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Motor skill learning is associated with profound changes in brain activation patterns over time. Associative
and rostral premotor cortical and subcortical regions are mostly recruited during the early phase of explicit
motor learning, while sensorimotor regions may increase their activity during the late learning phases.
Distinct brain networks are therefore engaged during the early and late phases of motor skill learning. How
these regions interact with one another and how information is transferred from one circuit to the other has
been less extensively studied. In this study, we used functional MRI (fMRI) at 3T to follow the changes in
functional connectivity in the associative/premotor and the sensorimotor networks, during extended
practice (4 weeks) of an explicitly known sequence of finger movements. Evolution of functional
connectivity was assessed using integration, a measure that quantifies the total amount of interaction
within a network. When comparing the integration associated with a complex finger movement sequence to
that associated with a simple sequence, we observed two patterns of decrease during the 4 weeks of practice.
One was not specific as it was observed for all sequences, whereas a specific decrease was observed only for
the execution of the learned sequence. This second decrease was a consequence of a relative decrease in
associative/premotor network integration, together with a relative increase in between-network integration.
These findings are in line with the hypothesis that information is transferred from the associative/premotor
circuit to the sensorimotor circuit during the course of motor learning.

© 2009 Elsevier Inc. All rights reserved.
Introduction

Motor skill learning is associated with profound changes in brain
activation patterns over time. During the early phase of explicit motor
learning, associative frontal regions including the dorsolateral prefron-
tal cortex (DLPFC) and rostral premotor areas, as well as associative
basal ganglia and cerebellum are mostly recruited (Floyer-Lea and
Matthews, 2005; Tamás Kincses et al., 2008; Doyon et al., 2009). They
show greater activity at the beginning of learning. Furthermore, some
areas show increased activation during later phases of motor sequence
learning, such as the sensorimotor territory of the basal ganglia and the
cerebellar dentate nucleus (Doyon et al., 2002; Lehéricy et al., 2005).
These data suggest that distinct cerebellar–basal ganglia–cortical net-
works are engaged during the early and late phases of motor skill
learning. How these regions interact with one another and how infor-
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mation is transferred from one circuit to the other has been less exten-
sively studied.

However, models of brain dynamics of motor skill learning have
been proposed (Hikosaka et al., 2002). According to this model, a
sequence of movements is represented in two different coordinate
systems, spatial and motor. At the beginning of learning, movements
are executed individually through associative frontoparietal regions
and associative regions of the basal ganglia and cerebellum and
encoded in spatial coordinates. During learning, the movement
sequence is gradually built up in motor coordinates in the sensori-
motor loop circuit that includes motor-related cortical areas and
motor territories of the basal ganglia and cerebellum. This model also
postulates that the coordinate transformation process is achieved
through intracortical connections from the association cortices to the
motor cortices. Therefore, dynamic interactions between these neural
networks appear to be an essential feature of motor skill learning.
Characterization of the dynamic interactions of these networks is
essential to the understanding of motor skill learning. Here we used
functionalMRI (fMRI) at 3T to follow the changes in the time course of
functional connectivity in the associative and motor networks during
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4 weeks of practice of an explicitly known sequence of finger move-
ments. Functional networks involved in the early and late phases of
learning were identified using an approach based on spatial inde-
pendent component analysis (sICA) (Perlbarg et al., 2008). Functional
connectivity within and between these networkswas assessed using a
measure called hierarchical integration (Marrelec et al., 2008) that
gives access to information exchanges within a network, and between
networks.

Materials and methods

The results presented in this study constitute a re-analysis of a
previously published study (Lehéricy et al., 2005), using new ana-
lytical tools. We provide relevant information about the participants,
task and scanning parameters. For more details concerning the
original study, readers are referred to Lehéricy et al. (2005).

Subjects

Twelve volunteers participated in the present study (6 men, mean
age=23.5±4.3 years, age range: 19–34 years). None of the subjects
was a musician or a professional typist. One subject had previously
played the piano, but stopped practicingmore than 7 years before. The
Local Ethics Committee from the University of Minnesota approved
the study, and the subjects gave their informed consent. All subjects
were-right handed as confirmed by the Edinburgh Handedness
Inventory.

