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Numerical Full Inversion of Two Dielectric Cylinders upon a Metallic
Plane: A First Step toward Forest Parameters Retrieval

from VHF to P-Band Radar Data
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Abstract—Radar remote sensing applied to forest covers is a domain of interest for a few decades,
particularly in forest monitoring for the global carbon cycle. In this paper, we use a numerical
electromagnetic scattering model to investigate the full-inversion of a simple case where two dielectric
cylinders are lying upon a metallic ground seen as a theoretical representation of only one tree trunk
and one primary branch. The presented process performs cylinders 3D-locations estimation using an
Orthogonal Matching Pursuit (OMP) algorithm, then scattering coefficient is retrieved for each cylinder
and each scattering mechanism separately and finally the cylinders biophysical parameters (height,
radius, complex permittivity) inversion using a Particle Swarm Optimisation (PSO) algorithm. This
process is based on target subspace decomposition and applied to noisy simulated radar data.

1. INTRODUCTION

Radar remote sensing applied to forest covers has been a domain of interest for a few decades, particularly
in forest monitoring for the global carbon cycle through the aboveground biomass evaluation [1, 2] or
in foliage penetration (FOPEN) applications [3, 4].

On one hand, several measurement techniques have been investigated from Polarimetric [5] and/or
interferometric sensors [6, 7] to data fusion such as RADAR/LIDAR data [8], from high resolution SAR
imaging [9] to tomography [10–12]. All of them consist in top-down approaches, aiming to extract
biophysical information from real data acquired on real forest at large geographic scale: from forest
stand scale [13] to the continental scale [14]. But a real forest stand is a very complex medium from an
electromagnetic point of view, strongly impacting the inversion methods.

On the other hand, a complementary approach has been followed through numerical forest models
to help radar images interpretations or measurement configurations setup. There are several kinds of
physical models, from empirical approaches [15] to numerical electromagnetic scattering models. Among
the latter, we can find incoherent models such as [16] and coherent ones such as [17]. Both kinds rely
on electromagnetic approximations to allow forest stands modelling. Another class of electromagnetic
models relies on numerical solutions of the electric-field integral equation using the Method of Moments
such as [18–20]. More recently, the latter model has been updated [21, 22] to be able to solve large
electromagnetic problems in a reasonable delay. Numerical models have then proven their ability to be
useful tools to develop inversion methods.
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This paper aims to investigate this ability. Using an approximate scattering model ([23, 24] already
used in [17], we attempt to build a full-inversion process for a low complexity problem which is intended
to be increased step by step. We have chosen to develop an inversion process able to first solve the source
localization problem (3-D imaging), then perform the electromagnetic inversion (scattering coefficients),
and finally operate the biophysical inversion (cylinders parameters).

The localization problem is formulated as a sparse approximation problem: each possible position
of an object is represented by a linear subspace, modeling the field scattered by the object, taking
into account the diversity of biophysical parameters. The full scattered field can then be represented
as a sparse sum of elementary scattered fields taken from the subspaces associated with the positions
actually occupied by scatterers. The positions of the objects are then estimated using the Orthogonal
Matching Pursuit algorithm, in its block-sparsity version.

Then the biophysical inversion is performed using a Particle Swarm Optimization process. This
kind of algorithm is inspired by social animals’ behavior [25] which have to find, for example, their
meal in a complex surroundings by optimizing their expenditure of energy. Indeed, in our case, the
cost functions have several local minima, and a single global minimum has to be found. A swarm is
composed of a population of particles. The algorithm makes the particles evolve on the N -dimensional
cost function surface through a velocity that updates the particle location (in fact its parameters set)
at each iteration. Each particle velocity depends on the best location that it has previously found,
as a “memory” effect. It depends too on the location found by any other particle which provided the
minimum cost function value, as a “social” behavior.

At the “low” frequencies of interest (from UHF to P-band), the electromagnetic waves interact
strongly under the canopy with trunks, primary branches, and the soil: scattering mechanisms involving
multiple bounces are therefore of the first importance. As a first level of complexity, this paper presents
a full-inversion process applied to the simple case where one vertical and one tilted dielectric cylinders
are lying upon a metallic ground to model a tree trunk and a primary branch.

The radar data to inverse are simulated through a direct electromagnetic scattering model described
in Section 2 whereas the inverse process relies on a direct modeling deconstruction approach described
in Section 3. Direct modeling is used to perform a well-suited subspace decomposition (electromagnetic
problem linearization) in Section 3.1 first to focalize 3D-images and locate the cylinders (Orthogonal
Matching Pursuit algorithm) in Section 3.2, second to inverse the scattering complex coefficients of each
cylinder in Section 3.3. Finally, a stochastic inverse technique based on direct modeling too (Particle
Swarm Optimization) is used to estimate each cylinder biophysical parameters (height, radius, complex
permittivity) in Section 3.4. Then Section 4 is dedicated to preliminary studies to highlight some
specifications of the inversion process like the imaging zone translation, how to consider tilted cylinders
and the target subspace size effect. Finally, the inversion process is applied to noisy (Section 5) simulated
data, and the results are discussed. Section A.1 gathers all the parameters values used in the simulations
and some comments on them.

