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Abstract—This paper deals with the estimation of the blood
oxygen level-dependent response to a stimulus, as measured in
functional magnetic resonance imaging (fMRI) data. A precise
estimation is essential for a better understanding of cerebral
activations. The most recent works have used a nonparametric
framework for this estimation, considering each brain region
as a system characterized by its impulse response, the so-called
hemodynamic response function(HRF). However, the use of these
techniques has remained limited since they are not well-adapted to
real fMRI data. Here, we develop a threefold extension to previous
works. We consider asynchronousevent-related paradigms, ac-
count for different trial types and integrate several fMRI sessions
into the estimation.

These generalizations are simultaneously addressed through a
badly conditioned observation model. Bayesian formalism is used
to model temporal prior information of the underlying physiolog-
ical process of the brain hemodynamic response. By this way, the
HRF estimate results from a tradeoff between information brought
by the data and by our prior knowledge. This tradeoff is modeled
with hyperparameters that are set to the maximum-likelihood es-
timate using an expectation conditional maximization algorithm.
The proposed unsupervised approach is validated on both syn-
thetic and real fMRI data, the latter originating from a speech per-
ception experiment.

Index Terms—Bayesian estimation, ECM algorithm, event-re-
lated fMRI paradigm, HRF modeling.

I. INTRODUCTION

DYNAMIC brain functional imaging was born in the last
decade with functional magnetic resonance imaging

(fMRI) [1]. For one subject, an fMRI experiment consists of the
acquisition of a large number (100–1500) of three-dimensional
(3-D) volumes (for instance, voxels, i.e., volume
element) measuring in each voxel the BOLD contrast [2], which
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is related to the total amount of deoxygenated hemoglobin
present inthevoxel. The subject is submitted to an experimental
paradigm consisting of different conditions designed to study a
particular brain system (e.g. memory, language, vision), while
a continuous acquisition of brain volumes is performed. This is
called arun or sessionand lasts for approximately 5–10 min. A
session is generally repeated several times—typically between
three and seven—for a given subject.

This technique has allowed to detect and localize dynamic
brain processes for various stimulations or tasks [3] with a
high spatial resolution (of the order of a millimeter), but a
poor time resolution and a low signal or contrast-to-noise
ratio (CNR) so far. This makes the use of well-designed data
acquisition protocols necessary. Two classes of protocols can be
distinguished: block-designed and event-related experiments.
The latter has emerged as a means of observing the fMRI time
course in response to a single, very short stimulus (a trial) [1],
[4], while the former has better CNR and may require averaging
over many trials presented in close succession. Despite their
lower CNR, event-related paradigms are often inevitable,
for instance, to avoid habituation effects. In such paradigms,
random intermixing of trial types is used to eliminate habit-
uation, anticipation or other strategy effects [1] that might
occur in deterministicparadigms. Actual experiments consist
of eithersynchronousor asynchronousparadigms, depending
whether the onsets of the conditions are synchronized with the
data acquisition rate or not. Paradigms are often asynchronous
because the onset of the response can be given by the subject
himself (response after a variable reaction time).

The end goal of activation detection in brain functional
imaging experiments is to retrieve as much as possible of the
neuronal activity in response to cognitive or behavioral tasks
[3]. However, the relation between this activity and the BOLD
response [2] is not completely understood and still under study
[5]–[8]. The partially known mechanisms of coupling neuronal
(synaptic) activity to the vascular system produces significant
blurring and delay to the original neuronal response over time,
indicating that the BOLD sequence is heavily low-pass filtered
[5], [8]. As a consequence, hemodynamic events have time
scales of a few seconds, whereas neuronal events have time
constants of milliseconds. An accurate and robust estimate
of the brain hemodynamic response to a stimulus may be a
first step toward a better quantification of the brain neuronal
activity. In each region, the brain hemodynamic response can
be characterized in the first instance by the response function
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to a very short stimulus (the transfer function if the system is
linear), denoted as thehemodynamic response function(HRF).

Modeling the HRF has become an intensive topic of research
for many reasons. First, a precise modeling should lead to a
better understanding of cerebral activations. Second, within a
region, the signal variations between conditions or stimuli (such
as the magnitude of the response, but also its delay or width) can
only be studied with an accurate estimate of the response and of
its variability. Third, estimation of the HRF can be done at every
position in the brain in order to investigate its spatial variability.
Finally, some recent technological progress gives access to si-
multaneous recordings of electrical (electroencephalography)
and metabolic (fMRI) activities. For these reasons, the HRF
has been the subject of many studies that usually assume that
the brain system is linear and time invariant (LTI) [9]–[16]. Al-
though the question whether the brain response can be consid-
ered linear is not yet fully answered, it has been shown that this
assumption is a tenable and useful approximation [4], [10], [14]
and, thus, holds in the present work.

Parametric methods for estimating the HRF as a transfer
function of a LTI system appeared first in the literature [9],
[11]–[13]. These approaches impose the shape of the HRF
by choosing a particular function (e.g.,Gamma or Gaussian
density). Thenonlinearparameters of this function are fitted to
the data to take variations of the delay and blurring effects of
the HRF into account. Parametric models may introduce some
bias on the HRF, since it is unlikely that they capture the shape
variations of the HRF within the brain.

By contrast, recent works have introduced temporal prior
information on the underlying physiological process of the
brain hemodynamic response to accurately estimate the HRF
in a Bayesian framework. Such priors compensate for the lack
of information provided by the data [15], [17], [18]. These
techniques only apply to periodic orsynchronousevent-related
paradigms and are devoted to the estimation ofone HRF in
response to one condition or stimulus. They also deal with each
session separately and average the HRF estimates a posteriori
without taking fluctuations of physiological factors across
sessions into account. Hence, their use has remained limited
since they are not well-adapted to actual fMRI data.

The aim of this paper is to propose a threefold efficient gener-
alization of [15], [18]. First, we derive a temporally regularized
estimator of the HRF when shorter and jittered interstimulus
intervals (ISIs) are used, such as in asynchronous paradigms.
Second, we propose a simple extension that is able to cope with
mixed taskparadigms, in which mixed trial stimuli are presented
in a random order and in a rapid succession to one another. This
extension consists in estimating a HRF per trial type. Third, we
develop an estimation procedure that is able to simultaneoulsy
process all fMRI time series (all sessions or runs) recorded for a
subject in a given region. The specific treatment of each session
is important because noise characteristics (low frequencies) may
be different between sessions. We will show that this leads to
more accurate estimates and relevant error bars provided that the
drift terms are modeled with few parameters per session (typi-
cally three or four). Because these extensions require a signifi-
cant computational effort, we develop a powerful optimization
scheme that makes the computation fast enough (typically one

second for a single time series of 200 samples) for the analysis
of real data in an imaging center environment.