Motor task

The motor learning protocol was extensively detailed previously
(Lehéricy et al., 2005). Briefly, subjects had to practice 10 to 20minutes
daily during 4 weeks a sequence of eight digits using fingers 2 (index
finger) to 5 (little finger) of the left hand. The sequences were gene-
rated using MATLAB® (The Mathworks Inc., Natick, MA, USA). Within
each sequence, the order of finger movements was pseudo-randomly
generated such that each finger was used twice in each sequence. For
each subject, one sequence was randomly chosen to be the trained
sequence (T-sequence), while three other sequences (one for each
fMRI session) served as untrained new sequences (U-sequences). A
third simple sequence (2–3–4–5–2–3–4–5), where no learning was
expected, was also used as a control overlearned sequence (C-
sequence). One fMRI session was performed on day 1. Two additional
sessions were also carried out after 14 and 28 days of practice, respec-
tively. During each fMRI session, subjects had to perform 3 runs: the
T-sequence, the U-sequence (which differed at each session), and the
C-sequence. Each run consisted of ten alternated epochs of 27 s of rest
and 27 s of the motor condition. The order of the runs was counter-
balanced across subjects. Movements were audio-paced with compu-
ter generated sounds at a frequency of 2 Hz.

Imaging protocol

The MR protocol was carried out with a 3T whole-body system
(Siemens, Erlangen, Germany) at the Center for Magnetic Resonance
Research/Department of Radiology, University of Minnesota, Minnea-
polis. Blood oxygen level-dependent (BOLD) fMRI signal was used. For
each run, whole brain coverage was obtained with 43 oblique axial
gradient echo echo-planar imaging (EPI) images (repetition time
TR=4.5 s; echo time TE=40 ms; α=90°; bandwidth 1.562 Hz per
pixel; field of view FOV 192×192 mm2; voxel size 1.5×1.5×2.5 mm3;
partial Fourier imaging 6/8). Each run consisted of 123 EPI volumes.
Subsequently, a high-resolution structural volumewas acquired using a
3D magnetization prepared rapid gradient echo (MP-RAGE) sequence
(144 sagittal images; thickness 1 mm; FOV 256×256 mm2; matrix size
256×256).
fMRI data analysis

Pre-processing
K-space functional data were processed to reduce physiological

noise using a retrospective estimation and correction of respiration
and heart beat (Hu et al., 1995). The first two and the last volumes
were discarded for signal stabilization. A temporal cut-off (cutoff
frequency 4.16×10−3 Hz) was applied to the functional data to filter
out subject-specific low-frequency drifts of the signal. Data were then
corrected for subject's motion, with the first volume of each run as a
reference, and resliced using 4th degree B-Spline interpolation with
the SPM21 software. Finally, the same software was used to smooth
the images with an isotropic Gaussian spatial filter of full-width-at-
half-maximum 5 mm.

Regions of interest selection
Our objective was to quantify functional connectivity within the

motor sequence learning (MSL) network along the motor learning
process. Definition of regions of interest (ROIs) belonging to the MSL
motor network was based on a motor skill learning model, which gives
priors on the brain regions involved (Hikosaka et al., 2002). However
precise anatomical location (e.g. Talairach-space coordinates) of these
regions was not available in the model. We consequently started the
fMRI analysis by applying an exploratory method, based on spatial
independent component analysis (sICA, Perlbarg et al. (2008)), to
extract group representative functional large-scale networks. Among
these networks obtained in a data-driven way, we identified the MSL
network as the one that comprised the regionsmentioned in Hikosaka's
model, and anatomically localized ROIs on the corresponding spatial
maps.

Spatial ICA analysis was carried out for each session (days 1, 14, or
28) and each run (T-, U-, C-sequences). This method can be broken
down into three steps. First, the 40 spatial components explaining the
most variance were extracted for each subject and each run, using an
infomax ICA algorithm. These components were scaled to z-scores and
registered to the Montreal Neurological Institute (MNI) standard space
using nonlinear spatial transformations as implemented in SPM2. The
second step consisted of clustering independent components across
subjects for each run, based on their spatial similarity (Esposito et al.,
2005). Finally, partitioning of the hierarchy was automatically
performed for each run, using criteria optimizing both the unicity and
the representativity of each extracted class. The representativity crite-
rion controls that each subject is represented with at least one com-
ponent in a given class, whereas the unicity criterion controls that a
subject contributes to a class with one and only one component. These
criteria have values between 0 and 1, and an optimal class is
characterized by a value of 1 for both representativity and unicity. For
each of the resulting group-representative classes, a fixed-effect group
map of t-scores was computed, corrected for false discovery rate (FDR)
and thresholded at p≤0.05.

