
These generalizations are simultaneously addressed through apoor time resolution and a low signal or contrast-to-noise

badly conditioned observation model. Bayesian formalism is used ratio (CNR) so far. This makes the use of well-designed data

to model temporal prior information of the underlying physiolog- S
ical process of the brain hemodynamic response. By this way, the acquisition protocols necessary. Two classes of protocols can be

HRF estimate results from a tradeoff between information brought ~ distinguished: block-designed and event-related experiments.
by the data and by our prior knowledge. This tradeoff is modeled The latter has emerged as a means of observing the fMRI time
with hyperparameters that are set to the maximum-likelihood es-  course in response to a single, very short stimulus (a trial) [1],
timate using an expectation conditional maximization algorithm. [4], while the former has better CNR and may require averaging
The proposed unsupervised approach is validated on both syn- * ' trial ted in cl . D ite thei
thetic and real fMRI data, the latter originating from a speech per- over many trals presented in CO‘?‘e succession. ,eSp'_e er
ception experiment. lower CNR, event-related paradigms are often inevitable,
for instance, to avoid habituation effects. In such paradigms,
random intermixing of trial types is used to eliminate habit-
uation, anticipation or other strategy effects [1] that might
occur indeterministicparadigms. Actual experiments consist

. INTRODUCTION of eithersynchronousr asynchronougparadigms, depending

YNAMIC brain functional imaging was born in the lastwhether the onsets of the conditions are synchronized with the

decade with functional magnetic resonance |mag|r@ta acquisition rate or not. Pal’adigms are often asynChronOUS
(fMRI) [1]. For one subject, an fMRI experiment consists of thEecause the onset of the response can be given by the subject
acquisition of a large number (100—1500) of three-dimensiorfimself (response after a variable reaction time). .
(3-D) volumes (for instance&4 x 64 x 32 voxels, i.e., volume  The end goal of activation detection in brain functional

element) measuring in each voxel the BOLD contrast [2], whidf1aging experiments is to retrieve as much as possible of the
neuronal activity in response to cognitive or behavioral tasks

[3]. However, the relation between this activity and the BOLD
) . . . ) response [2] is not completely understood and still under study
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to a very short stimulus (the transfer function if the system gecond for a single time series of 200 samples) for the analysis
linear), denoted as tHeemodynamic response functigtRF). of real data in an imaging center environment.

Modeling the HRF has become an intensive topic of researchThe rest of the paper is organized as follows. Section |l starts
for many reasons. First, a precise modeling should lead tovih the introduction of the LTI model of the HRF faingle
better understanding of cerebral activations. Second, withirireal asynchronous paradigms. Successive generalizations for
region, the signal variations between conditions or stimuli (suesynchronous multitrial multisessigraradigms are then taken
as the magnitude of the response, but also its delay or width) ¢atw account in a more complex badly conditioned observation
only be studied with an accurate estimate of the response andwfdel. In Section IIl, we motivate our modeling choices and
its variability. Third, estimation of the HRF can be done at evederive the selected estimator for the HRF within the Bayesian
position in the brain in order to investigate its spatial variabilitfyormalism. Since such an estimate depends on a few hyperpa-
Finally, some recent technological progress gives access torgimeters, Section IV adresses the problem of their tuning ac-
multaneous recordings of electrical (electroencephalograplegyrding to the maximum-likelihood (ML) estimator. Section V
and metabolic (fMRI) activities. For these reasons, the HRFustrates the performances of oumsupervise@pproach with
has been the subject of many studies that usually assume #yaithetic data. The method is applied to a language comprehen-
the brain system is linear and time invariant (LTI) [9]-[16]. Alsion fMRI study in Section VI. In Section VII, we discuss the
though the guestion whether the brain response can be conbidits of applicability and possible extensions of the proposed
ered linear is not yet fully answered, it has been shown that thigthod.
assumption is a tenable and useful approximation [4], [10], [14]
and, thus, holds in the present work. [I. MODELING THE CEREBRAL HEMODYNAMIC RESPONSE

Parametric methods for estimating the HRF as a transfgr
function of a LTI system appeared first in the literature [9], ) o
[11]-[13]. These approaches impose the shape of the HRE! hroughout the paper, random variables and realizations
by choosing a particular function (e.g.,Gamma or Gaussi@h thereof are respectively denoted by uppercase (3.,
density). Thenonlinearparameters of this function are fitted to2Nd corresponding lowercase (e.4), symbols; in addition,
the data to take variations of the delay and blurring effects Bptations such ag(y|h) are employed as shorthands for
the HRF into account. Parametric models may introduce soilH (¥/h), whenever unambiguous. Furthermorgy|h;6)

bias on the HRF, since it is unlikely that they capture the shaff¥#ans that the parameter vectbiis assumed unknown but
variations of the HRF within the brain. deterministic. The main notations used in the following are

pmmarized in Table I.

Notations

By contrast, recent works have introduced temporal prié
information on the underlying physiological process of th
brain hemodynamic response to accurately estimate the HRF
in a Bayesian framework. Such priors compensate for the lackn event-related protocols with synchronous ISI, the BOLD
of information provided by the data [15], [17], [18]. ThesdMRI time course(y,,)1<n<n is measured in any voxel of the
techniques only apply to periodic eynchronougvent-related Prain attimegt, = nTR)i<n<n, TR being the time of repe-
paradigms and are devoted to the estimatioromé HRF in tition, while stimuli occur with a fixed-delayed impulse signal
response to one condition or stimulus. They also deal with ead)1<n<~ - This means that the sampling period is equal to TR
session separately and average the HRF estimates a posteffBgnN the stimuli occur only at times of acquisition. The HRF is
without taking fluctuations of physiological factors acros8en modeled as the convolution kernel ofa LTI system [9], [15],
sessions into account. Hence, their use has remained limitéd]-
since they are not well-adapted to actual fMRI data. In asynchronougxperiments, the presented stimuli occur at

The aim of this paper is to propose a threefold efficient geneé?0y time during scanning. In such cases, we propose to put the
alization of [15], [18]. First, we derive a temporally regularizedata and the trials on a finer temporal grid, which has to be
estimator of the HRF when shorter and jittered interstimul@€fined such thaf) the time occurrences of the stim(diy ) >+,
intervals (ISls) are used, such as in asynchronous paradig@f§ defined on this grid, and théi) two stimuli do not occur
Second, we propose a simple extension that is able to cope vidtie same time. LeAt be the sampling period of this grid.
mixed taslparadigms, in which mixed trial stimuli are presentepUr Strategy consists in approximating the true onsets by their
in a random order and in a rapid succession to one another. THRSer neighbor on this grid. This very simple procedure can be
extension consists in estimating a HRF per trial type. Third, v@@€n as a zero-order interpolation and generates what is called
develop an estimation procedure that is able to simultaneoul8yhe following aninstant-matchingrror. Let(z;):>, the time
process all fMRI time series (all sessions or runs) recorded foPgcurrences of the stimuli on this finer grid. Accordingly, the
subject in a given region. The specific treatment of each sessfdRF has to be estimated with the same temporal resolution:

LTI System for Asynchronous Paradigms

is important because noise characteristics (low frequencies) may K

be different betwgen sessions. We will show that this leads to i Z hiat®e, —kat + by,

more accurate estimates and relevant error bars provided that the =0

drift terms are modeled with few parameters per session (typi- =z h+0b,,, fort,=ty,...,ty, (1)
cally three or four). Because these extensions require a signifi- ) o

cant computational effort, we develop a powerful optimizatiowith z,, = [z;, , 2, _a¢,... 2, —xad)t € RET andh =

scheme that makes the computation fast enough (typically dag, ha¢, - - ., hixat]'- Note first that the number of unknowns,
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TABLE |