Notice that this work is only a first attempt to answer the question from a theoretical and numerical
point of view: is it possible to process a full inversion of simple tree components from numerical simulated
data? And what would be the first prerequisites to do so? We have then chosen to study a non-real but
numerically representative case of the elementary physics involved in more complex numerical forest
models.

2. THE DIRECT PROBLEM FORMULATION

A direct “approximate” electromagnetic scattering model is used in two ways. First, it is an easy way
to simulate radar data with a controlled ground truth. Second, the inversion algorithm introduced in
this paper is based on its physical modeling approach.

2.1. The “Approximate” Scattering Model

The approximate scattering model relies on two levels of physical approximations.
First, at the scatterer level. The dielectric cylinder has to be long enough against the wavelength

(infinite cylinder approximation [24]): Its scattered electric and magnetic fields are obtained in the
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approximation of the infinite length cylinder and are used to calculate fictitious surface magnetic and
electric currents. These fictitious surface currents are then the fictitious source of a finite height cylinder
when the scattered (E,H) fields are calculated on a finite surface [23, 24]. This approximation allows
an analytical solution for the scattering of a vertical lossy dielectric cylinder in free space, which
can be translated and tilted through translation and Euler angles based rotation operator matrices.
Computation is then very fast. The main drawback is the “infinite” cylinder approximation validity
domain.

Second, at the forest level. To model a forest scene using this cylinder scattering model, we place a
collection of scatterers (cylinders for branches and trunks [23, 24] and ellipsoids for leaves and needles [26]
if needed) of different shapes and different orientations on a ground depending on tree species. Then
we have to model the electromagnetic interaction between the incident wave and scatterers. Different
levels of realism can be achieved, depending on which scattering mechanism is taken into account.
This modular structure allows complex modeling for radar applications at forest scale [17] or simpler
configurations for more fundamental studies.

In the case of a forest illuminated at low frequencies (UHF to P-band), the main contributions to
radar signal come from trunks and primary branches. This is why an exemplary configuration with one
vertical cylinder and an arbitrarily tilted one is on study in this paper.

2.2. The Physical “Forest” Model

At its lowest complexity level from an electromagnetic point of view, a forest stand can be reduced to
a single dielectric cylinder lying upon a reflecting ground. The electromagnetic field scattered by such
a target can be approximated to first order by four main scattering mechanisms (Figure 1). The single,
the triple, and the double (“a” and “b”) bounces. The single bounce (SB) corresponds to the optic path
of a propagating wave, from the emitting antenna to the scatterer and back to the receiving antenna
(Figure 1(a)). The triple bounce (TB) corresponds to a wave impinging first on the ground, reflected
toward the cylinder and then scattered back to the ground before reflecting again toward the receiving
antenna (Figure 1(b)). The double bounce (DB) is a twin mechanism. The double bounce path “a”
(DBa) corresponds to a wave path from the emitter to the cylinder and then scattered toward the ground
where the wave reflects specularly toward the receiver (Figure 1(c)). The twin double bounce (DBb) is
the inverse path, the wave interacting first with the ground and then with the cylinder (Figure 1(d)).
This model assumes that the only scattering directions taken into account are those in the maximum
of the local scattering pattern, namely in the forward, specular, and backward directions.

1 2 

3 4 

(a) (b)

(c) (d)

Figure 1. First order scattering mechanism interactions between a cylinder and the ground.
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The mathematical formulation of such a model is:
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where Ei is the Jones vector of the incident electric field expressed in the antenna polarization basis
with its vertical v̂ and horizontal ĥ polarization components. Exx

s is the scattered Jones vector for the
mechanism xx, Sxx the 2 by 2 full-polarization complex scattering matrix (Sinclair matrix) for each
mechanism, and G the 2 by 2 Fresnel reflection matrix of the ground. The exponential terms model the
propagation phase along the optical path of length r for each mechanism for the incident wave (suffix
i) and the scattered wave (suffix s). k is the wave number in the air. This notation is for a spherical
wave, but if the antennas are far enough from the scene, the property of local plane waves can hold.
Finally, the radar signal is the coherent sum of each contribution of each mechanism:

Es = ESB
s +EDBa

s +EDBb
s +ETB

s (5)

This mathematical formulation is used to simulate measurements with the “approximate” cylinder
scattering model. For the convenience in this paper, the ground reflection matrix G is diagonal (flat

ground), and its coefficients are taken to be Gvv = 1 and Ghh = −1 for v̂ and ĥ polarizations as the
ground is considered as a metallic surface.

2.3. The Direct Problem Formulation

To go further and better describe the modeling of measurements collected at a set of sensor positions
and frequencies, we consider now the Single Bounce mechanism only (Equation (1)). Derivations for
other scattering mechanisms will follow the same steps.