Within this set of group-representative maps exhibiting spatially
structured functional processes and noise processes, we visually iden-
tified the one exhibiting a spatial organization distributed into cortical,
sub-cortical, and cerebellar areas corresponding to the regions defined
in themotor skill learningmodel (Hikosaka et al., 2002). Thismapwas
identified for each run, and its representativity and unicity were both
1. Furthermore, the time course associated to this map corresponded
to the alternating task/rest design of the motor task.

According to the motor skill learning model by Hikosaka et al.
(2002), we then defined the MSL network, comprising two subnet-
works: the associative/premotor (AP) network and the sensorimotor
(SM) network. The AP networkwas derived from themotor-task spatial
map of the T-sequence run on day 1. The SM networkwas derived from
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the motor-task spatial map of the T-sequence run on day 28. Regions of
interest belonging to each of the two subnetworks were defined
following the model by Hikosaka et al. (2002), using anatomical atlas
priors and according to the t-score distribution of the subnetworks'
spatial map. For cortical and cerebellar ROIs, we used the automated
anatomical parcellation of the MNI single-subject T1-weighted MRI
(Tzourio-Mazoyer et al., 2002). For sub-cortical ROIs, we used a post-
mortem three-dimensional deformable atlas of the basal ganglia (Yelnik
et al., 2007). This single-subject atlas was coregistered to the MNI
standard space using nonlinear spatial transformations as implemented
in SPM2. Associative and sensorimotor subdivisions of the putamen
were considered. The ventral anterior (VA) nucleuswas associatedwith
the associative territory of the thalamus, and the ventral lateral (VL) and
ventralis intermedius (VIM) nuclei were associated with the sensori-
motor territory (Alexander et al., 1986; Romanelli et al., 2005; Lehéricy
et al., 2006).

The AP network was then composed of 10 ROIs, and the SM
network of 7 ROIs. ROIs of the AP network included bilateral pre-SMA,
bilateral premotor cortices, the left inferior parietal cortex (BA40),
bilateral cerebellar hemispheres (lateral parts of lobule VI), putamen
and thalamus. ROIs of the SM network included the SMA, the right
sensorimotor cortex, lobule IV–V of the cerebellum, bilateral putamen
and bilateral thalamus (Table 1). For each network, seed voxels were
chosen for each ROI as the voxel with the maximum local t-score in the
corresponding MSL map. From these seed voxels, ROIs were obtained
based on a local maximum search algorithm: first, an adjacency matrix
of the voxels belonging to the spatial map was built. Among all
neighboring voxels, the one with the highest t-score was included in
the ROI. This process was repeated with the new ROI and its
neighboring voxels, until a given size was reached, which was adapted
to the size of the underlying anatomical structure (200 voxels,
1120 mm3—for cortical and cerebellar regions, 100 voxels, 560 mm3—

for putaminal regions and 50 voxels, 280 mm3—for thalamic regions).
To compare the spatial organization of the motor-task networks

along the training process and for the three different sequences, we
used ameasure of spatial similarity in order to create a distancematrix
D between all the maps. Multidimensional scaling (MDS) analysis
(Mardia et al., 1979)was then used to plot the best approximationD^ of
D in a two-dimensional Euclidean space. Maps with a similar spatial
organization are close to each other in this representation.
Table 1
Regions of interest MNI coordinates.