LIST OF NOTATIONS
yi € R Data of session 4 for a given voxel
b; € RV Gaussian noise vector of session
K+1 Number of HRF coefficients for each condition
Xi(m) € R x RFH! Binary “onsets matrix” of stimulus m for session ¢
hn € REH HRF for the mth condition
M Number of different conditions in the experiment
h=[ht,...,ht]t € RMEFD Set of HRFs
Xi= [Xi(l)| o |X1.(M)] €RM x RME+D) Binary “onsets matrix” of all conditions for sessior
Qi Number of drift parameters for session #
P =[P,,...,P o] €RN xR Low frequency orthogonal matrix for session ¢
L; ¢ R9: nuisance parameters for session 4
I Sessions number
N Ef=1 N; Global number of data for all sessions
y= [yf, ., yﬂt eRY Complete set of data for all sessions
X = [X}] |X}:|t Binary “onsets matrix” for all sessions
P = diag[Py,..., P;] Low frequency orthogonal matrix for all sessions
l= [lﬁ7 ,l}]t € RX: @ nuisance parameters for all sessions
Oy =[ri,...,7m] ERM Hyperparamters of the prior pdf p(h ; R, 0m)
0 =[r}, 0%]" Complete set of hyperparameters
R Prior covariance matrix of A,
Ry =diag[nR, 2R, ..., TuR)] Prior covariance matrix of h
pMAP MAP HRFs estimate
b Posterior covariance matrix of AMAP
T Covariance matrix of the data y
£ (;I,m s hm) Quadratic error between h,, and its estimate fzm
S (Em) Mean standard deviation error measure for IAzm

i.e. K + 1, may be dramatically larger than its counterpart iwhere X = [z;,,...,z:,]" defines the binary onsets matrix.

the synchronous case and second, that oversampling of the dé&drix P = [P, ..., Pg] consists of an orthonormal basis of

is not requiredb,,, is thenth sample of a zero-mean Gaussiafunctions P, = [P,(t1),..., P,(tnx)]* modeling the low fre-

white noise procesh of unknown variance;, > 0, indepen- quencies (e.g. aone dimensional discrete cosine transform). The

dent of h. Such a hypothesis may seem restrictive since it mumberQ of basis functions depends on the lowest frequency

well-known that fMRI time series are correlated in time [19]f.,;, attributable to the drift term and can be definedtas=

Nonetheless, as shown in [18] various noise correlation stry2N TR fumin] + 1, where “+1” stands for the mean (constant

tures have little influence on the performances of the estimatidarm) and-] is the integer part operator. MatrR can also take

The same result has also been emphasized in [20], where theamy covariate of no interest into account, supposed to influence

thors analyze the influence of the colored nature of fMRI noighe signal intensity in a linear way. Vectbe R® defines the

on theaveragebias of the HRF estimate. Alternatively, oneunknown weighting coefficients of the basis functions, called

could estimate the temporal covariance structure of the noisgisance variable the following.

with an autoregressive model, as done in [21].

Inreal neuroimaging experiments, the fMRI raw data are con-

taminated by a low-frequency drift mainly due to physiological. Asynchronous Multitask Paradigms

artifacts [22]: breathing and cardiac pulses are aliased since the

sampling frequency of the data is below Nyquist’s bound. Thus, We further extend (2) to allow for a different HRF estimate

these physiological factors introduce some low frequency flutor different trial types (e.g.,different stimuli or conditions). Let

tuations. A high-pass filter is generally used to remove thosg (™)), ., <, be the different trial-dependent matrices, each

trends before estimating the HRF. In this study, we simultangf them being defined as the previoXsmatrix, and then sup-

ously estimate the HRF and the trend with the following modgbse that the HRF&,,, add in alinear way. Such an extension
requires to correctly define the oversampling periddas the

y=Xh+Pl+b (2) smallest sampling interval that allows to separate the two closest



1238 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 22, NO. 10, OCTOBER 2003

events, whatever their type. For the sake of simplicity, let us dehere the diag operator is used to defiReas a block-diag-
fine onal matrix. From these assumptions, the likelihood of the asyn-
chronous multitrials multisession modeWt) is given by

X = [X<1>| .. |X<M>} € RN x RM(E+D) ,

h— [ht1 Eur c RM(K+1) p (g|h7M;Tb7BBl) = Hp(yi|h7M§7"b7li)
yooe by, b
= (27ry) " F
from which model (2) is able to cope wittsynchronous multi- —SL g, - Xih — Pl
taskparadigms. exp == 5
Ty
N —|ly—Xh-PI|?
D. Multisession Likelihood =(277y)" 2 exp(M)@
Ty

As previously mentioned, the experimental paradigm is re-
peated several times for a given subject, leading to a few SEhereN — 2521 N,

stons of about 200 to 1000 data each. . ) The number of parameters still remains large so that least
It is generally assumed that the HRF remains approxmat@@iuares estimation is unreliable whigd|P]*[X | P] is ill-con-

constant provided that all the exogenous parameters (VOXgioneqd (the variance of the fitted parameters is too large). A
task, subject) are fixed. Accordingly, the same VeQWOrS gy aight application of the inversion lemma for block matrices

sought from the available fMRI times series, $y...,¥;, 0f  yrovides a necessary and sufficient condition: this block-matrix
respective 'e”Q‘inv SO thgt_a sp_ecmc matri¥(; is involved is invertible and well-conditioned if and only if the inverse of
for each session. In addition, it seems relevant to select

: ; O SCI€CA(1), — P(P'P)~'P")X = X'(In — PP')X exists and
sessmn—d(]a\pendegt valuelpfind possiblyy; for the definition o"\ya|l_conditioned. Note that such a matrix can be ill-con-
of P; € R™ x R since the physiological factors (breathingiioneqd even ifX* X is well-conditioned. The limiting case,

and cardiac rates) fluctuate throughout the sessions. Hence’c%‘ﬁesponding to the underdetermination of madef), can be
multisession extension of (2) is given by reached ifAt is too low or M too large.

(M): y,=X;h+Pil; +b;, foriecIN} [Il. 1 DENTIFICATION OF THEHRFs
Since the information provided by the data may not be suffi-
Model (M) calls for two comments. cient to derive a robust HRF estimate, we introduce some con-

straints on the temporal structure of the HRFs that correspond
to some available physiological prior knowledge. The proposed

* the mean ob; (i.e.,the baseline ok) may vary across HRrF estimate will result from an appropriate tradeoff of both
sessions. This variation is captured by the constant colugpes of information (data-driven and prior).

of matrix P;.
» the variance ob; is supposed constant across the Sessiofs prior Information

for the sake of simplicity. In Section V, it will be shown llowi introd | orior inf
that the proposed HRF estimate remains robust with re—FO owing [15], [18], we introduce temporal prior informa-

gard to departures from this hypothesis. There is no the N Wi_thin the Bayesian_framework._As physiologically advo-
retical limitation preventing us from introducing aspecifi(?ated in [5], each HRF is characterized by the following fea-
variance for each session. Nonetheless, we advocate s

use of the same unknown variance for all sessions on the 1) Its amplitude is close to zero at the first and end points.
same subject since we observed on our data that the major ~ As @ matter of fact, the HRF is causal, hentg, x A

First, it relies on the following assumptions about noises

fluctations occuring in real data are rather due to physio- should be zero fol: < 0 andm € IN},. This means
logical variations (modeled by session-dependent trends) that the stimulus at timé should only have influ-
than to some modification of the noise scaling. ence fork > 0. Similarly, the influence of an ac-

tivation should vanish in the past, implying that the

filter parameters should tend to zero for large delays

(hm kAt = 0).

Its variations are smooth.

) Prior statistical independence is supposed to hold
between stimuli and, thus, between HRFs. In addition,
each HRF may be related to an underlying physi-
ological process having its own dynamics (specific

_ [Xt .. |X}]t time-to-peak and dispersion of response).

Second, modglM) allows to introduce more information than
model (2), through the introduction of new independent data.

To estimate and make inferences about the hemodynamic re- 2)
sponse, we first need to take modgdH) into account through 3
the definition of the likelihood function. For the sake of concise-
ness, let us introduce the following notations:

w8
Ezdlag[Pl,P]]

y

t ¢t lILet A € R¥ x R¥ be an invertible matrix, thefd) = (A~") if Cond
l= [ll| s |ll] stands for the condition number [23].
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Condition 1) is easily introduced by redefining vectérs Therefore, a reasonable prior on those would have been unin-

andxz(._’?g for theith session and alt € IN, setting the first formative or even improper. Moreover, in Section V-E we argue
and last parameters &f,, to zero that with a small number of nuisance variables (i.e.,w¢iV
h,, = [hm,At> -;hm.(Kq)At]t c RE-1 is small, typicallyQ /N < 0.02) and a standard noise level, we
' " are able to accurately estimate these parameters and be reason-
1‘57?) = [375,7,2)_&7 ‘e ,wgi)_(;(_l)m} e RF! ably confident in the variability of our HRF estimate. In other

words, when we substitut®'™ for [, the extra source of error
on hMAP still is small. The same holds for hyperparameters

1t 0 et

t r -
X = [z,(-m) m(m)] e RY x REL.