For the general case where emitting and receiving antennas have their own polarization basis (v̂i, ĥi)

and (v̂s, ĥs), respectively, where v̂ and ĥ stand for vertical and horizontal polarizations, Equation (1)
is fully described by explicit form:(

Evs
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)(
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)
(6)

For a single polarization channel Equation (6) is reduced to the scalar expression:

Es =
e−jk(rs+ri)

rsri
SEi (7)

where Es and Ei can be either vertically or horizontally polarized, and S is the corresponding
polarization complex scattering coefficient. It means that each polarization channel can be treated
separately.

Notice that:

• as the transmitting and receiving antennas are located at a large distance from the scatterers
compared to the region of interest, the electromagnetic wave is assumed to be a plane wave to
compute the S coefficient whereas it is considered spherical from the wave path point of view to
minimize locations approximations.

• the phase origin of the incident field is chosen to be on the emitting antenna, and its magnitude is
normalized to 1, such as Ei = 1ej0V ·m−1. The study is then performed for a unitary incident field
which can be removed from Equation (7) for readability reason, though still physically present.
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By stacking the expression of Equation (7) for a set of M measurements distinguished by the
pairs of incoming and outcoming directions and frequencies, and assuming that S does not depend on
these parameters (like a “bright point”), the vector of measurements can be decomposed as a linear
expression:

E1
s
...

EM
s

 =


e−jk1(r1s+r1i )

r1sr
1
i

...

e−jkM(rMs +rMi )

rMs rMi

S = aS (8)

Nevertheless for realistic scatterers, the coefficient S modeling the target is not constant according
to the antennas parameters: frequency, incidence, and scattering directions. For given radar parameters
and target properties, S becomes a vector whose values vary from a measurement configuration to
another. Doing so, it characterizes the target’s electromagnetic signature. The vector of measurement
Es has thus to be decomposed as the componentwise product of a(p), dependent on the relative
target/antennas location p, and S(ξ), dependent of the target properties set ξ, which gathers the
variables sought. Equation (8) is rewritten as:

Es(p, ξ) = a(p)⊙ S(ξ) (9)

where ⊙ symbolizes a term by term vector product making Equation (9) nonlinear.

3. THE INVERSE PROBLEM FORMULATION

3.1. Step 1: Direct Problem Linearization

With fixed target location and parameters, Es depends linearly on Ei (Equation (7)). However,
dependency on the location and parameters of the target is highly nonlinear. Before to be able to
inverse the direct problem, it has first to be linearized.

To simplify the problem, we propose to approximate the set of possible vectors S(ξ) for a given
range of parameters ξ by a linear subspace of dimension K, described by an orthonormal basis
U = (u1, . . . ,uK). Es in Equation (9) can then be approximated by

Es(p, ξ) ≈ a(p)⊙

(
K∑
k=1

Xkuk

)
(10)

where Xk are the coefficients of the approximation of S(ξ) in the basis U.
In order to determine the linear space used to approximate the model S, prior information about

the target is introduced. Ranges of parameters are fixed (radius a, height h, Euler tilt angles (α, β),
and complex relative permittivity ϵr), and a training set of vectors S is computed using numerical
simulations of the direct problem with the electromagnetic model (see 2.1). As the dependency on the
position and S are separable, the cylinder phase center is arbitrarily located at the (0,0,0) coordinates.
A model order K is fixed, and the basis vectors (u1, . . . ,uK) are then obtained by computing the left
singular vectors decomposition of the matrix collecting the training S vectors.

When N multiple sources are present, the noisy measured field is decomposed as the sum

Es =
N∑

n=1

K∑
k=1

(a(pn)⊙ uk)Xnk + rK + n (11)

where pn is the location p of the n-th source, rK the approximation error vector, dependent on
the position and parameters, and n a measurement noise vector, which we will assume to be white,
Gaussian, and independent on the target parameters. The problem is simplified by the linearization
of the dependency of the model with respect to the target parameters. This simplification comes at
the cost of a model error rK and a larger number of linear parameters Xnk, compared to the original
nonlinear parameters.
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3.2. Step 2: Location Estimation Using Group Sparsity

Equation (11) is the direct electromagnetic model for several cylinders centered at given locations.
To estimate the locations of the targets, we propose to use sparse estimation methods. A grid

of possible locations is built Π = (z1, . . . , zP ), and the measured field (11) can be assumed to be a
sparse sum of sources located on the grid (that is, only a few sources have a nonzero contribution in
the measured data):

Es =
P∑

p=1

K∑
k=1

(a(zp)⊙ uk)Xpk + rK + n (12)

=

P∑
p=1

ApXp + rK + n (13)

where the matrix Ap contains the vectors a(zp) ⊙ uk as columns, and the vector Xp contains the
coefficients of the source located at zp. It is assumed that most of the Xp are zero. With A obtained
by horizontally concatenating the matrix Ap, and X the vertical concatenation of the Xp, we obtain a
simple linear model:

Es = AX+ rK + n (14)