Region Peak label (AAL or Basal Ganglia)

AP regions
Pre-SMA Supplementary motor area
Premotor cortex (R) Precentral
Premotor cortex (L) Precentral
Parietal cortex (L) Parietal inferior
Cerebellum (R) Cerebellum VI
Cerebellum (L) Cerebellum VI
Putamen (R) Associative
Putamen (L) Associative
Thalamus (R) Ventral anterior
Thalamus (L) Ventral anterior

SM regions
SMA Supplementary motor area
Sensorimotor cortex (R) Postcentral
Cerebellum (L) Cerebellum IV–V
Putamen (R) Sensorimotor
Putamen (L) Sensorimotor
Thalamus (R) Ventral lateral
Thalamus (L) Ventralis intermedius

MNI coordinates of the seed voxels for the premotor/associative (AP) and the sensorimoto
group-representative maps of the T-sequence run on Day 1 (AP network) and 28 (SM net
labeling (AAL, Tzourio-Mazoyer et al. (2002)) for cortical and cerebellar seeds, and the thre
thalamic seeds.
Hierarchical integration

Background. Information theory was originally developed in the
1950s by Shannon, to better characterize communicating systems and
noisy channels (Shannon, 1948). In particular, he introduced a key
quantity: entropy, which measures the information contained in a
message. Since then, this measure has been widely applied to several
fields, including neurosciences. Indeed, coherent behavior and cogni-
tion are known to emerge through the integration of information flows
between segregated regions, organized into large-scale networks
(Varela et al., 2001). Consequently, measures characterizing inter-
actions within and between these networks are essential to the
understanding of brain function. In this paper we applied a measure
deriving from entropy, hierarchical integration, which is aimed at
quantifying information exchanges between and within networks
involved in motor sequence learning.

Definition. Functional connectivity is classically defined as the
temporal correlation between regions' time courses (Friston, 1994).
Since the MSL network is composed of 17 regions, functional
connectivity within this network is fully characterized by all the
correlation coefficients that can be computed from these 17 regions, i.e.,
the 17×(17−1)/2=136 coefficients that form the correlation matrix
R. In order to quantify the global change in functional connectivity
induced by learning, we resorted to a measure known as total
correlation in information theory (Watanabe, 1960) and integration in
neurocomputing (Tononi et al., 1994). If Σ is the model covariance
matrix, integration of the MSL network can be defined as (Marrelec
et al., 2008):

IMSL =
1
2
ln

Q17
i = 1 Σii

jΣ j

" #
; ð1Þ

where |·| stands for the determinant. It can be shown that IMSL can
also be expressed as a function of R as

IMSL = − 1
2
ln jR j : ð2Þ

This expression shows that integration derives from functional
connectivity, summarizing the 136 correlation coefficients in one
Peak
t-score

Peak MNI coordinates

x Y z

17.2 1.5 4.5 50
18.0 28.5 −7.5 57.5
11 −31.5 −13.5 65
16.9 −34.5 −43.5 47.5
17.2 37.5 −55.5 −27.5
22.7 −25.5 −55.5 −27.5
21.5 28.5 4.5 0
15.4 −22.5 0 5
18.2 12 −15 0
9.8 −7.5 −15 0

19.8 −1.5 −7.5 62.5
46.4 37.5 −22.5 50
16.4 −16.5 −51 −25
10.6 31.5 −7.5 −2.5
7.8 −22.5 −4.5 5

10.9 16.5 −16.5 5
6.1 −12 −19.5 5

r (SM) networks. t-scores are extracted from the thresholded (p≤0.05), FDR corrected
work). Peak labels are given according to the two atlases : the automated anatomical
e-dimensional atlas of the human basal ganglia (Yelnik et al., 2007) for putaminal and
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single number. When all correlation coefficients are equal to zero (i.e.,
there is no functional connectivity), integration is also equal to zero;
otherwise, it is positive. The larger the correlation coefficients, the
larger the integration.

Integration was also used to quantify functional connectivity
within subnetworks AP and SM. We then decomposed the covariance

matrix as: Σ = ΣAP;AP ΣAP;SM
ΣSM;AP ΣSM;SM

� �
. In a fashion similar to Eq. 1,

integration for these subnetworks then reads

IAP =
1
2
ln

ΠiaAPΣii

jΣAP; AP j

" #

and

ISM =
1
2
ln

ΠiaSMΣii

jΣSM; SM j

" #
:

Now, according to the hierarchical feature of integration (Marrelec
et al., 2008), integrations of theMSL, AP, and SMnetworks are related by