The likelihood function (3) remains unchanged wikh = It follows that the most important quantityis estimated from
[hS,.. . BY]t € RME-D and X, = (XM, |Xx™] e the maximura posteriori(MAP) the maximum of the posterior
RN *ME=D) for theith session. distributionp(h|y, M. 6, 1). The Bayes rule ensures the fusion

Quantification of condition 2) is achieved by setting afthe likelihood (3) and the prior (4) into the Gaussian posterior
Gaussian probability density function (pdfy (0, 7,,,R) for distribution ofh given (y, 8, 1), from which we can derive the
p(hm; R, 7). We have chose®R = (D.D,)~! for the prior MAP estimate -
covariance whereD, is the truncated second-order finite

. 7 MAP
difference matrix in order to fullfil constraint 1) p (hly. M;6,1) ~ N (RVA7,3)
2 1 0 e -er 07 L1 I . .
: 2 ==Y "X{X;+ Ry
1 -2 1 0 ry
D= pMAP 122[:)(% PL). (5
: 0 - - P i\Y; ).
o 1 =2 1 The influence of this choice of model should have limited

Lo e 00 1 2] impact on the estimation df. However, the influence on the

SinceR™" is of full rank, p(h,,.; R, 7,.) defines a proper priér. error bars ofh™MAP might not be negligeable. As we would
For model(M), condition 3) may be taken into account by théike to assess the error made bj*T, we focus on the mar-

following pdf: ginal posterior pdfp(h.. |y, M;8,1). As expected, this pdf is
M NRMAP 3 distributed withS,,, , themth diagonal block of
p(h; R,0p) = H p(hm; R, 7)) Y. The marginal error bars can then be derived from the stan-
m=1 1) dard deviationsr,,, = [0,n.1,...,0m, k—1], that are given by
| R h'Ry'h 4 the square roots of the main diagonaBy,. Although slightly
W Ty ) underestimated, such error bars provide a good approximation

of the range of variation ak,,. Note that these error bars are
“created for pointwise inference and appropriate only for a single
preselected time sample since the search over all time samples
Ry = diadriR, mR,... 7R € RME-D x RME-D_ raquires to analyze the posterior covariance max which
This prior model clearly favorsmootiresponses, since for eachcannot be easily represented on the same grap}/as.

condition it amounts to minimizingDsh.,, ||?, i.e., the discrete

approximation of the second-order derivativelgf. We note C. Equivalence With the Marginal MAP Estimate

also that the sampling perial is integrated in the definition of  ynder technical conditions, we show that our HRF estimate
the prior variances,, and that introduction of different param-3MAP g 5 valid approximation of another Bayesian estimate that
etersr,, for different HRFs allows to model specific dynamic§akes all fluctuations dfinto account. This solution corresponds
for each condition. to the maximizeh™ A" of the marginal pdf p(hly, M; 6)

B. Modeling Choices and Error Bar Computation

wherefy = [r1,...,7a] € R stands for the hyperparame

ters of the prior model and

e e  plly M:0) = [ Ly MiB)l
Our HRF estimation technique is a two-steps operation, S
which first_consistsin_jointlyestimatir@and_ﬂin_the ML sense _ /p(h|y7£,/\/l;o)p(£|g/7./\/l;0)dl (6)
(see details in Section 1IV) before substituting the estimates = =

for the true values inp(hly, M;#8,1) in order to compute its wherel is assumed to be random. Using Bayes rule, the marginal
maximizer. In the first step, we assume that the drift parametgygsterior pdfy(l|y, M; 8) rereads

1 as well as hyperparametefis= [r;,8%;]¢ are deterministic -

We motivate this choice below. p(lly, M;8) o< p(y|l, M;y); p(L;01). (7)

It does not seem to us that considering the drift terms g5ihe apsence of relevant prior information abbt flat distri-
random variables would allow the addition of significant 'nforbution is considered for(1; 8;,) leading in (7) top(1]y, M: 8) o
mation because we have rather poor prior knowledge at haB@)M,M;G). Assuming t_hag(ﬂy,/\/l;a) is peake:d_enough, we

2The pdfp(h; R, 7,,) is said to be proper if, p(h; R, 7,,,)dh < occ. may writep(l|y, M;8) ~ 6(1 —/lMAP), WherezMAP = ZML is
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the ML solution computed by our approach (see details in Ség- EM-Based Strategy
tion 1V). If this hypothesis is fullfiled, the marginal distribution 4, notation compactness, let us dendte = 6%, 1']¢.
(6) is, thus, approximated by The EM algorithm, introduced by [26], is a general iterative
A ) ML method which ensures the increasing of the likelihood function
p(hly, M;0) ~ /p(hlg, L M;0)8(L = I)dL p(y|M; ) of a parameter vectdk given observationg at each

~p(hly,L :ZML, M;8). (8) iteration. Siarting from an initial vaILf'}O, a series of succesive
Therefore, our approach amounts to compuﬁ%\' MAP pro. estimatesf is generated by alternating the following two
vided thatp(l]y, M; 8) ~ §(1-1M1Y. In Section V-E, we discuss steps:
the validity of this assumption. Expectation(E) : EvaluateQ(57 Ek;@ (11a)
IV. HYPERPARAMETERS ANDNUISANCE VARIABLE Maximization(M) : 0 . arg max Q(E, 5k;g) (11b)
ESTIMATION 0

This section focuses on the automatic tuning of hyperparatbere functionQ is defined as
etersf and nuisance variablds This part starts with an intro- ~ ~k ~ ~k
duction to the ML principle and then examines a well-adapted Q6.0 ;y) = /IOgP(E:MM? 0)p(hly, M; 6 )dh
way to tackle the underlying optimization problem. h

~ ~k

A. ML Principle =En [logp(g»th;0)|g7M;0 (12)

ML estimation for hyperparameters is a very common prgg peing an auxiliary random variable whose practical role is
cedure, which is currently used in various fields of signal ang make thecompletelikelihood p(y, h|M; ) easier to com-
image processing when dealing with a small number of uBUte than the original Of’lﬁﬂ/‘/ﬁa)- Following [27], parameter

known but deterministic hyperparametd#rgsee, for instance, ~ . ) - 1t
[24] and [25]). The underlying reason that makes this approa\(/:%Ctoro can be partitioned into two subvectdks = [y, /]

. o : and@g = [ry,...,7]" which respectively control the condi-
feasible and attractive is that there is a large number of(déja tional pdfsp(y|h. M: 0y ) andp(h: R.8z). Then, as shown

to estimated, ) accurately. Similarly to [15], we select the hy-in Appendix I, the M-step (11b) can be divided into two oper-
perparameters and nuisance variables by maximization of theit, <- maximization 0Dy i With respect tdfy  and max-
likelihood p(1|M:; 6, 1), obtained from the joint pdf oflf, Y')  imization of Qg with respect td (see (19) and (20) for the

after integration over the parametdis definitions of Oy and O, respectively).
In the present case, detailed examination of the maximization
p(ylM;0.1) = /P@h: M1y, Dp(h; R, 0 )dh of Oy g With respect tdy |z shows a tricky problem: thieint
h maximization with respect to, andl, required by the defini-

- det(‘r)% - 2 strongly depends oh Nonetheless, the M-step (11b) can be re-

(QW)—% <(?/—P1)t'r—1(y_pl)> ©) tion (11b), cannot be performed since the updating step, of
— ex — y—it
placed by aonditionaloptimization strategy that reads

with3
VB € B =0y BT

~k
= argmax Qy g <[3lk+11,0 ;y>
B - -
with B = {85+ B B Bl - By ) - (13)

The variant (13) is known as thexpectation conditional max-

Computation of( MY is a complicated nonlinear opti- imization (ECM) [28]. It is actually a subclass of generalized
mization problem of several variables. First, we mustresortto @M algorithms that are more broadly applicable than EM but
iterative optimization scheme because of the nonquadratic lseare its desirable convergence properti€serefore, we resort
havior of (og det ). Second, sinckg p(y|M; 8,1) is not con- to ECM for functionQ, 7. Hereafter, we provide the updating
cave with respect tdd( 1), there may exist several local minima.equations of ECM for the estimation 8f |z andfy.
Therefore, the hyperparameters and nuisance variables given by -
any deterministic algorithm depend on the initial values. In tHe. Re-Estimation Formulas fdy |z
next subsection, we propose to resort to a variant of the expectarne present M step of ECM is performed by searching an
tion-maximization (EM) algorithm to avoid direct optimizationgptimal parameter ofy g at a time, say3**!, given by (13)
of (10). or equivalently by the solution a9Qy /94 = 0. This

3In these definitions, every matri®, is supposed to haw@, = @ columns Procedure is repeated for all parameters belongiréytgr. As
Vi € IN7. If such achoice turns out to be inappropriate, the definitions of matrix

P and vectod should be revisited, by zero-padding matrid®sand vectord, 4The EM algorithm converges monotonically to a stationary point of
that do not have the maximal number of componentshex; Q;. p(y|M;8)if Q(8,6 ;y, M) is continuous in botd andd" [26], [29].