3.2.1. Problem Generalization: Scattering Mechanisms

We recall that the dictionary matrix A has been obtained for a single interaction mechanism, the single
bounce in Equation (6), and has to be renamed ASB. The process is the same to build the ADBa,
ADBb, and ATR matrices for the double and triple bounce mechanisms. All the four are made with
their respective target subspaces matrices USB, UDBa, UDBb, and UTR. The global dictionary matrix
is then the concatenation of the four mechanisms dictionary matrices such as:

A = [ASB,ADBa,ADBb,ATB] (15)

3.2.2. Group-Sparsity Constraint

The source localization problem relies on an imaging zone materialized by a 3D grid where each different
cylinder is supposed to be located on a different node. That is the meaning of Equation (13). If
the number of nodes is large enough compared to the cylinders number, which is easily achieved in
forest radar imagery particularly at low frequencies, group sparsity property can be used conveniently.
Compared to sparsity, where a vector is assumed to have a few nonzero coefficients, group-sparse vectors
are assumed to be divided in blocks, and most of these blocks contain only zero coefficients. However,
in non-zero blocks, the number of nonzero coefficients is not considered. Here, a block corresponds to
a possible source location, and a nonzero block to a source is actually present in the domain. Each
coefficient in a block corresponds to the weight of the vector uk in the approximation of the source
scattering coefficient. In this block-OMP algorithm, as for a conventional OMP, sources are identified
iteratively, by maximizing the energy of the projection of the data in the space corresponding to a
source what we call, in this paper, the OMP criterion defined by:

ρz(E) = ∥Pz(E)∥22 (16)

where E is the data, and Pz is the orthogonal projector on the space spanned by the K vectors a(z)⊙uk.
From the Block-OMP solution X of Equation (14), a 3D image I(zp) is built for each mesh zp with:

I(zp) =

Ksupp∑
k=1

∣∣Xzp
k

∣∣2 (17)

where Ksupp is the sum of the subspace sizes K (in Equation (11)) for each scattering mechanisms.
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3.3. Step 3: Scattering Pattern Reconstruction

Once the cylinders have been localized by their indices on the 3D meshing, their amplitudes can be
estimated by solving the least-squares problem

X̂scatt = argminX∥Y −AscattXscatt∥22 (18)

where Ascatt is the dictionary matrix A non-orthonormalized but reduced by keeping only the columns
corresponding to the nodes where the targets have been located. This additional step allows to use a
scattering dedicated subspace size Kscatt ̸= Ksupp whose effect is investigated in Section 4.4.

From Equations (9) and (10) it comes:

S(ξ) ≈ U ·Xscatt (19)

allowing the reconstruction of the S values varying according to antennas parameters. That is, the radar
signature of each target separately, for each scattering mechanism separately, is obtained depending on
which block of Xscatt is chosen and using the corresponding U.

3.4. Step 4: Biophysical Parameters Inversion

Inherently the direct “approximate” scattering model (see Section 2.1) computes the SSB, SDBa, SDBb,
STB terms of Equations (1) to (4) for a single cylinder whose phase center is located at the center of the
system of axes. And the cylinder is described by its biophysical parameters (radius, height, tilt Euler
angles, and complex relative permittivity). Therefore “approximate” model can be used to compute
and minimize a cost function in an iterative inverse algorithm. To do so, we have chosen a Particle
Swarm Optimisation (PSO) algorithm [25]. In this work, the swarm is composed of a population of 50
particles. We only use the estimated SSB term to compute a cost function as Equation (1) does not
involve ground specular reflection G coefficients (see 3.3). We compute the cost value for each particle,
for a single polarization channel VV and for the M measurement configurations as:

costpart. =
1

M

∑
M

(∣∣∣∣∣SSB − Spart.
SB

SSB + Spart.
SB

∣∣∣∣∣
)

(20)

where SSB is the column vector coming from Equation (19) associated with the scatterer under interest.

It is the data set to fit with Spart.
SB which is the scattering coefficients vector computed for only one particle

bio-physical parameters set. Each particle has its own cost value, and we assume that the particle with
the lowest cost value provides the best biophysical parameters solution. The convergence criterion used
here tests the stability of the biophysical parameters set obtained for the lowest cost particle during a
fixed number of iterations. To validate the convergence, each PSO inversion has been further performed
five times.

4. PRELIMINARY ASCERTAINMENTS

This section presents several aspects of the inversion model, for a single vertical cylinder lying on a
metallic flat ground and then for both vertical and tilted cylinders. We show the key role of an imaging
zone translation on CRBs and 3D image focalization. We investigate some properties of target subspaces
to solve sources tilt angle estimation. Then we study the impact of the target subspaces sizes on the
cylinder location and on the scattering coefficients inversion.

But we need first to introduce the Cramér-Rao Bounds (CRB) which are used to assess the results
in noisy conditions.

4.1. CRB Generalities

The CRB is a lower bound on the variance of any unbiased estimator. These bounds can be used to
design an experimental measurement setup, or assess the efficiency of an estimator. If the variance
of an unbiased estimator reaches the CRB, the estimator is said to be a minimum-variance unbiased
estimator (MVUE).
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In general, CRBs are obtained under regularity conditions on the likelihood of the model and trough
the computation of the Fisher Information Matrix F.