IMSL = IAP + ISM + IAP=SM; ð3Þ
where we set IAP=SM = 1

2 ln
jΣAP;AP j : jΣSM;SM j

jΣ j
h i

:

Fig. 1. Seed voxels for the regions of interest of the associative/premotor (AP, green dots) an
(pb0.05), FDR corrected t-score motor-task map of the trained sequence on day 1, surimpose
radiological convention (i.e., image left side corresponds to subject's right side).
IAP/SM can be interpreted as a quantification of functional
connectivity between subnetworks AP and SM. The above relationship
then states that the integration of network MSL can be decomposed
into the sum of the integration measured within each subnetwork AP
or SM, and an integration term quantifying between-subnetworks
functional connectivity.

To study the relative contributions of each system, as well as the
between-system integrations, to the total integration, we computed
the following quantities: IRAP = IAP

IMSL
; IRSM = ISM

IMSL
, and IRAP = SM = IAP = SM

IMSL
.

These values measure the amount of integration allocated to a system,
relatively to the amount of available total (MSL) integration. They
represent percentages of variations and, according to Eq. (3), they
vary between 0 and 1.

Bayesian inference. The parameter Σ of the Gaussian model is
necessary to calculate integration. Since it is unknown and only
partly accessible through the data, the values of integration were
inferred using a Bayesian numerical sampling scheme that approxi-
mated the posterior distribution of the parameters of interest in a
group analysis (Marrelec et al., 2006). A mean value and a standard
deviation for each value of integration Isystem, time, sequence (time=days
1, 14, or 28; sequence=T, U, or C) were then computed from this
sampling scheme.
d sensorimotor (SM, blue stars) networks. The seeds are displayed on the thresholded
d on an anatomical template in the MNI standard space (MNI512). Images are shown in



Fig. 2.Multidimensional scaling of the spatial maps of themotor-task networks on days 1,
14 and 28 for the trained (squares), untrained (triangles), and control (circles) sequences.
Axes represent the Euclidian distance between maps.

Table 2
Evidence values.

T b U C b T C b U

IMSL

Day 1 −6.25 36.99 21.65
Day 14 36.99 19.38 N40.0
Day 28 30.97 −0.35 30.97

IAP/SMR

Day 1 5.53 −26.19 −14.86
Day 14 −19.46 −13.29 N40.0
Day 28 −14.98 −5.43 −24.19

IAPR

Day 1 −8.33 32.22 19.31
Day 14 25.52 19.54 N40.0
Day 28 27.44 2.51 36.99

ISMR

Day 1 1.48 −1.16 0.18
Day 14 0.75 −2.34 −1.75
Day 28 −4.56 4.1 −0.16

Evidence values (in dB) for theMSL network integration, the relative AP and SMwithin-
network integrations, as well as the relative between-network (AP/SM) integration.
Differences are measured between the trained (T), untrained (U), and control (C)
sequences. Significant values are marked in bold.
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N=5000 integration values were computed from the sampling
scheme, from which statistics can be obtained. It was in particular
possible to approximate the posterior probability p(A|y) of an
assertion A related to any pair of integration measure (IMSL, IAPR , ISMR ,
IAP/SM
R ), given the ROIs' BOLD fMRI time courses (y). A can represent
any assertion that has to be tested, butwe chose tomake only pairwise
comparisons. For example, to test if on day 14 the integration value of
the trained sequence was lower than the integration value of the
untrained sequence, in the MSL network, the assertion A was defined
as: A=“IMSL, 14, T b IMSL, 14, U” and its posterior probability as

p A jyð Þ≈ 1
N
# i : I i½ �MSL; 14; T < I i½ �MSL; 14; U

n o
;

where i=(1,…,N), and # stands for the cardinal function of a set. The
validity of the assertion could then be tested using a measure called
evidence (Jaynes, 2003):

e A jyð Þ = 10log10
p A jyð Þ

1− p A jyð Þ
� �

;

measured in decibels (dB). What we actually study with evidence is
then the ratio of the probability that A is true to the probability that A
is false, in a base 10 logarithmic scale. According to this measure, two
values of integration will be said significantly different when |e(A|y)|
N10 dB, which corresponds to a ratio p A jyð Þ

1−p A jyð Þ higher than 10:1. In
other words, a probability of A being true p(A|y)N0.909. To correctly
interpret this measure, it should be noted that a significant positive
value of evidence shows that the assertion A is true, but, on the other
hand, a significant negative value shows that the complementary
assertion Ā has to be considered as true. In the previous example it
would be: Ā=“IMSL, 14, T ≥ IMSL, 14, U”.