The rest of the paper is organized as follows. Section II starts
with the introduction of the LTI model of the HRF forsingle
trial asynchronous paradigms. Successive generalizations for
asynchronous multitrial multisessionparadigms are then taken
into account in a more complex badly conditioned observation
model. In Section III, we motivate our modeling choices and
derive the selected estimator for the HRF within the Bayesian
formalism. Since such an estimate depends on a few hyperpa-
rameters, Section IV adresses the problem of their tuning ac-
cording to the maximum-likelihood (ML) estimator. Section V
illustrates the performances of ourunsupervisedapproach with
synthetic data. The method is applied to a language comprehen-
sion fMRI study in Section VI. In Section VII, we discuss the
limits of applicability and possible extensions of the proposed
method.

II. M ODELING THE CEREBRAL HEMODYNAMIC RESPONSE

A. Notations

Throughout the paper, random variables and realizations
of thereof are respectively denoted by uppercase (e.g.,)
and corresponding lowercase (e.g.,) symbols; in addition,
notations such as are employed as shorthands for

, whenever unambiguous. Furthermore,
means that the parameter vectoris assumed unknown but
deterministic. The main notations used in the following are
summarized in Table I.

B. LTI System for Asynchronous Paradigms

In event-related protocols with synchronous ISI, the BOLD
fMRI time course is measured in any voxel of the
brain at times , TR being the time of repe-
tition, while stimuli occur with a fixed-delayed impulse signal

. This means that the sampling period is equal to TR
when the stimuli occur only at times of acquisition. The HRF is
then modeled as the convolution kernel of a LTI system [9], [15],
[18].

In asynchronousexperiments, the presented stimuli occur at
any time during scanning. In such cases, we propose to put the
data and the trials on a finer temporal grid, which has to be
defined such that(i) the time occurrences of the stimuli
are defined on this grid, and that(ii) two stimuli do not occur
at the same time. Let be the sampling period of this grid.
Our strategy consists in approximating the true onsets by their
closer neighbor on this grid. This very simple procedure can be
seen as a zero-order interpolation and generates what is called
in the following aninstant-matchingerror. Let the time
occurrences of the stimuli on this finer grid. Accordingly, the
HRF has to be estimated with the same temporal resolution:

for (1)

with and
. Note first that the number of unknowns,
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TABLE I
LIST OF NOTATIONS

i.e. , may be dramatically larger than its counterpart in
the synchronous case and second, that oversampling of the data
is not required. is the th sample of a zero-mean Gaussian
white noise process of unknown variance , indepen-
dent of . Such a hypothesis may seem restrictive since it is
well-known that fMRI time series are correlated in time [19].
Nonetheless, as shown in [18] various noise correlation struc-
tures have little influence on the performances of the estimation.
The same result has also been emphasized in [20], where the au-
thors analyze the influence of the colored nature of fMRI noise
on theaveragebias of the HRF estimate. Alternatively, one
could estimate the temporal covariance structure of the noise
with an autoregressive model, as done in [21].

In real neuroimaging experiments, the fMRI raw data are con-
taminated by a low-frequency drift mainly due to physiological
artifacts [22]: breathing and cardiac pulses are aliased since the
sampling frequency of the data is below Nyquist’s bound. Thus,
these physiological factors introduce some low frequency fluc-
tuations. A high-pass filter is generally used to remove those
trends before estimating the HRF. In this study, we simultane-
ously estimate the HRF and the trend with the following model

(2)

where defines the binary onsets matrix.
Matrix consists of an orthonormal basis of
functions modeling the low fre-
quencies (e.g. a one dimensional discrete cosine transform). The
number of basis functions depends on the lowest frequency

attributable to the drift term and can be defined as
, where “ 1” stands for the mean (constant

term) and is the integer part operator. Matrix can also take
any covariate of no interest into account, supposed to influence
the signal intensity in a linear way. Vector defines the
unknown weighting coefficients of the basis functions, called
nuisance variablesin the following.

C. Asynchronous Multitask Paradigms

We further extend (2) to allow for a different HRF estimate
for different trial types (e.g.,different stimuli or conditions). Let

be the different trial-dependent matrices, each
of them being defined as the previousmatrix, and then sup-
pose that the HRFs add in alinear way. Such an extension
requires to correctly define the oversampling periodas the
smallest sampling interval that allows to separate the two closest
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events, whatever their type. For the sake of simplicity, let us de-
fine

from which model (2) is able to cope withasynchronous multi-
taskparadigms.

D. Multisession Likelihood

As previously mentioned, the experimental paradigm is re-
peated several times for a given subject, leading to a few ses-
sions of about 200 to 1000 data each.

It is generally assumed that the HRF remains approximately
constant provided that all the exogenous parameters (voxel,
task, subject) are fixed. Accordingly, the same vectoris
sought from the available fMRI times series, say , of
respective length , so that a specific matrix is involved
for each session. In addition, it seems relevant to select a
session-dependent value ofand possibly for the definition
of since the physiological factors (breathing
and cardiac rates) fluctuate throughout the sessions. Hence, the
multisession extension of (2) is given by

for

Model calls for two comments.
First, it relies on the following assumptions about noises:

• the mean of (i.e.,the baseline of ) may vary across
sessions. This variation is captured by the constant column
of matrix .

• the variance of is supposed constant across the sessions
for the sake of simplicity. In Section V, it will be shown
that the proposed HRF estimate remains robust with re-
gard to departures from this hypothesis. There is no theo-
retical limitation preventing us from introducing a specific
variance for each session. Nonetheless, we advocate the
use of the same unknown variance for all sessions on the
same subject since we observed on our data that the major
fluctations occuring in real data are rather due to physio-
logical variations (modeled by session-dependent trends)
than to some modification of the noise scaling.

Second, model allows to introduce more information than
model (2), through the introduction of new independent data.

To estimate and make inferences about the hemodynamic re-
sponse, we first need to take model into account through
the definition of the likelihood function. For the sake of concise-
ness, let us introduce the following notations:

where the diag operator is used to defineas a block-diag-
onal matrix. From these assumptions, the likelihood of the asyn-
chronous multitrials multisession model is given by

(3)

where .
The number of parameters still remains large so that least

squares estimation is unreliable when is ill-con-
ditioned (the variance of the fitted parameters is too large). A
straight application of the inversion lemma for block matrices
provides a necessary and sufficient condition: this block-matrix
is invertible and well-conditioned if and only if the inverse of

exists and
is well-conditioned.1 Note that such a matrix can be ill-con-
ditioned even if is well-conditioned. The limiting case,
corresponding to the underdetermination of model , can be
reached if is too low or too large.