Y =nrlIy+XRg X"

The ML estimator@™, ML) of (8, 1) minimizes
log det(Y) + (y — PI)'Y ™ (y — PI). (10)

AML
0 1
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shown in Appendix Il, the computation of the optimal nuisance TABLE I
; 0 ; ; ECM ALGORITHM FOR HYPERPARAMETERS ANDNUISANCE
variables] can be parallelized since VARIABLE ESTIMATION

1, = Pl(y, - X;hMAP), for e IN%. (14)

1) Tnitialize 8°.

Taking the new estimatds and all the available datasets intc2) Tteration k (k > 1)

. . : k _ gk ko kit
account we get for the noise variance o Estimate Oy | g = [I1, ..., 11, 7]
— Compute I¥ using (14) for i € N7;
R Z£=1 gi(li) — Compute rf using (15);
Ty = —/——— (15) o Estimate 0% = [f,..., 75" using (16);

N

where functions;(-) are defined by (24) (see Appendix II). As
it appears in (24), updating bothandr;, requires the compu-

tation of AMAF | Strictly speaking, this estimate is given by the
solution of a linear system without explicitely computing matrix

Y. Nonetheless, the latter matrix is needed for settingnd is,
thus, computed before updatibg The first part of this section is a Monte Carlo study that com-

pares the statistical properties of the ML and MAP HRF esti-
mates (summarized in Table III).
In the following simulations, the CNR is defined as the ratio

The M step of the ECM algorithm with respectg is actu- between thé, -norm of the HRF and the standard deviaﬁéﬁ2
ally identical to a M step of the standard version of EM since gl tha noise-

the parameters belongingdg can be simultaneously updated.

3) Compute Q(é'“,ék‘l ; ¢y, M) using (21)~(25);

4) Tterate k =k + 1 and 8 = [ka‘ 7, 0%7]" until stop rules are satisfied;

V. SIMULATIONS RESULTS

D. Re-Estimation Formulas fdtg

As previously derived, the optimal paramet@fg are given by A Zf;o 19N
the solution 00 Qg /98 = 0 that is (see Appendix Il for de- CNR= (K + 1)T1/2
tails) ’

~MAP ~MAP t

» To provide a single CNR value for time series containing several
“{ (" (h) +’3) By } HRFs with different shapes, we simply average the CNR of each
— M(K-1) response. The CNR is taken in the range of observed CNR in
m ~MAP [~MAP "
tr{ (hm (h ) +3, }R*l _ fMRI data.
K—1 , Otherwise. The rest of this section emphasizes the performances of the

(16) MAP estimator and focuses on the following topics, specific to
Finally, the successive steps of ECM are summarized @ extensions:

i -
if 7/, =71',Ym

Table II. o . , « Effect of oversamplingwhether it is relevant to choose a
. As_to numerical implementation of. ECM., thg following con- HRF sampling period\¢ for A lower than TR, the sam-
junction has been selected as stopping criterion: pling period of the data (see Section V-C). For this topic,
ke ~k—1 k1 ~k—1 we have chosen a high CNR to rigorously quantify the in-
‘Q(o 0 sy M)-Q@ 0 ;g-/M)‘ stant-matching error.

<M * Successive improvements when allowing for trends and
when processing several sessions at the estimation stage

~k ~k—1
‘g(a Y
(see Section V-D). For this investigation, we have consid-

‘ 5,5“ - 55‘1” ered a higher noise level to better highlight the improve-
sup; = 2| <y ments brought by the multisession method on the average

‘ oF ) bias and variance of estimation of the HRF. In addition, a

i session-dependent drift term, similar to the one observed
whered denotes the solution at thigh iteration of the mini- in fMRI data, has been added to quantify the gain that we

mization stage and the thresholds have been sef;toy;) = can achieve when modeling these fluctuations.
(1074,107?). « Validity of the error bars on the HRF estimates (see Sec-
Sections II-1V have allowed us to designsupervised non- tion V-E).

parametric estimatesf the HRF at a given voxel of the brain, ~* Robustness of the HRF estimate to departure from the hy-
depending on the trial type and the subject under study. More- pothesus of equal noise variance across sessions (see Sec-
over, we have provided uncertainty measures on this estimation tlon V-F). o

to be able to quantify the confidence we may have in the re- * Influence of overparametrizationi.e., when too many
sults. Hereafter, we demonstrate the accuracy and robustness of HRFs have been modeled and estimated compared with
the proposed estimates, first on simulated datasets, and finally

through an experimental MR paradigm. 6The CNR is sometimes defined as the ratio between the magnitude of the
peak signal change and the standard deviation of the noise. However, the peak
value is no longer a good descriptor of the entire signal when different HRF
5Since a constant noise variance has been assumed throughout the sessiirapes are considered.
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TABLE Il
SIMULATION PARAMETERS FORFOUR DIFFERENT DATASETS

Drift
Subsect. b CNR # Sess.
Flag Cut-Oft-Period (s)
§ V-B No [0.7 0.028] 10.3 1.53] |
§ V-C No 0.008 1.46 |
§ V-D Yes [180 170 160 180] 0.03 0.73 4
[180 170 160 180]
§ V-E Yes 10.03 0.2] 10.73 0.29] 4
140 50 50 40]
§ V-F No 10.08 0.3] 10.46 0.24] 2
§ V-G Yes 160 0.02 0.92 1

the number that are actually present in the voxel undplotted in Fig. 1 for instanceh; is the canonical HRF used by
study (see Section V-G). For this purpose, favorabtbe SPM99 softwargé ,whereash; is chosen as an extreme ex-
experimental conditions have been chosen. ample of avery peaky HRF. The true HRFs used in the following

Each of these topics is analyzed using synthetic data. The pebsections are similar uptoasqaling factor, leading to different
rameters of the simulation have been chosen to be compati¥#éues of the CNR at a given noise level.

with experimental conditions usually encountered, as explained? White Gaussian noise of varianeghas been added to the
now. data, as well as a session-dependent low-frequency drift, which

was generated from a cosine transform basis which coefficients
A. Common Procedure for Generating Simulated Datasets !: were drawn from a normal distribution. The amount of low
F h . h first simulatedaad int frequency signal was tuned to be significant: we have checked
or €ach session, we have Tirst simulateBdom-inter- ¢, o 5ch sessjon that the ratio between the quadratic norm of the
mlxedsequence_ of indexes coding for two d_|f_fere_nt event typegs componentsP;l; and the quadratic norm of the drift-free
(M = 2). Each index corresponds to a specific stimulus. Unlea taX;h + b; was no less than 50%. We stress here that the

otherwise specified, th.e timing of the tr|als_|s rand_o m, since trv}f?/ents are well distributed over time such that collinearity with
ISIs between successive trials follow a uniform distribution e low frequency signal is unlikely

[2.5, 3.5]. This might not be optimal for ML estimate. However, Number@); depends on the chosen cutoff-period for the drift

an opt|mal_ design for t_he estimation of the HRF will not be Herm present in sessianFor instance, the selected parameters
timal for signal detection [20] and we have, therefore, chos?rprow number 3 of Table Il leads 1Q; = 4. The data are then

a tradeoff that is generally considered in neuro-imaging expPelisiained after undersampling the sequences|@t/st] rate
iments. To investigate the influence of the experimental desi inter-scan interval beifBR = 2 s. Note also that the Ieng’th
on the behavior of the ML and MAP HRF estimates, we COMst the datasets varies across sessi.ons

pare the statistical properties of the solutions computed for 1) an

event-related paradigm (low detection efficiency and good HRE: Statistical Properties of the Map Estimate
estimation [20], [30]) and 2) a block design (high detection ef-

e L We assess the statistical properties of the ML and MAP esti-
Egiizcl)é\?gld poor HRF shape estimation [20], [31]) at the SaMSates through a Monte Carlo study in the finite and asymptotic