Results

Spatial maps

Regions of interest
Regions of interest selected for the study, as described in the

methods, are shown on the group-representative motor-task spatial
map of the T-run sequence on day 1 (Fig. 1).
Multidimensional scaling
Multidimensional scaling was used to compute a plane that best

represented the distance matrix D between the spatial maps of the
motor-task networks for the different conditions. It showed an evo-
lution of the motor networks along the training process (Fig. 2). Maps
of the U-sequence remained identical: there was little variation of
their representation on both axes. On the other hand, maps of the T-
sequence evolved mainly on the x-axis, being similar to the U-
sequence on day 1, and similar to the C-sequence on day 28. Maps of
the C-sequence also varied on both axes but remained clearly sepa-
rated from maps of the U-sequence.

Hierarchical integration

We computed the level of hierarchical integration of the MSL,
AP/SM, and SM networks for the three runs of the T, U, and C-
sequences. Statistical tests were conducted using assertions such as:
A=“Is IMSL, 14, T b IMSL, 14, U ?” to test for the difference between pairs
of integration values. Results are given as evidence values e in Table 2.
Values of IMSL, IAPR , ISMR , and IAP/SM

R are presented in Fig. 3.

Motor sequence learning network integration (IMSL)
On day 1, integrations of the MSL network for the T and

U-sequences did not differ (|e|=6.25), and were significantly higher
than the integration value of the C-sequence. On day 14, all integration
values differed significantly, with integration of the T-sequence being
significantly lower than the U-sequence and higher than the
C-sequence. On day 28, integrations of the MSL network for the T
and C-sequences did not differ (|e|=0.35), and were significantly
smaller than the integration value of the U-sequence.

Relative AP/SM integration (IAP/SM
R )

On day 1, integrations of the T and U-sequences did not differ (|e|=
5.53), andwere smaller than the integration value of the C-sequence. On
day 14, however, all integration values differed significantly, with
integration of the T-sequence being significantly higher than the U-
sequence and lower than the C-sequence. On day 28, integrations of the
T and C-sequences did not differ (|e|=5.43), and were significantly
higher than the integration value of the U-sequence.

Relative AP network integration (IAP
R )

Weobserved the same pattern for the relative integration of the AP
network as for theMSL network. Onday 1, integrations of the T- andU-
sequences did not differ (|e|=8.33), and both valueswere higher than



Fig. 3.Mean value±standard deviation ofMSL, AP/SM, AP, and SM integrations on days
1, 14, and 28 for the trained (squares), untrained (triangles), and control (circles)
sequences.
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the integration value for the C-sequence. On Day 14, all integration
values differed significantly, with integration of the T-sequence being
significantly lower than that of the U-sequence and higher than that of
the C-sequence. On Day 28, integrations of the T- and C-sequences did
not differ (|e|=2.51), and both values were smaller than the
integration value of the U-sequence.

Relative SM network integration (ISM
R )

No significant differences were found between the relative inte-
gration values of the T-, U-, and C-sequences in the SM network on
days 1, 14, and 28.

To summarize, integration values of the new sequences (T-sequence
or U-sequence) on Day 1 for theMSL network (IMSL, T) were higher than
the integration value of the simple C-sequence. Over the course of
training, integration of theU-sequence remained higher than that of the
C-sequence, whereas integration of the T-sequence decreased to the
level of the simple C-sequence on Days 14 and 28. Therefore within the
MSL network and for the T-sequence, we observed that the relative part
of integration of the AP network decreased andwas counterbalanced by
an increase of the relative part of the integration between theAPand the
SM systems.

Discussion

The objective of this paper was to study the functional connectivity
of motor-related brain areas during a motor learning paradigm, over a
4-week period. The task-related functional networks were identified
for each run at a group level, based on individual sICA analyses. Regions
of interest were defined based on a motor skill learning model, and on
the t-score distribution of the spatial maps. Functional connectivity
within theMSL networkwas quantified using hierarchical integration,
a measure that allows to summarize information exchanges between
regions of a network, as well as between networks.