The covariance matrix of an unbiased estimator of a vector of parameters θ is bounded by the
inverse of the FIM:

E

{(
θ − θ̂

)(
θ − θ̂

)T}
≥ C (θ) = F−1 (21)

In the case of a Gaussian model, where the measurements are assumed to be drawn according to

m ∼ N
(
µ(θ), σ2I

)
(22)

the coefficients of the FIM are given by

Fij(θ) =
1

σ2
m

ℜ

[(
∂µ(θ)

∂θj

)(
∂µ(θ)

∂θj

)T
]

(23)

In our application, the vector of parameters to be estimated is θ = (p, ξ), and the measurements
Es, the VV-polarized scattered field, are given by Equation (5). Its derivatives are computed for a single
representative scatterer whose each parameter is the mean value over its own seeking domain, except
for the cylinder phase center height located at x = y = 0 and z = ⟨h⟩/2. The unknown parameter
vector θ will be:

θ = [x, y, z, a, h,ℜ(ϵr),ℑ(ϵr)]T (24)

where x, y, z is the location of its phase center; a, h, and ϵr are respectively the radius and height of
the cylinder and its relative permittivity.

Then, the diagonal terms of the CRB matrix yield lower bounds on the variance of the estimation of
the parameters. The CRB associated with a parameter is homogeneous to a variance, and its dimension
is the dimension of the parameter squared. In the next section, they will be compared to the covariances
of the estimated parameters using the proposed methods, obtained by Monte-Carlo simulations.

4.2. Prerequisites on Antennas/Target Relative Locations

Antennas locations are defined separately on an upper half-sphere (z coordinate > 0) with the (Ri, θi, ϕi)
spherical coordinates for each emitter and with (Rs, θs, ϕs) for each receiving antenna. That allows
monostatic and bistatic configurations in the antennas coordinates frame. The imaging zone can be
centered on the antennas coordinates frame or be translated according to the x and/or y axes. We
present here the results of such translations that point out our choice to translate the center of the
imaging zone. That will be illustrated by two kinds of results, CRB values and source localization.

4.2.1. The Effect of Scene Translation on CRBs

The CRB matrix, computed through Equations (23) and (21), is calculated for several xy-cylinder
locations in order to investigate the effect of geometric symmetries between the cylinder location and
the half-sphere supporting the antennas.

We have then computed the CRB matrix with σm =
Psignal

SNR for SNR = 20dB and with a signal

mean power Psignal = ⟨|Es|2⟩M with M being the measurements vector size. Locations on x and y axes
have been chosen between −1500m and +1500m with steps of 100m. The diagonal terms provide the
covariance of each one of the seven parameters in θ (Equation (24)). Here we have chosen to show
the CRBs results in [m2] only for the radius a [m] and the cylinder phase center height z [m] in the z
direction, as they are representative of the others.

Figures 2(a) and 2(b) show different range values but a complementary behaviour of the CRB(x, y)
values respectively for the z location and a, particularly visible at the location (x = 0, y = 0). CRBz

coefficient is maximum whereas CRBa coefficient is minimum. Notice that CRBh and CRBz share the
same behaviour, the highest levels at (x = 0, y = 0), and CRBa,CRBx,CRBy,CRBℜ(ϵr),CRBℑ(ϵr) too
and the lowest levels at (x = 0, y = 0).

CRB(x, y) boundaries values for each parameter are given in Table 1. We point out that CRB
coefficients are conversely proportional to SNR. Numerical values of Table 1 can be used to get an order
of magnitude for different SNR values.
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(a) CRB(x; y) for the height z variable (b) CRB(x; y) for the radius a variable

Figure 2. CRB(x, y) [m2] for (a) the height z and (b) the radius a variables with a maximum (resp.
minimum) near (x = 0, y = 0) in yellow (resp. blue).

Table 1. CRB(x, y) coefficients boundaries values with SNR = 20dB.

CRB of parameter: CRB(x, y) min value CRB(x, y) max value

radius a [m2] 8.9e-08 2.6e-07

height h [m2] 7.8e-05 1.3e-04

x-phase center location [m2] 2.1e-07 7.1e-07

y-phase center location [m2] 2.1e-07 6.5e-07

z-phase center location [m2] 2.0e-05 3.0e-05

Permittivity real part ℜ(ϵr) 1.3e-02 2.8e-02

Permittivity imaginary part ℑ(ϵr) 3.9e-03 1.2e-02

Lowering the CRB coefficients using the cylinder xy-location and by extension, the xy-location of
the imaging zone has no best global solution. But if we aim to inverse the xyz-location of a cylinder as
precisely as possible particularly in z, we would have to choose an imaging zone center far away from
the global coordinate center.

4.2.2. The Effect of Scene Translation on 3D Imaging

The example shown in this section aims to highlight the effect of scene translation on the OMP process
itself. That is why the problem Es = AX+rK is solved (Equation (14)) without noise. A single vertical
cylinder is placed upon a metallic ground and is measured in VV polarization. The A matrix is given
by the Equation (15).