III. I DENTIFICATION OF THE HRFs

Since the information provided by the data may not be suffi-
cient to derive a robust HRF estimate, we introduce some con-
straints on the temporal structure of the HRFs that correspond
to some available physiological prior knowledge. The proposed
HRF estimate will result from an appropriate tradeoff of both
types of information (data-driven and prior).

A. Prior Information

Following [15], [18], we introduce temporal prior informa-
tion within the Bayesian framework. As physiologically advo-
cated in [5], each HRF is characterized by the following fea-
tures:

1) Its amplitude is close to zero at the first and end points.
As a matter of fact, the HRF is causal, hence,
should be zero for and . This means
that the stimulus at time should only have influ-
ence for . Similarly, the influence of an ac-
tivation should vanish in the past, implying that the
filter parameters should tend to zero for large delays

.
2) Its variations are smooth.
3) Prior statistical independence is supposed to hold

between stimuli and, thus, between HRFs. In addition,
each HRF may be related to an underlying physi-
ological process having its own dynamics (specific
time-to-peak and dispersion of response).

1LetAAA 2 IR � IR be an invertible matrix, then(AAA) = (AAA ) if Cond
stands for the condition number [23].
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Condition 1) is easily introduced by redefining vectors
and for the th session and all , setting the first
and last parameters of to zero

The likelihood function (3) remains unchanged with
and

for the th session.
Quantification of condition 2) is achieved by setting a

Gaussian probability density function (pdf) for
. We have chosen for the prior

covariance where is the truncated second-order finite
difference matrix in order to fullfil constraint 1)

...
...

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . .

...
. . .

Since is of full rank, defines a proper prior.2

For model , condition 3) may be taken into account by the
following pdf:

(4)

where stands for the hyperparame-
ters of the prior model and

diag

This prior model clearly favorssmoothresponses, since for each
condition it amounts to minimizing , i.e., the discrete
approximation of the second-order derivative of . We note
also that the sampling period is integrated in the definition of
the prior variances and that introduction of different param-
eters for different HRFs allows to model specific dynamics
for each condition.

B. Modeling Choices and Error Bar Computation

Our HRF estimation technique is a two-steps operation,
which first consists in jointly estimatingand in the ML sense
(see details in Section IV) before substituting the estimates
for the true values in in order to compute its
maximizer. In the first step, we assume that the drift parameters

as well as hyperparameters aredeterministic.
We motivate this choice below.

It does not seem to us that considering the drift terms as
random variables would allow the addition of significant infor-
mation because we have rather poor prior knowledge at hand.

2The pdfp(hhh;RRR; � ) is said to be proper if p(hhh;RRR; � )dhhh <1.

Therefore, a reasonable prior on those would have been unin-
formative or even improper. Moreover, in Section V-E we argue
that with a small number of nuisance variables (i.e.,when
is small, typically ) and a standard noise level, we
are able to accurately estimate these parameters and be reason-
ably confident in the variability of our HRF estimate. In other
words, when we substitute for , the extra source of error
on still is small. The same holds for hyperparameters.
It follows that the most important quantityis estimated from
the maximuma posteriori(MAP) the maximum of the posterior
distribution . The Bayes rule ensures the fusion
of the likelihood (3) and the prior (4) into the Gaussian posterior
distribution of given ( , , ), from which we can derive the
MAP estimate

(5)

The influence of this choice of model should have limited
impact on the estimation of. However, the influence on the
error bars of might not be negligeable. As we would
like to assess the error made on , we focus on the mar-
ginal posterior pdf . As expected, this pdf is

—distributed with , the th diagonal block of
. The marginal error bars can then be derived from the stan-

dard deviations , that are given by
the square roots of the main diagonal of . Although slightly
underestimated, such error bars provide a good approximation
of the range of variation of . Note that these error bars are
created for pointwise inference and appropriate only for a single
preselected time sample since the search over all time samples
requires to analyze the posterior covariance matrix, which
cannot be easily represented on the same graph as.

C. Equivalence With the Marginal MAP Estimate

Under technical conditions, we show that our HRF estimate
is a valid approximation of another Bayesian estimate that

takes all fluctuations ofinto account. This solution corresponds
to the maximizer of themarginalpdf

(6)

where is assumed to be random. Using Bayes rule, the marginal
posterior pdf rereads

(7)

In the absence of relevant prior information about, a flat distri-
bution is considered for leading in (7) to

. Assuming that is peaked enough, we
may write , where is
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the ML solution computed by our approach (see details in Sec-
tion IV). If this hypothesis is fullfiled, the marginal distribution
(6) is, thus, approximated by

(8)

Therefore, our approach amounts to computing pro-
vided that . In Section V-E, we discuss
the validity of this assumption.

IV. HYPERPARAMETERS ANDNUISANCE VARIABLE

ESTIMATION

This section focuses on the automatic tuning of hyperparam-
eters and nuisance variables. This part starts with an intro-
duction to the ML principle and then examines a well-adapted
way to tackle the underlying optimization problem.

A. ML Principle

ML estimation for hyperparameters is a very common pro-
cedure, which is currently used in various fields of signal and
image processing when dealing with a small number of un-
known but deterministic hyperparameters(see, for instance,
[24] and [25]). The underlying reason that makes this approach
feasible and attractive is that there is a large number of data
to estimate (, ) accurately. Similarly to [15], we select the hy-
perparameters and nuisance variables by maximization of their
likelihood , obtained from the joint pdf of ( , )
after integration over the parameters

(9)

with3

The ML estimator , ) of ( , ) minimizes

(10)

Computation of , ) is a complicated nonlinear opti-
mization problem of several variables. First, we must resort to an
iterative optimization scheme because of the nonquadratic be-
havior of ( ). Second, since is not con-
cave with respect to (, ), there may exist several local minima.
Therefore, the hyperparameters and nuisance variables given by
any deterministic algorithm depend on the initial values. In the
next subsection, we propose to resort to a variant of the expecta-
tion-maximization (EM) algorithm to avoid direct optimization
of (10).

3In these definitions, every matrixPPP is supposed to haveQ = Q columns
8i 2 IN . If such a choice turns out to be inappropriate, the definitions of matrix
P and vectorl should be revisited, by zero-padding matricesPPP and vectorslll
that do not have the maximal number of components, i.e.,max Q .

B. EM-Based Strategy

For notation compactness, let us denote .
The EM algorithm, introduced by [26], is a general iterative
method which ensures the increasing of the likelihood function

of a parameter vectorgiven observations at each

iteration. Starting from an initial value , a series of succesive

estimates is generated by alternating the following two
steps:

(11a)

(11b)

where function is defined as

(12)

being an auxiliary random variable whose practical role is
to make thecompletelikelihood easier to com-

pute than the original one . Following [27], parameter

vector can be partitioned into two subvectors
and which respectively control the condi-
tional pdfs and . Then, as shown
in Appendix I, the M-step (11b) can be divided into two oper-
ations: maximization of with respect to and max-
imization of with respect to (see (19) and (20) for the
definitions of and , respectively).