Selection of the regions of interest was guided by a motor skill
learning model (Hikosaka et al., 2002), and applied to our data via the
sICA maps. ROI selection on these maps was constrained by two
anatomical atlases (Tzourio-Mazoyer et al., 2002; Yelnik et al., 2007) to
remain in the framework defined by the model. We chose to apply a
method based on sICA over a standard general linear model method
(GLM, Friston et al. (1995)) for several reasons. First of all, sICA is a data-
driven approach and therefore does not require any prior knowledge of
the data (Perlbarg and Marrelec, 2008). Furthermore it is a suitable
method to define regions of interest at a group level, as no prior
knowledge on the spatial and temporal structure of the components is
required (McKeown et al., 1998), and that task-related areas havewider
spatial extents than in GLM analyses (Calhoun et al., 2001).

Hierarchical integration takes place in the framework of functional
connectivity, defined as inter-regional temporal correlation between
low-frequency fluctuations of the BOLD signal (Friston, 1994; Biswal
et al., 1995). BOLD signal has been shown to correlate with local-field
potentials, reflecting the incoming input and the local processing in a
given area (Logothetis et al., 2001; Heeger and Ress, 2002). Studying
functional connectivity in fMRI then gives indirect access to the
average neuronal activity. Within this framework, integration was
aimed at summarizing functional interactions between several regions.
Indeed, when considering a large number of ROIs, correlation analyses
can yield large matrices that are difficult to analyze (136 correlation
coefficients with 17 ROIs). Integration summarizes temporal correla-
tions between the timecourses of several ROIs into a single value. In the
simple case of a network consisting of two ROIs (Marrelec et al., 2008),
it has been shown that its integration I is directly linked to the temporal
correlation between ROIs ρ : I = − 1

2 ln 1−ρ2
� �

. In this way, integra-
tion canbe considered as a generalizedmeasureof correlationbetween
and within large-scale networks.

Among the studies that have characterized the spatial distribution
of brain regions involved in motor sequence learning (Doyon et al.,
2002; Lehéricy et al., 2005; Floyer-Lea and Matthews, 2005; Lehéricy
et al., 2006; Tamás Kincses et al., 2008), few have tried to study
functional connectivity between these regions (Rissman et al., 2004;
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Sun et al., 2007). Only Sun et al. (2007) studied functional connec-
tivity between two voxels, using a measure based on correlation.
Applying hierarchical integration to study motor sequence learning
allowed us to characterize the global integrative state of two networks
involved in the learning task, as well as information exchanges bet-
ween them, along three learning sessions.

The results show that motor sequence learning is associated with
dynamic changes in the level of integration within and between the
associative/premotor network and the sensorimotor network. Early
learning of a complex sequence of finger movements was associated
with a high level of integration of the MSL network, as compared with
practice of a simple control sequence of finger movements. With
practice, the functional integration of this network gradually decreased
from the high level of the new complex sequence (U) to the lower level
of theoverlearned simple sequence (C). This decreasewasmainly due to
a decrease in the relative integration level of the associative/premotor
network that was counterbalanced by a relative increase in the
between-system integration, while the relative integration level in the
sensorimotor network remained stable. Altogether, the changes
observed in the spatial structure of the motor networks and their
functional interaction patterns suggest that the functional connectivity
associated to the trained sequence Twas similar to that of the untrained
sequence U at the beginning of learning, while it became similar to that
of the control sequence C after learning. Trained sequences were
associated with low level of within-system and high level of between-
system integrations.