While the optimization of the design parameters is out of t gata cases. The ML ;olutlon can be der_lved from_ ) by_settlng
= r,/7 = 0. In particular, we first outline the bias-variance

scope of this work, these_two _sett|r_lgs contrasF two o_pposn_e %Irteideoff, which is intrinsic to Bayesian estimation in the finite
uations from the HRF estimation/signal detection point of view,

The reader interested by the optimization of experimental oﬂ qt_a case and illustrate the asymptotic convergence of the MAP
estimates to the true HRFs.

sign may refer to an excellent survey [32] (and references quoté 0 obtain an approximation of the bias for the ML and MAP

therein), which also introduces a stochastic framework based o ot have first ted the \uti g
genetic algorithntsto optimize a fitness measure of the experigs Imates, we have first compute ragesolutionover.; =
mental design wrt several parameters (detection efficiency, HRR) realizations of the noise process

shape estimation, counterbalancing of events, B, MAP _ 1 XJ:E MAPf ML _
Ut

Sl

The onsets of the trials are put together on the same temporal
grid usingét = 0.5 s for sampling period. This step simply
requires to move the onsets to the nearer time points onthe  8www:fil.ion.ucl.ac.uk/spm/spm99.html.

grid, 9There are generally two asymptotic situations. The first one occurs when the
: : ; ; ; mber of dataV= — +oc whereas the second one amounts to increasing the
Each t?'”ary tlm?,se“es coupled to a stimulus is then CoﬁJNR in order to characterize an estimator with noise-free data. Here, weghave
volved with a specific HRFh; or hy, whose exact shapes ar@nvestigated the second case. Nonetheless, both situations are equivalent in our
approach since hyperparametet r, /7 is automatically tuned from the data.
"These tools are available at http://www.lsa.umich.edu/psych/r&his means that wheGNR — +oc, A — 0, which amounts to overweighting
search\&labs/jjonides/download.html. the likelihood term.

J

7 ML
> hME
Jj=1
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Event-related design
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Fig. 1. Average HRF estimates ovér= 100 drawings of the noise distribution in the case of synchronous paradigim= TR = 1 s) and for a low CNR
value. (a)-(d): ML HRF estimates. (b)-(c) and (e)-(f): MAP HRF estimates computectaitstant(b)-(e) andadaptativeprior models (c)-(f). Solid and dashed
lines represent; andh., respectively. Fine and thick lines code for true and HRF estimates, respectively. In addition, the time samplesidf, are marked
with x and[J, respectively.

The estimation variance of the MAP and ML solutions is then 1) Low CNR or “Finite Data” Case: Fig. 1 shows the
approximated using average HRF estimates computed both for the ML and MAP
strategies. As it clearly appears on Fig. 1(a), the ML solution
v ('};JMAP) _1 (E,MAP —EJMAP)Z is unbiased. The pointwise error bars that are depicted on
J J Fig. 1(a) have been computed as the square roots of the vari-
ance of estimatiow(h;"). The average solutions depicted in
) (EJML) _ (/’;jML _ E]ML) 2 Fig. 1(b), (c) correspond to the MAP estimates computed either
' for a constantprior model ¢; and hs have the same prior
variance:r; = 72) or for anadaptativeprior model(r; # 7).
It follows that the quantities of interest, i.e., the mean squargese average time courses illustrate the well-known intrinsic

™M~ i~

1
J

error for any HRFh,,, can be computed using bias-variance tradeoff that appears in Bayesian solutions in

_ the finite data case: the MAP solutions are biased but less

MSE(h h) = [Hh E[h H } ~ V( hJ) + (h— hy)?. variable_than the ML estimate (their error bars, computed
from V(h;MAT), are lower). To measure the gain brought by

The global MSE (gMSE) is then obtained after averaging ovBayesian methodology, we use the MSE and the summarizing

all time points index gMSE. We also note thAg has been taken as an extreme
K N example of HRF since it is much more peaked than the usual
oMSE(h: h) = Z MSE(hg; hk)_ response, better representedtyy
k = K To emphasize the role played by the experimental paradigm

in terms of bias-variance tradeoff, the same quantities have been
To remove thenstant-matching errqrwe have considered syn-computed for the block design and the results are depicted in
chronous paradigms. The onsets of the stimuli and the data gig. 1(d)—(f). For the ML estimate plotted in Fig. 1(d), choosing
defined on the same grid witht = TR = 1s. The ML and a block design rather than an event-related one generates an in-
MAP estimates are now compared for low and high CNR valuegease of the variance of estimation and a slight bias. For the
(see Table III). MAP estimates [Fig. 1(e)-(f)], the variance remains roughly
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Event-related design TABLE IV
(a) (b) GLOBAL MSE OF THE HRF ESTIMATES COMPUTED BY ML AND
o2 0.4 . . ‘ MAP METHODOLOGIES
5 ol GMSE(- ; hm) x 100
5 wi ER design | Block design
o 008f f }
= R hy hy hy hy
= 024§
g {1 ML estimates 545 | 537 | 883 [11.26
g W\/\M\/\'\’“’\ CNR=0.3 MAP estimates (r = 72)| 147 | 339 | 158 |53
= N ‘t A MAP estimates (11 # 72)| 146 | 297 | 1.6 |4.78
! AN S ML estimates 021 | 022
e
(] s 10 15 20 25 0 5 10 15 20 25 CNR=1.53 MAP estimates (11 = 72)| 0.15 0.19
Block design MAP estimates (11 # 72)| 0.12 | 0.18
© (d)
01 04
= 0.1
0.08]
g &
<
S 006 0.2 T
- k)
S o004 A [
o} i H !
= ’ S i : 2 A\
002 sy . : =
"‘.:':""_"'.""“‘.ﬂ"‘".""-"h . 5 — - 4
05 o £ - s = 55 < i e
Time scale in s Time scale in s :
0 5 10 15 20 25 o 5 10 15 2
Fig. 2. Mean square error computed knin (a), (c) and orh. in (b), (d). Time scale in s Time scale in s
Solid lines depict the MSE value for the ML estimates. Dash-dotted and dashea
lines give the MSE values for the MAP estimates computed with constant alg% 3. Average HRF estimates ovéF = 100 drawings of the noise

adaptative prior models, respectively. distribution in the case of synchronous paradigitt = TR = 1 s) and for
a high CNR case. (a): ML HRF estimates. (b): MAP HRF estimates computed

: P : : ith a constant prior model. Solid and dashed lines represenand k.,
constant but th_e ble_ls significantly |r_1creases_compared with t\rfégg)ectively. Fine and thick lines code for true and HRF estimates, respectively
event-related situation. To summarize, working with a poor dgut cannot be distinguished at this level of CNR. The time samplés aind
sign for HRF estimation amounts to decreasing the CNR bdthare marked with and[d, respectively.
for ML and Bayesian procedures.

Fig. 2(a)-(b) provides the corresponding MSE over all timggsistenssince its estimation variance tends to zero. The av-
samples forh, andhs,, respectively. Fig. 2(a) shows that th&rage MAP estimates computed with a constant prior medel
MSE is always lower for the MAP solutions when dealing withye plotted in Fig. 3(b) for comparison. As shown on this figure,
h,. The MAP estimate computed with an adaptative prior modglere js a strong evidence that the MAP converges to the true
has a larger bias around the peak but a lower gMSE compafgdF 100, so that our solution issymptotically consistentt
with ML as reported in Table IV. By contrast, Fig. 2(b) showgnoyid be stressed that such a result is a direct consequence
that both MAP solutions have a larger MSE around the peak §f ine automatic tuning of the hyperparameters. Indeek =f
h, even if the adaptative prior model allows to significantly '€, /r was kept constant (as in supervised estimation) the MAP
duce this error. As shown in Table IV, the MAP estimates stillgtimate would be biased when the noise variapaecreases.
remain more attractive than the ML solution since their gMSEjce ) — 0 whenr, — 0, the weight of the prior model tends
is always lower. Itis also important to compare both MAP esty, yanish, so that asymptotically the MAP estimate identifies
mates and to note that the adaptative prior model provides beligi, the ML solution. As reported in Table 1V, the gMSE index
solutions in terms of gMSE at the expense of the computatiorb’:}bvides similar results for both estimates.
cost (twice more expensive).