In the present case, detailed examination of the maximization
of with respect to shows a tricky problem: thejoint
maximization with respect to and , required by the defini-
tion (11b), cannot be performed since the updating step of
strongly depends on. Nonetheless, the M-step (11b) can be re-
placed by aconditionaloptimization strategy that reads

(13)

The variant (13) is known as theexpectation conditional max-
imization, (ECM) [28]. It is actually a subclass of generalized
EM algorithms that are more broadly applicable than EM but
share its desirable convergence properties.4 Therefore, we resort
to ECM for function . Hereafter, we provide the updating
equations of ECM for the estimation of and .

C. Re-Estimation Formulas for

The present M step of ECM is performed by searching an
optimal parameter of at a time, say , given by (13)
or equivalently by the solution of . This
procedure is repeated for all parameters belonging to . As

4The EM algorithm converges monotonically to a stationary point of
p(yjM; ���) if Q(���; ��� ; y;M) is continuous in both��� and��� [26], [29].
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shown in Appendix II, the computation of the optimal nuisance
variables can be parallelized since

(14)

Taking the new estimates and all the available datasets into
account,5 we get for the noise variance

(15)

where functions are defined by (24) (see Appendix II). As
it appears in (24), updating bothand requires the compu-
tation of . Strictly speaking, this estimate is given by the
solution of a linear system without explicitely computing matrix

. Nonetheless, the latter matrix is needed for settingand is,
thus, computed before updating.

D. Re-Estimation Formulas for

The M step of the ECM algorithm with respect to is actu-
ally identical to a M step of the standard version of EM since all
the parameters belonging to can be simultaneously updated.
As previously derived, the optimal parametersare given by
the solution of that is (see Appendix III for de-
tails)

if

otherwise.
(16)

Finally, the successive steps of ECM are summarized in
Table II.

As to numerical implementation of ECM, the following con-
junction has been selected as stopping criterion:

where denotes the solution at theth iteration of the mini-
mization stage and the thresholds have been set to

.
Sections II–IV have allowed us to designunsupervised non-

parametric estimatesof the HRF at a given voxel of the brain,
depending on the trial type and the subject under study. More-
over, we have provided uncertainty measures on this estimation
to be able to quantify the confidence we may have in the re-
sults. Hereafter, we demonstrate the accuracy and robustness of
the proposed estimates, first on simulated datasets, and finally
through an experimental fMRI paradigm.

5Since a constant noise variance has been assumed throughout the sessions.

TABLE II
ECM ALGORITHM FOR HYPERPARAMETERS ANDNUISANCE

VARIABLE ESTIMATION

V. SIMULATIONS RESULTS

The first part of this section is a Monte Carlo study that com-
pares the statistical properties of the ML and MAP HRF esti-
mates (summarized in Table III).

In the following simulations, the CNR is defined as the ratio
between the -norm of the HRF and the standard deviation
of the noise6 :

CNR

To provide a single CNR value for time series containing several
HRFs with different shapes, we simply average the CNR of each
response. The CNR is taken in the range of observed CNR in
fMRI data.

The rest of this section emphasizes the performances of the
MAP estimator and focuses on the following topics, specific to
our extensions:

• Effect of oversampling, whether it is relevant to choose a
HRF sampling period for lower than TR, the sam-
pling period of the data (see Section V-C). For this topic,
we have chosen a high CNR to rigorously quantify the in-
stant-matching error.

• Successive improvements when allowing for trends and
when processing several sessions at the estimation stage
(see Section V-D). For this investigation, we have consid-
ered a higher noise level to better highlight the improve-
ments brought by the multisession method on the average
bias and variance of estimation of the HRF. In addition, a
session-dependent drift term, similar to the one observed
in fMRI data, has been added to quantify the gain that we
can achieve when modeling these fluctuations.

• Validity of the error bars on the HRF estimates (see Sec-
tion V-E).

• Robustness of the HRF estimate to departure from the hy-
pothesis of equal noise variance across sessions (see Sec-
tion V-F).

• Influence of overparametrization, i.e., when too many
HRFs have been modeled and estimated compared with

6The CNR is sometimes defined as the ratio between the magnitude of the
peak signal change and the standard deviation of the noise. However, the peak
value is no longer a good descriptor of the entire signal when different HRF
shapes are considered.
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TABLE III
SIMULATION PARAMETERS FORFOUR DIFFERENTDATASETS

the number that are actually present in the voxel under
study (see Section V-G). For this purpose, favorable
experimental conditions have been chosen.

Each of these topics is analyzed using synthetic data. The pa-
rameters of the simulation have been chosen to be compatible
with experimental conditions usually encountered, as explained
now.

A. Common Procedure for Generating Simulated Datasets

For each session, we have first simulated arandom-inter-
mixedsequence of indexes coding for two different event types

. Each index corresponds to a specific stimulus. Unless
otherwise specified, the timing of the trials is random, since the
ISIs between successive trials follow a uniform distribution on
[2.5, 3.5]. This might not be optimal for ML estimate. However,
an optimal design for the estimation of the HRF will not be op-
timal for signal detection [20] and we have, therefore, chosen
a tradeoff that is generally considered in neuro-imaging exper-
iments. To investigate the influence of the experimental design
on the behavior of the ML and MAP HRF estimates, we com-
pare the statistical properties of the solutions computed for 1) an
event-related paradigm (low detection efficiency and good HRF
estimation [20], [30]) and 2) a block design (high detection ef-
ficiency and poor HRF shape estimation [20], [31]) at the same
noise level.

While the optimization of the design parameters is out of the
scope of this work, these two settings contrast two opposite sit-
uations from the HRF estimation/signal detection point of view.
The reader interested by the optimization of experimental de-
sign may refer to an excellent survey [32] (and references quoted
therein), which also introduces a stochastic framework based on
genetic algorithms7 to optimize a fitness measure of the experi-
mental design wrt several parameters (detection efficiency, HRF
shape estimation, counterbalancing of events,).

The onsets of the trials are put together on the same temporal
grid using s for sampling period. This step simply
requires to move the onsets to the nearer time points on the
grid.

Each binary time series coupled to a stimulus is then con-
volved with a specific HRF, or , whose exact shapes are

7These tools are available at http://www.lsa.umich.edu/psych/re-
search\&labs/jjonides/download.html.

plotted in Fig. 1 for instance. is the canonical HRF used by
the SPM99 software,8 whereas is chosen as an extreme ex-
ample of a very peaky HRF. The true HRFs used in the following
subsections are similar up to a scaling factor, leading to different
values of the CNR at a given noise level.