We investigate the consequences of the imaging zone translation on the OMP process by comparing
two configurations, with the imaging zone being translated or not: Cloc = [−1000, 1000, 0]m or
Cloc = [0, 0, 0]m where Cloc is the center of a local coordinate system used to locate the cylinder
in the imaging zone. Therefore, it is also a vector depicting the translation of the imaging zone center
from the antennas coordinates center. As a result, Figure 3 shows the spread of ρ(z) (Equation (16))
in 1-dimension according to the z-axis direction for the cylinder (x, y) true location.

This numerical experiment shows:
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Figure 3. Normalized ρ(z) (Equation (16)) according to height z (m) at the (x, y) ground truth location
for Cloc = [0, 0, 0]m and Cloc = [−1000, 1000, 0]m.

• The subspace decomposition works efficiently by giving the maximum power of Equation (17) at
the ground truth height location (the cylinder phase center is at 6m height depicted by the black
square) whatever the translation is.

• The Cloc = [−1000, 1000, 0]m translation clearly enhances the image focalization in z axis direction
what could be useful to enhance the resolution.

This example explains why, even if the source location is successful in both cases, we have chosen to
translate the imaging zone to avoid locations errors in the case of two tree branches located one above
the other.

More generally, this example points out the effect of the antennas-imaging zone relative locations
on image focalization and asks clearly the question of optimizing the antennas carrier trajectory.

4.3. 3D Imaging: Subspaces Properties according to Cylinder Tilt Angle

A single target subspace allows decompositions for cylinders of different sizes and different permittivities
on parameters ranges large enough for an application to tree trunks or large primary branches (see
Section A.2). But subspace decomposition is more sensitive to tilt angles range, and it would be
interesting to take advantage of this property. Here we show the example of two cylinders differing by
their size, permittivity, and tilt angles. Two different subspaces are built, and the two databases (see
Section 3.1) differ only by the tilt angle used to compute them: one typical cylinder is vertical, and the
other is tilted by α = 30◦ and β = 60◦ Euler angles (see Section A.1.1).

OMP results are shown as 3D images I(zp) (Equation (17)) in Figure 4 under additive Gaussian
noise constraint (SNR = 20dB and Ntest = 1000 noisy vector measurement samples). The 3D imaging
zone range is [min = −2.5m, max = 2.5m] on x and y axes, and [min = 1m, max = 10m] on z axis,
by steps of 0.5m. It is translated from the antennas origin with a Cloc = [−1000, 1000, 0]m vector.
In the 3D imaging zone local coordinates, the cylinders phase centers are located at [1.5,−1, 6]m and
[−1, 2, 5]m for the vertical and the tilted cylinders, respectively.

Four cases are presented here. The first one (Figure 4(a)) shows that the vertical cylinder
measurements which have been projected on a target subspace (TSS) computed for a vertical cylinder
provide a correct location. Figure 4(b) points out an important result: when a tilted cylinder is projected
on a target subspace which has been computed for a vertical typical cylinder, 3D imaging fails for each
one of the Ntest OMP runs. To obtain an accurate estimation of the position, the tilted cylinder
measurements have to be projected on a target subspace built with the appropriate tilted typical target
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(a) Vert. Cyl. and "vertical" TSS (b) Tilted Cyl. and "vertical" TSS

(c) Tilted Cyl. and "tilted" TSS (d) Both Cyl. and both jointed TSS

Figure 4. OMP 3D images I(zp) for (a), (b), (c) one and (d) two cylinders: vertical and/or tilted
cylinder projected on a “vertical” and/or “titlted” Target SubSpace (TSS) obtained for Ntest = 1000
noisy measurement samples (SNR = 20dB). Red star: cylinder phase center ground-truth location. Red
dashed lines: location projection on coordinate axis. Bold Green dashed lines illustrate each cylinder
axis. Blue circle: superposition of the Ntest OMP solutions.

(Figure 4(c)). Here, this tilt angle has been chosen equal to the ground truth (α = 30◦ and β = 60◦) to
illustrate that introducing a priori information on tilt angles through the target subspaces is necessary
to localize accurately target echoes. Finally, Figure 4(d) shows the solution of the 3D imaging process for
both tilted and vertical cylinders together by using jointed vertical and tilted cylinder target subspaces.
The OMP algorithm detects both targets at the true location for each noisy measurement vector sample.

Notice that the OMP algorithm provides the same solution for each noisy measurement sample.
This means that it is not sensitive to an SNR = 20dB weak noise level at this space meshing size of
[0.5, 0.5, 0.5]m. The effect of noise on the target location retrieval is investigated in Section 5.