As previously reported, cortical and sub-cortical brain regions
involved in the task differed during the early and late phases of
learning. Bilateral associative/premotor regions of the cortex, the
basal ganglia, and the cerebellum were involved during early but not
late learning,while only sensorimotor areas of these structures,mostly
contralaterally, were involved during the late phase of learning. These
results are in line with numerous previous studies of motor learning,
which suggested that the cortical–subcortical sensorimotor loop
played a role in the long-term storage of well-learned movement
sequences and that cortical–subcortical networks were involved in
“automatic” movements (Ungerleider et al., 2002; Floyer-Lea and
Matthews, 2004; Wu et al., 2004; Doyon and Benali, 2005; Floyer-Lea
andMatthews, 2005; Lehéricy et al., 2005). In the sensorimotor cortex,
increased (Hazeltine et al., 1997; Grafton et al., 1998) or, more
frequently, decreased or unchanged activation was reported during
short-term motor learning (Jenkins et al., 1994; Toni et al., 1998;
Doyon and Ungerleider, 2002). During the late learning phase of a
sequence of finger movements, increased activation was reported in
the sensorimotor cortex (Karni et al., 1995; Floyer-Lea and Matthews,
2005). In our experiment, we observed two different patterns of
functional integration decrease for the MSL network integration. First,
therewas amoderate and global decrease in integration. This decrease
was not due to the learning per se as it was observed for the new
complex sequences (U-sequences) as well as for the simple control
sequence. This decrease could be linked to a global decrease in
the BOLD signal between sessions that leads to a change in themeasure
of integration. Indeed, several studies have already reported an inter-
session variability in the BOLD response (Poellinger et al., 2001;
Fischer et al., 2003) or in the activation detected (Loubinoux et al.,
2001; Marshall et al., 2004; Kübler et al., 2006) in brain regions
involved in a task. This phenomenon can be explained by a habituation
of the subject to the fMRI context, as well as to the execution of a
task. It stresses the importance of having both control and novel
sequences when designing a motor learning protocol over a long
period of time. Second, there was a greater decrease in functional
integration for the T-sequence from a level similar to the U-sequence
at the beginning of learning to a lower level similar to the C-sequence
after learning. This decrease was specifically related to the process of
training, as it was only observed for the T-sequence and not for the
two others.
We showed that motor learning was associated with a gradual
decrease in the functional integration of motor-related networks over
time. The overlearned sequence was associated with a low level of
integration in the associative/premotor network and a relatively high
level of between-system integrations, whereas the relative integration
level in the sensorimotor network remainedunchanged. In linewith our
results, previous studies have reported a greater inter- and intrahemi-
spheric coupling within the cortical motor network as well as a greater
connectivity between frontal and cortical motor regions during early
learning compared with late learning in a 20-min training condition
(Sun et al., 2007). Increased functional connectivity (measured with
low-frequency coherence analysis) between motor regions of the two
hemispheres has also been reported in a bimanual task (Rissman et al.,
2004). Here, we extended these results over a 4-week training period in
subjects reaching automaticity (Lehéricy et al., 2005). We further
showed a dissociation between the associative/premotor network and
the sensorimotor network.

In contrast to our results, an increase in functional connectivity
during a 40-min training task has been observed with learning in the
primarymotor cortex (McNamara et al., 2007). These results are difficult
to compare with ours, as we did not assess functional connectivity
within the primary motor cortex itself. Given the design of our study, it
was not possible to assess directly functional connectivity between digit
representations in the primary motor cortex.

Our results are also partially in agreement with Hikosaka's model
(Hikosaka et al., 1999, 2002). At the beginning of learning, this model
postulates a high level of integration that decreases with practice in
the associative/premotor network and between this network and the
sensorimotor network, whereas integration in the sensorimotor
network is expected to increase with practice (Hikosaka et al.,
1999). Our results confirmed that integration decreases in the asso-
ciative/premotor network. In contrast, functional integration in the
sensorimotor network did not increase with practice. It is possible
that the gradual built up of the movement sequence in the sensori-
motor network does not require sustained increase in functional
connectivity. Alternatively, we cannot rule out the hypothesis that
functional integration may increase between digit representations
within the primary motor cortex. Our results also showed that the
decrease in functional connectivity was more marked for the asso-
ciative/premotor network than for the integration between this
network and the sensorimotor network, the relative part of which
increased with practice. This suggests that interactions between these
two networks may still be necessary during overlearned movements
even though involvement of the regions belonging to the associative/
premotor circuit is not detectable any more.

Our approach has provided a new way to quantify functional
interactions within the motor network of healthy volunteers. Applica-
tion to the studyofmovement disorders, such asdystonia, couldprovide
relevant insight into how pathology affects the motor network.
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