A white Gaussian noise of variancehas been added to the
data, as well as a session-dependent low-frequency drift, which
was generated from a cosine transform basis which coefficients

were drawn from a normal distribution. The amount of low
frequency signal was tuned to be significant: we have checked
for each session that the ratio between the quadratic norm of the
drift components and the quadratic norm of the drift-free
data was no less than 50%. We stress here that the
events are well distributed over time such that collinearity with
the low frequency signal is unlikely.

Number depends on the chosen cutoff-period for the drift
term present in session. For instance, the selected parameters
in row number 3 of Table III leads to . The data are then
obtained after undersampling the sequences at a rate,
the inter-scan interval being . Note also that the length
of the datasets varies across sessions.

B. Statistical Properties of the Map Estimate

We assess the statistical properties of the ML and MAP esti-
mates through a Monte Carlo study in the finite and asymptotic9

data cases. The ML solution can be derived from (5) by setting
. In particular, we first outline the bias-variance

tradeoff, which is intrinsic to Bayesian estimation in the finite
data case and illustrate the asymptotic convergence of the MAP
estimates to the true HRFs.

To obtain an approximation of the bias for the ML and MAP
estimates, we have first computed theaveragesolutionover

realizations of the noise process

8www.fil.ion.ucl.ac.uk/spm/spm99.html.
9There are generally two asymptotic situations. The first one occurs when the

number of dataN ! +1 whereas the second one amounts to increasing the
CNR in order to characterize an estimator with noise-free data. Here, we have
investigated the second case. Nonetheless, both situations are equivalent in our
approach since hyperparameter� = r =� is automatically tuned from the data.
This means that whenCNR! +1,�! 0, which amounts to overweighting
the likelihood term.
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Fig. 1. Average HRF estimates overJ = 100 drawings of the noise distribution in the case of synchronous paradigm(�t = TR = 1 s) and for a low CNR
value. (a)-(d): ML HRF estimates. (b)-(c) and (e)-(f): MAP HRF estimates computed withconstant(b)-(e) andadaptativeprior models (c)-(f). Solid and dashed
lines representhhh andhhh , respectively. Fine and thick lines code for true and HRF estimates, respectively. In addition, the time samples ofhhh andhhh are marked
with ? and , respectively.

The estimation variance of the MAP and ML solutions is then
approximated using

It follows that the quantities of interest, i.e., the mean square
error for any HRF can be computed using

The global MSE (gMSE) is then obtained after averaging over
all time points

To remove theinstant-matching error, we have considered syn-
chronous paradigms. The onsets of the stimuli and the data are
defined on the same grid with . The ML and
MAP estimates are now compared for low and high CNR values
(see Table III).

1) Low CNR or “Finite Data” Case: Fig. 1 shows the
average HRF estimates computed both for the ML and MAP
strategies. As it clearly appears on Fig. 1(a), the ML solution
is unbiased. The pointwise error bars that are depicted on
Fig. 1(a) have been computed as the square roots of the vari-
ance of estimation . The average solutions depicted in
Fig. 1(b), (c) correspond to the MAP estimates computed either
for a constantprior model ( and have the same prior
variance: ) or for anadaptativeprior model .
These average time courses illustrate the well-known intrinsic
bias-variance tradeoff that appears in Bayesian solutions in
the finite data case: the MAP solutions are biased but less
variable than the ML estimate (their error bars, computed
from , are lower). To measure the gain brought by
Bayesian methodology, we use the MSE and the summarizing
index gMSE. We also note that has been taken as an extreme
example of HRF since it is much more peaked than the usual
response, better represented by.

To emphasize the role played by the experimental paradigm
in terms of bias-variance tradeoff, the same quantities have been
computed for the block design and the results are depicted in
Fig. 1(d)–(f). For the ML estimate plotted in Fig. 1(d), choosing
a block design rather than an event-related one generates an in-
crease of the variance of estimation and a slight bias. For the
MAP estimates [Fig. 1(e)-(f)], the variance remains roughly
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Fig. 2. Mean square error computed onhhh in (a), (c) and onhhh in (b), (d).
Solid lines depict the MSE value for the ML estimates. Dash-dotted and dashed
lines give the MSE values for the MAP estimates computed with constant and
adaptative prior models, respectively.

constant but the bias significantly increases compared with the
event-related situation. To summarize, working with a poor de-
sign for HRF estimation amounts to decreasing the CNR both
for ML and Bayesian procedures.

Fig. 2(a)-(b) provides the corresponding MSE over all time
samples for and , respectively. Fig. 2(a) shows that the
MSE is always lower for the MAP solutions when dealing with

. The MAP estimate computed with an adaptative prior model
has a larger bias around the peak but a lower gMSE compared
with ML as reported in Table IV. By contrast, Fig. 2(b) shows
that both MAP solutions have a larger MSE around the peak of

even if the adaptative prior model allows to significantly re-
duce this error. As shown in Table IV, the MAP estimates still
remain more attractive than the ML solution since their gMSE
is always lower. It is also important to compare both MAP esti-
mates and to note that the adaptative prior model provides better
solutions in terms of gMSE at the expense of the computational
cost (twice more expensive).

The MSE has also been computed for the block design ex-
periment. As illustrated in Fig. 2(c)-(d) as well as in Table IV,
these results show the significant increase of the mean square
error both for the ML and MAP estimates, but more importantly
for the ML solution. To conclude, the designer of the paradigm
should carefully select the objective function to be optimized ac-
cording to the underlying question (detection HRF estimation)
[32].

2) High CNR or “Asymptotic” Data Case:Fig. 3(a) shows
the average ML estimates in the nearly noise-free case. As illus-
trated, the ML estimate remains unbiased and isasymptotically

TABLE IV
GLOBAL MSE OF THE HRF ESTIMATES COMPUTED BY ML AND

MAP METHODOLOGIES

Fig. 3. Average HRF estimates overJ = 100 drawings of the noise
distribution in the case of synchronous paradigm(�t = TR = 1 s) and for
a high CNR case. (a): ML HRF estimates. (b): MAP HRF estimates computed
with a constant prior model. Solid and dashed lines representhhh and hhh ,
respectively. Fine and thick lines code for true and HRF estimates, respectively
but cannot be distinguished at this level of CNR. The time samples ofhhh and
hhh are marked with? and , respectively.

consistentsince its estimation variance tends to zero. The av-
erage MAP estimates computed with a constant prior model10

are plotted in Fig. 3(b) for comparison. As shown on this figure,
there is a strong evidence that the MAP converges to the true
HRF too, so that our solution isasymptotically consistent. It
should be stressed that such a result is a direct consequence
of the automatic tuning of the hyperparameters. Indeed, if

was kept constant (as in supervised estimation) the MAP
estimate would be biased when the noise variancedecreases.
Since when , the weight of the prior model tends
to vanish, so that asymptotically the MAP estimate identifies
with the ML solution. As reported in Table IV, the gMSE index
provides similar results for both estimates.