Furthermore, the structure of the solution vector X of Equation (14) provides more information.
Indeed, it owns the same structure as the dictionary matrix A (Equation (15)), by blocks of meshing,
scattering mechanisms, and target subspaces. As an illustration of that, the OMP criterion ρz
(Equation (16)) is plotted under additive gaussian noise conditions as histograms (for Ntest = 1000
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(a) Vert. Cyl. and "tilted" TSS (b) Vert. Cyl. and "vertical" TSS

(c) Tilted Cyl. and "vertical" TSS (d) Tilted Cyl. and "tilted" TSS

Figure 5. Histograms of the OMP criterion values (ρz in Equation (16)) computed with a “vertical”
and a “tilted” Target SubSpace (TSS) for a vertical and a tilted cylinder and for Ntest = 1000 noisy
measurements vectors samples (SNR = 20 dB). Upper figures (a) and (b) for a vertical cylinder and
lower figures (c) and (d) for a tilted cylinder. From left to right, increasing histograms abscisses values
showing increasing values when the well-suited TSS is chosen, even in presence of noise.

noisy measurements vectors samples with SNR = 20dB) in Figure 5. Two configurations are under
test: the case of a vertical cylinder, upper figures (a) and (b), and the case of a tilted cylinder, lower
figures (c) and (d). For both cylinder tilt configurations, Block-OMP algorithm has been processed using
a vertical or a tilted Target Subspace (TSS). It means that the orthogonal basis U (see 3.1) is built from
a typical vertical or tilted cylinder. Figure 5 shows clearly that a vertical cylinder measurement has a
larger OMP criterion when the corresponding Target Subspace is used even in the presence of noise.

The main conclusion is that in a realistic imaging process where we are looking for a cylinder
with an unknown tilt angle, we would have to build several target subspaces for different tilt angles.
Therefore, we would have to mesh the tilt angles ranges and consider each angle configuration as the
center of a patch. Then all the patches would have to be merged to cover all the tilt angles range. This
method has to be further investigated, but if it is practicable the main drawback would be the huge
size of the dictionary matrix A in Equation (15). On the other hand, the main advantage is that the
information about each cylinder’s tilt angles is contained within the OMP outgoing vector X.
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4.4. Inversion Process: The Effect of the Subspace Size

In this section, we investigate the effect of the truncation order K on the SVD used to build the basis
U modeling the scattering coefficients for a range of physical parameters set ξ.

Bias and variance of the estimation of the location and the scattering coefficient in VV polarization
are estimated by numerical simulations, with following parameters: a single vertical or tilted cylinder
measurement is simulated according to M= 2000 antennas parameters sets (see Section A.1.1). A
SNR = 20dB white Gaussian noise is added leading to Ntest= 1000 noisy measurement vector samples.
The OMP algorithm is applied to solve the source localization problem for several subspaces dimensions
K (Section 4.4.1). Then the VV scattering coefficient (Section 4.4.2) is computed from the least-squares
solver (Equation (18)) followed by the change of basis (Equation (19)) using an increasing subspace size
K.

For both location and scattering coefficient estimation, with increasing K, bias decreases. However,
the degree of freedom increases with the subspace size K, and it is expected that the variance degrades.
Then the Mean Square Error (MSE), sum of the variance and bias squares, presents a minimum. We
note that this optimal K will depend on the noise level.

4.4.1. Source Localization

The dictionary matrix in Equation (15) is built for 14 sets of increasing subspaces sizes with Ksupp =

KSB
supp + KDBa

supp + KDBb
supp + KTB

supp and for each scattering mechanism: KSB
supp = KTB

supp = 2 + 3k and

KDBa
supp = KDBb

supp = 2 + 2k with 0 ≤ k ≤ 13.
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Figure 6. Location estimation MSE, Bias2, Variance and CRB versus Target Subspace size
configuration, Ksupp. Ntest = 1000 noisy measurement vector samples with SNR = 20dB additive
white gaussian noise. (a) Vertical cylinder. (b) Tilted cylinder.

Figure 6 indicates different shapes but similar MSE trends with an acceptable minimum for the
sixth size configuration for both vertical (Figure 6(a)) and tilted (Figure 6(b)) cylinders. That is:

• Vertical cylinder: [KSB
supp,K

DBa
supp ,K

DBb
supp ,K

TB
supp] = [17, 12, 12, 17].

• Tilted cylinder: [KSB
supp,K

DBa
supp ,K

DBb
supp ,K

TB
supp] = [17, 12, 12, 17].

Notice that CRB remains always lower than the variance, as expected.

4.4.2. Scattering Coefficient

For the VV scattering coefficient estimation, the total subspaces size Kscatt = KSB
scatt+KDBa

scatt +KDBb
scatt +

KTB
scatt, the four being equal and following KSB

scatt = 2 + 6k with 0 ≤ k ≤ 13.
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Figure 7. MSE, Bias2, and Variance versus size subspaces configurations Kscatt of the estimated
scattering coefficient Sest

SB. (a) Vertical cylinder. (b) Tilted cylinder.