The MSE has also been computed for the block design X- How to Choose the HRF Sampling Rate?

periment. As illustrated in Fig. 2(c)-(d) as well as in Table 1V, ) . .
these results show the significant increase of the mean square!® Present simulation addresses tradeoff between the bias

error both for the ML and MAP estimates, but more importantl@nd, compu'tational burden depending on the chosen samp!ing
for the ML solution. To conclude, the designer of the paradighfi0dAt givenét and TR. Here, we have considered a suffi-
should carefully select the objective function to be optimized af€ntly high CNR to be able to assess the statistical properties

cording to the underlying question (detection HRF estimatioffP™ ©ne single realization of the noise process. _
[32]. Since the onsets of the trials occur with a temporal resolution

2) High CNR or “Asymptotic” Data Case:Fig. 3(a) shows Of 6 seconds, they are not synchronised with the data. Our aim

the average ML estimates in the nearly noise-free case. As illusrorpe map solution computed with an adaptative prior model is not reported
trated, the ML estimate remains unbiased arakiamptotically here since it provides the same average time courses.
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(a) (b) TABLE V
11F™ OSSOSO VRSO S (U0 | SO O SR ISP S QUADRATIC ERRORE AND MEAN STANDARD DEVIATION & OF THE MAP
: : : : : ESTIMATES COMPUTED FORDIFFERENTVALUES OF At

E(-5 hm) S(hn)
ha h» hi ho
At = TR 0.02 0.021 | 0.078 | 0.077
At =TR/2| 931073 | 9.21073 | 0.07 | 0.067

At =TR/4| 35107 |[4.2107% || 0.069
At =TR/8|[3.1107% || 5.3 1072 0.065

Amplitude of HRF

is high have been obtained in 0.03, 0.08, 0.33,and 3.1 s, respec-
tively, on a Pentium IV 1-GHz. Decreasing the CNR induces a
slower convergence, but faxt = ¢, the HRF estimate is usu-
allly computed in about one second for a dataset of 200 samples.
The computational burden s, therefore, low enough to make this
approach feasible for several hundred time series (voxels or re-
gion of interest). .

Moreover, choosing\t = At compared with larger values
leads to a better estimate of the noise varianchis is likely
to be due to the fact that some data variance may be introduced
Fig. 4. HRF estimates for synchronous asynchronous estimation technicfdy.the undersampling step.
Top row | FsiF;;sl n:ggguut;d UfirthT E/ERC(izn%rffAi E rTe 5%8/ Zd(b)é;(ﬁ%ttgr% Finally, we note that the hyperparametexs< r, /7, if 7,,, =
Eioavghedlines represdnt arrllgliz,_respecti\Se)ly. Fine éer thicklir(le)s; code for true” ? Vm € ]NRI' Or_)‘m :_ rb/Tm OtherWiS_e) aUt_Omatica”y adapt
and HRF estimates, respectively. The time samplds,aindh. are marked tO the level of discretization. In the simulation performed for
with x and, respectively. different sampling periods, we have checked that~ 8ok
(or Aa¢ = 8 a¢/2) is approximately satisfied.

Amplitude of HRF

0 5 10 1‘5 2‘0 2‘5 0 g 10 15 20 2‘5
Time scale in s Time scale in s

is to determine the optimal oversampling peri&l. This op-
timal value should be able to control the instant-matching errgy. |mprovements Brought by Successive Models
in the estimate, and help us to best set the tradeoff between bi
reduction and potential variance increase.

Here, we have tested the single session asynchronous mogel. ; . . . ;

) . . X esigned in Section Il, in terms of quadratic error and variance

(2), in which the drift component has been discarded. In ad I uction
tion, we have imposed identical prior variandes = 7). ) . ) .

Fig. 4 shows a qualitative comparison betwegn= TR and 1) the influence of modeling drift terms in (2); o
At < TR models when dealing with asynchronous paradigms. 2) thesession-dependemiodel (2), where each HRF is esti-

The influence of the oversampling period appears clearly: the ~Mated from each session (before a possible averaging step
closerAt is to §t. the less biased the estimate is. over the sessions), compared with theltisessionrmodel

We have quantitatively checked this result measuring the (M), where each HRF admits a single estimate derived

guadratic error £ and themean standard deviatio§ of the from th? whole set of sessions.
HRE estimates with a) Comparison of rows 1-3 and 2—4 of Table VI proves that

the quadratic error of the HRF estimate diminishes when mod-

a‘?he goal of this section is to classify the performances of
(}Be HRF estimates for the models that have been successively
I

g(ﬁm; h,) = M7 =1,2 eling a drift component (more significantly fs): the criterion
K _’1 £ is smaller when the nuisance variables are jointly estimated.
~ 1 = The variance reduction or the decreas&a$ rather marginal,
(hin) = K—1 21 Tm.p- a7 probably because the number of unknown parameters is larger
p=

_ _ i o when a trend is modeled with a constant number of data. These
For h, that fits well with the prior model, both criterié and o ements are emphasized when dealing with multisession
S decrease withAt, even when the sampling period goeggiimation. Fig. 5(b) llustrates the gain in robustness brought by
below At (see Table V). By contrast, foh,, £ decreases model(M), which takes a session-dependent drift into account,
until At = 6t = TR/4 and increases for lower values, agompared with the results when the drift has not been modeled
reported in Table V. Therefore, selecting a sampling periqd Fig. 5(c). Quantitative results reinforce these improvements,
underAt¢ = TR/4 does not rezilly improve the accuracy an@s shown in rows 7—8 of Table VI.
robustness of the global estimdt&*". These results are also b) Rows 5-6 of Table VI as well as the comparison of
obtained for lower CNR values. Fig. 5(a)—(c) shows that multisession modeling has a greater
ChoosingAt < At leads to an increase of the computationahfluence on the accuracy of the HRF estimates than the consid-
cost. More precisely, the results of Fig. 4(a)—(d) where the CNfRation of nuisance variables in the model. Assuming stability
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TABLE VI
QUANTITATIVE ASSESSMENT OF THEHRFS ESTIMATED BY THE SUCCESSIVEMODELS OF SECTION Il
Quadratic error £(- ; hy) |Dispersion § ()
hy hs h, h;
Single Session & No drift & 71 = 7» 0.017 0.018 0.13 0.13
Single Session & No drift & 71 # 7 0.016 0.017 0.12 0.13
Single Session & drift & 71 = 72 0.015 0.015 0.11 0.1
Fig.5(a)| Single Session & drift & 71 # T2 0.015 0.014 0.08 0.11
multisession & No drift & 7 = 72 51073 0.01 0.1 0.1
Fig.5(c)| multisession & No drift & 71 # T2 61073 81073 0.08 0.1
multisession & drift & 71 = 7» 5107° 7107° 0.06 0.06
Fig5(b)| multisession & drift & 71 # 72 1107*] |[6,5107]
(a) (b) (c)
L1 Lipt 1.1 .
E 09 :
— {
o 0.5F B
Q h
< 03F- i1
2
& 0.1
o :
g e it i
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Fig. 5. (a),(b): comparison of the HRF estimates computed fomversusfour sessions, respectively when the low frequency drift included in the data is

modeled withQ); = 4 nuisance variables for each session. (b),(c): comparison of drift modeled (b) and drift not modeled (c) for HRF estimates computed from
four sessions. In all cases, we have considered the adaptative prior (npdél ).

of the HRFs across sessions in a given voxel actually allowsoach. To achieve this goal, we performed several Monte Carlo
to bring more information and, therefore, leads to a significastudiest in which we analyzed the influence of the number of
bias reduction and a slight variance decrease. The variamgsance variables); = 4 andQ; = 18) as well as the the
reduction is even greater on data without drift componefbise level CNR = 0.73 as in Section V-D an€NR = 0.29)
(results not shown). Nonetheless, the drift embedded in thg the estimation variance @f The drift terms were held to
data being random and session-varying, $healues reported he same value for a complete run. First of all, we checked that
in Table VI do not go down when a session-dependent drift Ng§; estimatd™" is unbiased. For a small number of drift terms
not been modeled. Comparison of Fig. 5(a)-(b) demonstra@i =4, Qi]Ni — 0.02) and a standard CNECNR = 0.73),
the relevance of the HRF estimates computed from all availal?hee standard deviation of our nuisance variable estifi8tavas
datasetg = 4). no larger than 3% of the maximal amplitude of the drift. This
analysis only gives the behavior of our estimBf&, but even
E. Validity of the Error Bars indirectly, the dispersion df'" is related to the computed error