C. How to Choose the HRF Sampling Rate?

The present simulation addresses tradeoff between the bias
and computational burden depending on the chosen sampling
period given and TR. Here, we have considered a suffi-
ciently high CNR to be able to assess the statistical properties
from one single realization of the noise process.

Since the onsets of the trials occur with a temporal resolution
of seconds, they are not synchronised with the data. Our aim

10The MAP solution computed with an adaptative prior model is not reported
here since it provides the same average time courses.
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Fig. 4. HRF estimates for synchronous asynchronous estimation technique.
Top row: HRFs computed using�t = TR (a) and�t = TR=2 (b). Bottom
row: HRFs estimated using�t = TR=4 (c) and�t = TR=8 (d). Solid and
dashed lines representhhh andhhh , respectively. Fine and thick lines code for true
and HRF estimates, respectively. The time samples ofhhh andhhh are marked
with ? and , respectively.

is to determine the optimal oversampling period. This op-
timal value should be able to control the instant-matching error
in the estimate, and help us to best set the tradeoff between bias
reduction and potential variance increase.

Here, we have tested the single session asynchronous model
(2), in which the drift component has been discarded. In addi-
tion, we have imposed identical prior variances .

Fig. 4 shows a qualitative comparison between and
models when dealing with asynchronous paradigms.

The influence of the oversampling period appears clearly: the
closer is to , the less biased the estimate is.

We have quantitatively checked this result measuring the
quadratic error and themean standard deviation of the
HRF estimates with

(17)

For that fits well with the prior model, both criteria and
decrease with , even when the sampling period goes

below (see Table V). By contrast, for , decreases
until and increases for lower values, as
reported in Table V. Therefore, selecting a sampling period
under does not really improve the accuracy and
robustness of the global estimate . These results are also
obtained for lower CNR values.

Choosing leads to an increase of the computational
cost. More precisely, the results of Fig. 4(a)–(d) where the CNR

TABLE V
QUADRATIC ERRORE AND MEAN STANDARD DEVIATION S OF THE MAP

ESTIMATES COMPUTED FORDIFFERENTVALUES OF�t

is high have been obtained in 0.03, 0.08, 0.33,and 3.1 s, respec-
tively, on a Pentium IV 1-GHz. Decreasing the CNR induces a
slower convergence, but for , the HRF estimate is usu-
allly computed in about one second for a dataset of 200 samples.
The computational burden is, therefore, low enough to make this
approach feasible for several hundred time series (voxels or re-
gion of interest).

Moreover, choosing compared with larger values
leads to a better estimate of the noise variance. This is likely
to be due to the fact that some data variance may be introduced
by the undersampling step.

Finally, we note that the hyperparameters ( , if
, , or otherwise) automatically adapt

to the level of discretization. In the simulation performed for
different sampling periods, we have checked that
(or ) is approximately satisfied.

D. Improvements Brought by Successive Models

The goal of this section is to classify the performances of
the HRF estimates for the models that have been successively
designed in Section II, in terms of quadratic error and variance
reduction.

1) the influence of modeling drift terms in (2);
2) thesession-dependentmodel (2), where each HRF is esti-

mated from each session (before a possible averaging step
over the sessions), compared with themultisessionmodel

, where each HRF admits a single estimate derived
from the whole set of sessions.

a) Comparison of rows 1–3 and 2–4 of Table VI proves that
the quadratic error of the HRF estimate diminishes when mod-
eling a drift component (more significantly for ): the criterion

is smaller when the nuisance variables are jointly estimated.
The variance reduction or the decrease ofis rather marginal,
probably because the number of unknown parameters is larger
when a trend is modeled with a constant number of data. These
improvements are emphasized when dealing with multisession
estimation. Fig. 5(b) illustrates the gain in robustness brought by
model , which takes a session-dependent drift into account,
compared with the results when the drift has not been modeled
in Fig. 5(c). Quantitative results reinforce these improvements,
as shown in rows 7–8 of Table VI.

b) Rows 5–6 of Table VI as well as the comparison of
Fig. 5(a)–(c) shows that multisession modeling has a greater
influence on the accuracy of the HRF estimates than the consid-
eration of nuisance variables in the model. Assuming stability
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TABLE VI
QUANTITATIVE ASSESSMENT OF THEHRFs ESTIMATED BY THE SUCCESSIVEMODELS OFSECTION II

Fig. 5. (a),(b): comparison of the HRF estimates computed fromoneversusfour sessions, respectively when the low frequency drift included in the data is
modeled withQ = 4 nuisance variables for each session. (b),(c): comparison of drift modeled (b) and drift not modeled (c) for HRF estimates computed from
four sessions. In all cases, we have considered the adaptative prior model(� 6= � ).

of the HRFs across sessions in a given voxel actually allows
to bring more information and, therefore, leads to a significant
bias reduction and a slight variance decrease. The variance
reduction is even greater on data without drift component
(results not shown). Nonetheless, the drift embedded in the
data being random and session-varying, thevalues reported
in Table VI do not go down when a session-dependent drift has
not been modeled. Comparison of Fig. 5(a)-(b) demonstrates
the relevance of the HRF estimates computed from all available
datasets .

E. Validity of the Error Bars

A concern is to know whether the approximation leading to
(8) has a good chance to be satisfied. This approximation is at
the origin of the variance underestimation of . Our argu-
ment is that with a small number of drift parameters compared
with the number of data (when is small enough) and a
standard CNR our approach provides an accurate estimate of
the nuisance variables such that the extra source of error related
to these parameters should be negligeable. Such cases are re-
alistic and occur when , for instance when the
lowest frequency is 1/120, and we
can choose . Consequently, we are interested in quan-
tifying the bias on the variance estimate provided by our ap-

proach. To achieve this goal, we performed several Monte Carlo
studies11 in which we analyzed the influence of the number of
nuisance variables ( and ) as well as the the
noise level ( as in Section V-D and )
on the estimation variance of. The drift terms were held to
the same value for a complete run. First of all, we checked that
our estimate is unbiased. For a small number of drift terms
( , ) and a standard CNR ,
the standard deviation of our nuisance variable estimatewas
no larger than 3% of the maximal amplitude of the drift. This
analysis only gives the behavior of our estimate, but even
indirectly, the dispersion of is related to the computed error
bars on . In such cases, our approach essentially provides
an accurate approximation of the dispersion of at low
cost.

When increasing the noise level or multi-
plying the number of nuisance variables ( ,

), we observed that the standard deviation of was at least
multiplied by three. In these more difficult cases, the solutions

and are close to each other but the main differ-
ence is that the error bars derived on will be underesti-
mated since they will not be able to capture the dispersion at-

11J = 10 realizations of the noise have been drawn to accurately estimate
the dispersion of the nuisance variable solutionl .
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Fig. 6. Testing for the robustness to the equal noise variance hypothesis. (a)-(b) HRFs estimated from a single session where the Gaussian noise has for variance
r = 0:08 andr = 0:3, respectively. In (c), the HRFs have been estimated from both sessions with model(M), that is assumingr = r .

tributable to the drift terms. In other words, the estimation vari-
ance of is not taken into account in . Hence, we should
compute and the marginal posterior covariance matrix

12 to remove the existing bias on our error bars. These devel-
opments are beyond the scope of this paper (see Section VII).
We, therefore, limit the field of applicability of our technique to
small number of nuisance variables and reasonable
CNR (roughly ).

F. Robustness to the Equal Noise Variance Hypothesis

We are also interested in testing the robustness of the HRF
estimate to a departure from the hypothesis that the noise is con-
stant across sessions. For doing so, we have considered two ses-
sions with respective noise variances and

. We stress here that is an extremely high noise
level, not found in actual datasets but used to emphasize the ro-
bustness of our approach in a multisession framework.

As shown in Fig. 6(a) and as expected, the HRF estimates are
closer to the original ones when the noise level is low. Fig. 6(b)
demonstrates that increasing the noise variance provides over-
smoothed results and stresses the limits of the prior model for
such low CNR values. Moreover, small error bars that are visible
in Fig. 6(b) result from overconfidence in the prior. In this ex-
tremely noisy situation, the problem discussed in Section V-E is
amplified. Here, this variance underestimation concerns the hy-
perparameters and is due to the large uncertainty on the hyperpa-
rameter estimates. With a more important computational effort,
this uncertainty could be computed using the methodology de-
rived in [33]. The opposite result would be observed in the stan-
dard ML framework, where the higher the noise level, the larger
the error bars. Note also that the noise variance is better esti-
mated when the CNR is not too low. Finally, the HRFs plotted in
Fig. 6(c) have been computed from both available datasets, as-
suming they have been generated with the same noise variances,
since this assumption holds in model . Clearly, Fig. 6(c)
shows that the proposed technique remains robust with regard to
some departures from this hypothesis. In other words, the mul-
tisession approach provides better results than the session-de-
pendent technique, even with session-varying noise levels.

12Given by the left superior block of the joint covariance matrix� of size
M(K � 1)Q �M(K � 1)Q.

G. Overparametrization of the Number of HRFs

Here, we have used two trial types: one generating the peaked
HRF , depicted in Fig. 5 for instance, and one yielding no re-
sponse (zero function). Two different HRFs were modeled at the
estimation stage. The question addressed here is whether mod-
eling the nonexisting function as a HRF influences bias and vari-
ance of the estimate of . Indeed, it is well known in the ML
framework that, the larger the number of unknowns, the higher
the variance of estimation. Simulations (not reported here) show
that inclusion in the model of auncorrelatedandnonexistant
HRF does not have any influence on the estimation of the ex-
isting HRF, whatever the noise level.

Note that it is also possible to design a statistical test either for
assessing whether an estimated HRF is zero or not ,
or for comparing both estimates , since the sum
of squares of the difference between and follows a
distribution (see [34] for details).

VI. EXPERIMENT

A. MRI Parameters

The experiment was performed on a 3-T whole-body system
(Bruker, Germany) equipped with a quadrature birdcage radio
frequency (RF) coil and a head-gradient coil insert designed
for echoplanar imaging. Functional images were obtained with
a -weighted gradient echo, echo planar imaging sequence
( , ms, FOV mm , ma-
trix ). Each image, acquired in 1.3 s, comprised 22
4-mm-thick axial slices covering most of the brain. A high-res-
olution ( mm) anatomical image using a 3-D gra-
dient-echo inversion-recovery sequence, was also acquired for
each participant.

B. Description of the Paradigm

The method was assessed on real data acquired in a speech
discrimination experiment. The experiment consisted of six ses-
sions comprising 100 trials lasting 3.3 sec-
onds each. In each trial, the participant heard two pseudo-words
over headphones. His task was to indicate whether he had per-
ceived or not a difference between the two stimuli. There were
three types of trials : “Phonological,” “Acoustic,” and
“Control.” In trials belonging to the “Control” condition, the
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Fig. 7. Real data originating from a speech perception experiment. Top row: statisticalt maps yielded by SPM 99 (thresholded atP = 0:001), superimposed
on axial slices of averaged T1-weighted images. Middle row (a1)–(c1): Maximum likelihood HRF estimates computed from six sessions in voxels marked by blue
crosses(V � V ). Bottom row (a2)–(c2): MAP HRF estimates computed from six sessions in the same voxels. Voxel coordinates are indicated near the time
courses. “Phonological,” “Acoustic,” and “Contro” conditions are coupled withhhh , hhh , hhh , respectively.

two auditory stimuli in the pair were exactly the same. In the
“Phonological” condition, the stimuli differed along a contrast
used to distinguish words in the language of the participant (it
waslinguistically relevant: path versus bath in English). In the
“Acoustic” condition, the stimuli also differed but the contrast
between the stimuli was not relevant in the language of the par-
ticipant (e.g., beat versus beet in English).

The stimuli pairs were presented during the silent gaps lasting
2 seconds between two succesive acquisitions (the TR was 3.3 s
and the time of acquisition of one volume was 1.3 s). The onsets
of events were aligned with the start of the second stimulus in a
pair (i.e. at 1.65 s), which felt in between two successive acqui-
sitions. is, therefore, an appropriate choice for the
sampling period of the HRF.

C. Results

The top of Fig. 7 shows maps (thresholded at
corrected for multiple comparisons) superimposed on axial
slices of averaged T1-weighted images, computed with SPM99.

To obtain such results, one first has to specify an fMRI model
that uses a canonical HRF . Second, least squares esti-
mation and inference on relevant contrasts of the parameter
estimates is performed. The first half of the regressors of the
fMRI model is defined by for

and . The
second half derives from the convolution of the first-order
derivative of with the onsets. The use of derivatives allows to
gain robustness against variations of the maximum amplitude
or the delay of this maximum.

The middle row of Fig. 7 shows the ML HRF estimates in
three different voxels from the left superior temporal gyrus of
one participant: (Talairach coordinates in millimeters:

; ;
. These time courses have

been computed without oversampling, i.e., just by estimating
the amplitude of each HRF at every . The bottom row of
Fig. 7 shows the MAP HRF estimates in the same voxels. These
results have been obtained from model , that is discarding
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the influence of the trend and the baseline and taking the six
datasets into account. We have also considered the same prior
variance for the three modeled hemodynamic responses.