A concern is to know whether the approximation leading #ars omk™". In such cases, our approach essentially provides
(8) has a good chance to be satisfied. This approximation is®t accurate approximation of the dispersiorhdf'A" at low
the origin of the variance underestimationfofAf. Our argu- COSt.
ment is that with a small number of drift parameters comparedWhen increasing the noise levelNR = 0.29) or multi-
with the number of data (whe@/N is small enough) and a Plying the number of nuisance variableg;(= 18, Q;/N; =
standard CNR our approach provides an accurate estimatédj. We observed that the standard deviatioh*f was at least
the nuisance variables such that the extra source of error reldfédtiplied by three. In these more difficult cases, the solutions
to these parameters should be negligeable. Such cases aré'te.” andh™™*" are close to each other but the main differ-
alistic and occur whe®/N < 0.02, for instance when the €nce is that the error bars derived bH*" will be underesti-
lowest frequencyf,i, is 1/120,N = 180 andTR = 2 s we mated since they will not be able to capture the dispersion at-

(far? ChOOS&Qj =4 Conse_quentlyv We are mtereSted IN quan- 11y — 193 realizations of the noise have been drawn to accurately estimate
tifying the bias on the variance estimate provided by our ae dispersion of the nuisance variable solufitS.
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Fig. 6. Testing for the robustness to the equal noise variance hypothesis. (a)-(b) HRFs estimated from a single session where the Gaussiarvadeedeas fo
() = 0.08 andr{®) = 0.3, respectively. In (c), the HRFs have been estimated from both sessions with (ddethat is assuming(") = »{?.

tributable to the drift terms. In other words, the estimation vars. Overparametrization of the Number of HRFs

ance of " is not taken into account """ Hence, we should Here, we have used two trial types: one generating the peaked
computeh™*'A" and the marginal posterior covariance matri\yRF h,, depicted in Fig. 5 for instance, and one yielding no re-
Y g2 to remove the existing bias on our error bars. These deveponse (zero function). Two different HRFs were modeled at the
opments are beyond the scope of this paper (see Section Végtimation stage. The question addressed here is whether mod-
We, therefore, limit the field of applicability of our technique taeling the nonexisting function as a HRF influences bias and vari-
small number of nuisance variablé@; < 5) and reasonable ance of the estimate df,. Indeed, it is well known in the ML
CNR (roughlyCNR. > 0.5). framework that, the larger the number of unknowns, the higher
the variance of estimation. Simulations (not reported here) show
F. Robustness to the Equal Noise Variance Hypothesis that inclusion in the model of ancorrelatedand nonexistant

We are also interested in testing the robustness of the HﬁBF dl-(I)SIS: nor] have aT]y mflgenlce oln the estimation of the ex-
estimate to a departure from the hypothesis that the noise is cing » Whatever the noise level.

stant across sessions. For doing so, we have considered two SeIg_ote thatitis also possible to design a statistical test either for
sions with respective noise varianoéé) — 0.08 andr,EQ) _ assessing whether an estimated HRF is zero oflot= 07),

. . .__or for comparing both estimatd®, = h,?), since the sum
0.3. We stress here thaf,?) = 0.3 is an extremely high noise pafing 4, 2’)

. . of squares of the difference betwekn and h, follows a x>
level, not found in actual datasets but used to emphasize the&%’tribution (see [34] for details)

bustness of our approach in a multisession framework.

As shown in Fig. 6(a) and as expected, the HRF estimates are
closer to the original ones when the noise level is low. Fig. 6(b)
demonstrates that increasing the noise variance provides over-MRI Parameters
smoothed results and stresses the limits of the prior model forrhe experiment was performed on a 3-T whole-body system
such low CNR values. Moreover, small error bars that are ViSimBruker, Germany) equipped with a quadrature birdcage radio
in Fig. 6(b) result from overconfidence in the prior. In this exfrequency (RF) coil and a head-gradient coil insert designed
tremely noisy situation, the problem discussed in Section V-Efi§r echoplanar imaging. Functional images were obtained with
amplified. Here, this variance underestimation concerns the Ry{2*-weighted gradient echo, echo planar imaging sequence
perparameters and is due to the large uncertainty on the hypeqgar = 3.3 s, TE = 30 ms, FOV= 240 x 240 mm?, ma-
rameter estimates. With a more important computational effoffix = 64 x 64). Each image, acquired in 1.3 s, comprised 22
this uncertainty could be computed using the methodology demm-thick axial slices covering most of the brain. A high-res-
rived in [33]. The opposite result would be observed in the stagtution (1 x 1 x 1.2 mm) anatomical image using a 3-D gra-

dard ML framework, where the higher the noise level, the larggfent-echo inversion-recovery sequence, was also acquired for
the error bars. Note also that the noise variance is better eglich participant.

mated when the CNR is not too low. Finally, the HRFs plotted in
Fig. 6(c) have been computed from both available datasets, Bs-Description of the Paradigm

suming they have been generated with the same noise variance$pe method was assessed on real data acquired in a speech
since this assumption holds in mode\t). Clearly, Fig. 6(c) giscrimination experiment. The experiment consisted of six ses-
shows that the proposed technique remains robust with regargi‘%sa = 6) comprising 100 trial§N; = 100) lasting 3.3 sec-
some departures from this hypothesis. In other words, the mMyghds each. In each trial, the participant heard two pseudo-words
tisession approach provides better results than the sessionglgr headphones. His task was to indicate whether he had per-
pendent technique, even with session-varying noise levels. cejved or not a difference between the two stimuli. There were

12Given by the left superior block of the joint covariance maktiy , of size  three types of t.ria|$M = 3)5 “Phonological,” “ACOUSt-i(.:,” and
MK —1)Q x M(K —1)Q. “Control.” In trials belonging to the “Control” condition, the

VI. EXPERIMENT
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Fig. 7. Real data originating from a speech perception experiment. Top row: statistiegls yielded by SPM 99 (thresholdedrat= 0.001), superimposed

on axial slices of averaged T1-weighted images. Middle row (al)—(c1): Maximum likelihood HRF estimates computed from six sessions in voxeisbharked b
crossegV; — V3). Bottom row (a2)—(c2): MAP HRF estimates computed from six sessions in the same voxels. Voxel coordinates are indicated near the time
courses. “Phonological,” “Acoustic,” and “Contro” conditions are coupled Withh., h;, respectively.

two auditory stimuli in the pair were exactly the same. In th€ obtain such results, one first has to specify an fMRI model
“Phonological” condition, the stimuli differed along a contrasthat uses a canonical HRE.. Second, least squares esti-
used to distinguish words in the language of the participant (itation and inference on relevant contrasts of the parameter
waslinguistically relevant path versus bath in English). In theestimates is performed. The first half of the regressors of the
“Acoustic” condition, the stimuli also differed but the contrastMRI model is defined byf,,(t,) 2 (@™ % h)(t,) for
between the stimuli was not relevant in the language of the par— 1,... N = ,;N; = 600 andm = 1,...,M = 3. The
ticipant (e.g., beat versus beet in English). second half derives from the convolution of the first-order
The stimuli pairs were presented during the silent gaps lastiggrivative ofh. with the onsets. The use of derivatives allows to
2 seconds between two succesive acquisitions (the TR was 3g&f robustness against variations of the maximum amplitude
and the time of acquisition of one volume was 1.3 s). The onsgjsthe delay of this maximum.
of events were aligned with the start of the second stimulus in aThe middle row of Fig. 7 shows the ML HRF estimates in
pair (i.e. at 1.65 s), which felt in between two successive acqree different voxels from the left superior temporal gyrus of
sitions.At = TR/2 is, therefore, an appropriate choice for thene participant: (Talairach coordinates in millimetdrs(X =

sampling period of the HRF. —60, Y = =24, 7 = 4); Vo(X = —68, Y = —28, Z = 8);
V3(X = —64, Y = —40, Z = 16). These time courses have
C. Results been computed without oversampling, i.e., just by estimating

The top of Fig. 7 showg maps (thresholded & = 0.001 the amplitude of each HRF at evelyR. The bottom row of
corrected for multiple comparisons) superimposed on axialg. 7 shows the MAP HRF estimates in the same voxels. These
slices of averaged T1-weighted images, computed with SPM®8sults have been obtained from moglét ), that is discarding
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the influence of the trend and the baseline and taking the s$ime samples of the HRF) or shifted in time such that the start
datasets into account. We have also considered the same pfdhe HRF estimate can be chosen arbitrarily before the actual
variance for the three modeled hemodynamic responses. occurrence of the stimuli (for instance, a few seconds before).

Not surprisingly, Fig. 7(al)-(a2) proves that the stimulThis allows the user to check the influence of this constraint on
elicited very similar responses in Heschel gyrus (primathe HRF estimation.
auditory cortex,V;). The two other voxels were located in the The method can be extended in several ways:
planum temporale. Fig. 7(b1)-(b2) shows figy that there is  First, to reduce the bias on the error bars we could resort to
differential treatment when the stimuli differed, regardless ef second order Taylor expansion on the drift estimate as pro-
the type of difference (phonological or acoustic). By contragipsed for hyperparameters in [33]. This scheme needs an im-
Fig. 7(c1)-(c2) shows a specific increment for phonologic@ortant computational effort. Alternatively, the usual Bayesian
contrasts (speech processing). methodology leads to integrate the joint posterior distribution

The main error that appears on the ML solutions ip(h,l|y, M;8) overl. Further developments should be done to
Fig. 7(al)—(c1) concerns theemodynamicdelay, i.e., the develop the MMAP estimate and check its ability to provide
time-to-peak since the instant-matching error is alibRY/2. error bars that allow for the dispersion of the nuisance variables,
To circumvent this problem, the HRFs should also oversamplggparticular if a large number of nuisance variables is necessary
but this leads to an increased number of parameters and, thgsnodel drift terms as well as other additive effects of no in-
to unstable ML solutions. This situation, therefore, requiragrest. In this framework, a particular attention should be paid
regularization. to hyperparameter estimation. If an EM algorithm was consid-

ered to perform this step, tlewmpletedata should bey, h, [)
VIl. DISCUSSION and function@ should be defined by -

In this paper, we have described and tested a general methodg(o g v, M)
for estimating the hemodynamic response function in fMRI e

data. The method is general enough to deal with all specific = /logp(y7h7l|M§0)

features of fMRI data, including the ability to work on several . - .

sessions and several experimental conditions in the context of x p(h,lly, M;8%)dh dl

an asynchronous sampling in event-related paradigm. In addi- -g log holIM: 8 . g*
tion, our optimization scheme is sufficiently efficient to allow —THL [ng(g UM B)ly, M } '

large fMRI time series to be processed. Finally, physiologic
artifacts can be correctly taken into account, provided that th
are modeled with a small number of parameters (typically, fo

per session). This work has been implemented in e tained after a block matrix inversion that will be more expensive

toolbox? and mterfacec_i with the SPM99 software. than the computation of the covariance ma¥ijsee (5)] since
To our knowledge, this work presents the only comprehens%ee number of nuisance variablés = ¥;Q; would be larger

robust nonparametric estimation of the fMRI brain responseﬁg?an the number of HRF coefficientd (K — 1). On the other
atask or a stimulus. Applications of the technique are manifolﬁland since vectof would have a smaller siz;a the EM algo-
This approach should improve the observation of significa@i ' '

R‘Aaximizing Q would require the computation of terms sim-
fidr to (24), which could depend on the joint covariance matrix
EfHL of sizeM(K — 1)Q x M(K — 1)Q. This matrix is ob-

. . . . hm should converge in fewer iterations with a higher cost per
differences between the HRFs estimated for different stimy 9 9 P

g . . . : Lration.
within the same brain region. Using the HRF estimate to speci . . . __
. . Second, another interesting extension would consist in con-
asubject-dependegeneral linear model, we could address the

problem of the validity of the choice of the regres$é6sf such sidering a spatial model. Since the BOLD signal is known to

a model and may improve the localization of the signal (see [3@{5\/6 some spatial structure [36], estimation of the HRF over a

L : - “Tegion of interest should also provide a more robust estimation,
for a multivariate approach of this problem). In the domain g . ;
: . S : . : o as demonstrated by [37] who use a general prior on the spatial
fusion of information (in particular with EEG signals) it is also . .
xtension of the signal.

important to have such a robust estimate of the HRF, to investio " .
gate the relationship between metabolic and electrical measureTh'rd’ t_he model pr.esen.ted here assumes that the réSponse s
ments constant in time. While this assumption is reasonable in a first

Physiologically, the HRF should be zero-valuedat= 0. instance (as long as the ISIs do not decrease below about two

. ) . econds), it is likely that there exists some variations in time
However, in practice, one sometimes detects voxels where this

assertion is not true. The most common cause of this effHe to physiological or neural adaptation to the stimulus or task.

seems to be uncorrected stimulus-correlated motion. Since rj%]l':s IS ttr:] e'ts'u bJectt oftor;gom? trhesearch. ing f dif
tion correction in fMRI data is hardly perfect, it is often impor—f Olt” ’bl' 'St hotyetc ‘_Tarb' € resp(()jn_ses C(_)m:ng rom dit- It
tant to remove the zero constraint/at= 0. In the proposed erent Subjects can easly be averaged In a singlé response.

software, this constraint can be either changed to a less sty be that several subjects have too different brain responses
’ ch that the averaging of those signals would be difficult to in-

ent prior (for instance, the first-order derivative at the extremat - X . .
gent prior ( terpret. The extension of the method to deal with multisubject

13The HRF toolbox can be downloaded at the following URL site.data should be developed, although data can be analyzed at the

http:/Avww.madic.org/download/HRFTBX. same time using a different HRF per subject, with a generaliza-
14These regressors has been selected empirically so far. tion of model(M) that takes different noise variances across
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subjects into account. Such a generalization requires to ovBince the posterior pdfo(h|y,/\/i;5) is N(EMAP,E)-dis-
come the actual difficulties encountered in group analysis: thébuted, analytic calculations_give far

most salient ones consist in removing subject-dependent move-

ment artifacts and normalizing all subjects in the same space &;(I;) = )

reference. _ .
Lastly, we hope that this method can be the basis for somdtere, we would like to stress the separability property, ex-

work that would take advantage of the recent advance in jomtessed through (22)., that allows to think about a parallel update
recording of electrical activity at the surface of the scalp in th%f velct(;rsomH ' dfor ¢ € ﬂ\éf ! exlc;eptrl:orrbr.] Such a propertyf
MR scanner. In particular, using such (joint) recordings, it mdy =Y ts_ rolm Ir(no. e(M) an Ilm? les t ?;t gmﬁX|m|z?thn 0

be possible to partially retrieve the local field potential infor<Y | H 'S bloc “wise decogp ed or vectats F|_na Y. replacing
mation from the BOLD signal, which would provide a bettef OY itS value in (23), taking the first derivative @y, g with

/ . .
understanding of the neural computation well resolved in tinf§SPeCt @y z and equating to zero yields (14) and (15) for
and space. andry, respectively.

y, — P, — XiEMAPHZ +tr (X,2X7) .

APPENDIX Il

APPENDIX |
UPDATING Oy

DECOUPLING THECOMPLETE LIKELIHOOLD OPTIMIZATION
Vector § can be partitioned into two subvectofs g Fro_m the prior pdf (4) and the definition (20), functi@y
and #x which respectively control the conditional pdfdS defined by
p(ylh, M;8yg) and p(h; R,0y). The M-step of the EM _ _ M (0
algorithm can be divided into two simpler independent max@g (0}170;@ = —% Z log ), — (ZH)
imization problems. The complete likelihood which enters in m=1

the definition ofQ in (12) can be expressed as _% log det(R) (25)
p(y, hIM;0) = p(ylh, M; 8y )p(h; R,0m).  (18) .
For any set value of parameters veoigr define functions £ (0%y) =En [htR}{My?M?g}

Qy g and Qg as

~0 ~0
Qv By .0 ) =B [log p(ylh, M Oy(m)ly: 8| (19)

QH(gHjO; y) =E [logp(h; R.0w)|y: 50] . (20) (26)in (25) and taking the first derivative @y with respect to
. - 6’ allow us to find the updating (16).
It can be immediately deduced from (12) and (18) that function

Q can be expressed as ACKNOWLEDGMENT

Q(Y{EO; y) = Qv im (eymﬁo;y) + O (911,50;11) (21) The authors would like to thank the anonymous referees for
- - - B - helpful comments and remarks.
which shows that the M step of the EM algorithm can be decou-
pled into two operatigns: maximization %y i with respect to REFERENCES
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= (AMAPY RghMAT + tr (Rgy Ry)  (26)
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