Not surprisingly, Fig. 7(a1)-(a2) proves that the stimuli
elicited very similar responses in Heschel gyrus (primary
auditory cortex, ). The two other voxels were located in the
planum temporale. Fig. 7(b1)-(b2) shows for that there is
differential treatment when the stimuli differed, regardless of
the type of difference (phonological or acoustic). By contrast,
Fig. 7(c1)-(c2) shows a specific increment for phonological
contrasts (speech processing).

The main error that appears on the ML solutions in
Fig. 7(a1)–(c1) concerns thehemodynamicdelay, i.e., the
time-to-peak since the instant-matching error is about .
To circumvent this problem, the HRFs should also oversampled
but this leads to an increased number of parameters and, thus,
to unstable ML solutions. This situation, therefore, requires
regularization.

VII. D ISCUSSION

In this paper, we have described and tested a general method
for estimating the hemodynamic response function in fMRI
data. The method is general enough to deal with all specific
features of fMRI data, including the ability to work on several
sessions and several experimental conditions in the context of
an asynchronous sampling in event-related paradigm. In addi-
tion, our optimization scheme is sufficiently efficient to allow
large fMRI time series to be processed. Finally, physiological
artifacts can be correctly taken into account, provided that they
are modeled with a small number of parameters (typically, four
per session). This work has been implemented in a MATLAB

toolbox13 and interfaced with the SPM99 software.
To our knowledge, this work presents the only comprehensive

robust nonparametric estimation of the fMRI brain response to
a task or a stimulus. Applications of the technique are manifold.
This approach should improve the observation of significant
differences between the HRFs estimated for different stimuli
within the same brain region. Using the HRF estimate to specify
asubject-dependentgeneral linear model, we could address the
problem of the validity of the choice of the regressors14 of such
a model and may improve the localization of the signal (see [35]
for a multivariate approach of this problem). In the domain of
fusion of information (in particular with EEG signals) it is also
important to have such a robust estimate of the HRF, to investi-
gate the relationship between metabolic and electrical measure-
ments.

Physiologically, the HRF should be zero-valued at .
However, in practice, one sometimes detects voxels where this
assertion is not true. The most common cause of this effect
seems to be uncorrected stimulus-correlated motion. Since mo-
tion correction in fMRI data is hardly perfect, it is often impor-
tant to remove the zero constraint at . In the proposed
software, this constraint can be either changed to a less strin-
gent prior (for instance, the first-order derivative at the extremal

13The HRF toolbox can be downloaded at the following URL site:
http://www.madic.org/download/HRFTBx.

14These regressors has been selected empirically so far.

time samples of the HRF) or shifted in time such that the start
of the HRF estimate can be chosen arbitrarily before the actual
occurrence of the stimuli (for instance, a few seconds before).
This allows the user to check the influence of this constraint on
the HRF estimation.

The method can be extended in several ways:
First, to reduce the bias on the error bars we could resort to

a second order Taylor expansion on the drift estimate as pro-
posed for hyperparameters in [33]. This scheme needs an im-
portant computational effort. Alternatively, the usual Bayesian
methodology leads to integrate the joint posterior distribution

over . Further developments should be done to
develop the MMAP estimate and check its ability to provide
error bars that allow for the dispersion of the nuisance variables,
in particular if a large number of nuisance variables is necessary
to model drift terms as well as other additive effects of no in-
terest. In this framework, a particular attention should be paid
to hyperparameter estimation. If an EM algorithm was consid-
ered to perform this step, thecompletedata should be (, , )
and function should be defined by

Maximizing would require the computation of terms sim-
ilar to (24), which could depend on the joint covariance matrix

of size . This matrix is ob-
tained after a block matrix inversion that will be more expensive
than the computation of the covariance matrix[see (5)] since
the number of nuisance variables would be larger
than the number of HRF coefficients . On the other
hand, since vector would have a smaller size, the EM algo-
rithm should converge in fewer iterations with a higher cost per
iteration.

Second, another interesting extension would consist in con-
sidering a spatial model. Since the BOLD signal is known to
have some spatial structure [36], estimation of the HRF over a
region of interest should also provide a more robust estimation,
as demonstrated by [37] who use a general prior on the spatial
extension of the signal.

Third, the model presented here assumes that the response is
constant in time. While this assumption is reasonable in a first
instance (as long as the ISIs do not decrease below about two
seconds), it is likely that there exists some variations in time
due to physiological or neural adaptation to the stimulus or task.
This is the subject of ongoing research.

Fourth, it is not yet clear if the responses coming from dif-
ferent subjects can easily be averaged in a single response. It
may be that several subjects have too different brain responses
such that the averaging of those signals would be difficult to in-
terpret. The extension of the method to deal with multisubject
data should be developed, although data can be analyzed at the
same time using a different HRF per subject, with a generaliza-
tion of model that takes different noise variances across
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subjects into account. Such a generalization requires to over-
come the actual difficulties encountered in group analysis: the
most salient ones consist in removing subject-dependent move-
ment artifacts and normalizing all subjects in the same space
reference.

Lastly, we hope that this method can be the basis for some
work that would take advantage of the recent advance in joint
recording of electrical activity at the surface of the scalp in the
MR scanner. In particular, using such (joint) recordings, it may
be possible to partially retrieve the local field potential infor-
mation from the BOLD signal, which would provide a better
understanding of the neural computation well resolved in time
and space.

APPENDIX I
DECOUPLING THECOMPLETELIKELIHOOLD OPTIMIZATION

Vector can be partitioned into two subvectors
and which respectively control the conditional pdfs

and . The M-step of the EM
algorithm can be divided into two simpler independent max-
imization problems. The complete likelihood which enters in
the definition of in (12) can be expressed as

(18)

For any set value of parameters vector, define functions
and as

(19)

(20)

It can be immediately deduced from (12) and (18) that function
can be expressed as

(21)

which shows that the M step of the EM algorithm can be decou-
pled into two operations: maximization of with respect to

and maximization of with respect to .

APPENDIX II
UPDATING

In the present case,is made up of independent realizations
. As a consequence, the expression of can be

rewritten as

(22)

Handling successively the likelihood (3), the Gaussianity of,
definition (19) and (22), we are able to derive a closed-form
expression for

(23)

where function is defined by the following expectation:

(24)

Since the posterior pdf is -dis-
tributed, analytic calculations give for

Here, we would like to stress the separability property, ex-
pressed through (22), that allows to think about a parallel update
of vectors , for , except for . Such a property
results from model and implies that the maximization of

is block-wise decoupled for vectors. Finally, replacing
by its value in (23), taking the first derivative of with

respect to and equating to zero yields (14) and (15) for
and , respectively.

APPENDIX III
UPDATING

From the prior pdf (4) and the definition (20), function
is defined by

(25)

with

(26)

and . Here again, replacing by
(26) in (25) and taking the first derivative of with respect to

allow us to find the updating (16).
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