Figure 7 shows only the MSE, the bias, and the variance for the single bounce mechanism as only
this scattering mechanism is used for biophysical parameters retrieval (see Section 3.4), but the three
other mechanisms provide similar results. For the vertical cylinder (Figure (a)), both real and imaginary
parts of Sest

SB provide a lowest MSE for the third configuration whereas it is the fourth configuration for
the tilted cylinder (Figure (b)). That is:

• Vertical cylinder: [KSB
scatt,K

DBa
scatt ,K

DBb
scatt,K

TB
scatt] = [14, 14, 14, 14].

• Tilted cylinder: [KSB
scatt,K

DBa
scatt ,K

DBb
scatt,K

TB
scatt] = [20, 20, 20, 20].

Notice that CRBs are not computed for the scattering coefficients but only for the biophysical
parameters. Such comparisons are presented in Section 5.

5. INVERSION PROCESSING EXAMPLE

This section investigates the effect of noisy M measurements vector such as Es = A ·X + n where n
is an additive noise vector following the Gaussian normal law N (0, σ2.Id). The variance σ2 is obtained

through an arbitrary Signal-to-Noise Ratio value such as SNR = ⟨|Es
NO noise|2⟩M

/
σ2 = 20dB. Noisy

simulations are performed over Ntest = 1000 samples of noisy measurements Es vectors (see simulations
parameters in Section A.1.1).

Antennas locations are illustrated in Figure 8(a). They are spread over a hemisphere according
to linearly spaced incidence and azimuth angles. Antennas are either receivers or emitters allowing
monostatic and bistatic configurations. Each antenna points at the imaging zone which is reduced to a
point at this large scale, centered at Cloc = [−1000, 1000, 0]m coordinates.

In this example, we will further study the problem of two cylinders (see Figure 8(b)). In the previous
Section 4.3, Figure 4(d) provided the OMP results of location estimation for Ntest noisy measurements
vectors. 3D image (Equation (17)) was given in the local coordinates system, with a Cloc translation
vector. This simulation has shown clearly that the inversion process is not sensitive to a noise power
corresponding to a SNR = 20dB at a large scale meshing, 0.5m3 cube as illustrated in Figure 8(b): the
ground truth, Ntest estimated locations, and their average are found at the same place. If we want
to observe the effect of noise at lower scale, both cylinders have to be treated separately to achieve a
meshes size small enough.

For each cylinder separately, Ntest = 1000 noisy measurements vectors samples are simulated
independently assuming an additive white Gaussian noise. The inversion process described in this
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Figure 8. (a) Antennas locations in their coordinates system: Blue direct trihedral. Red star: emitters
and receivers locations. Antennas are pointing toward the imaging zone (dotted lines) located according
to the Cloc = [−1000, 1000, 0]m translation vector. (b) Mesh of the imaging zone (blue dots) with both
cylinders. Notice that even if the cylinders overflow the mesh, their phase centers remain inside.

paper is repeated for each noisy measurement sample. The figures shown in this section (histograms
and 3D images) are then the results of a Monte-Carlo approach.

5.1. Location Estimation

The source localization problem is solved Ntest times by the OMP algorithm. Figure 9 provides the
resulting 3D image whereas Figure 10 shows the same results as histograms for the (x, y, z) cylinder
phase center coordinates, in meters. Notice the imbalance between the scales in z and x, y. The point
cloud is clearly ellipsoid-shaped and its main axis oriented according to the cylinder lengthwise axis. A
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Figure 9. 3D image (Equation (17)) of OMP estimation of Cylinders locations (SNR = 20 dB and
Ntest = 1000 noisy measurements vectors samples) Black dots: Ntest estimated locations. Cyan lines:
cylinder axis ground truth. Red circles: ground truth phase center location. Green Circles: mean
locations averaged over the Ntest estimations. (a) Vertical cylinder. (b) Tilted cylinder.
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(a) (b)

Figure 10. Histograms of cylinder estimated locations [x, y, z]est in [m] for SNR = 20 dB and
Ntest = 1000 noisy measurements vectors samples. (a) Vertical cylinder. (b) Tilted cylinder.

weak location bias of the order of a few millimeters appears as a consequence of the trade-off between
the bias and the variance when subspaces sizes have been chosen (see Section 4.4.1). Nevertheless, tilted
cylinder location estimation seems to be more accurate.

5.2. Biophysical Parameters Estimation

Figure 11 provides the results of the biophysical parameters estimation (radius a, height h and relative
complex permittivity ϵr) as histograms, obtained through the PSO algorithm (see Section 3.4). As a
global representative estimator, we decide to show the result of this procedure to obtain the magenta
stems:

(a) (b)

Figure 11. PSO estimation histogram PSO(Sest
SB) of the cylinder physical parameters: radius

a [cm], height h [m] and real and imaginary parts of the relative permittivity ϵr. Red stem:
parameter ground truth. Blue dotted stem: ⟨PSO(Sest

SB)⟩Ntest. Magenta dashed stem: PSO(Sest
SB ←

(⟨[x, y, z]est⟩Ntest, ⟨YN ⟩Ntest)). Ntest = 500 for time consuming reasons. (a) Vertical cylinder. (b)
Tilted cylinder.
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• Choose the biased location of the previous location estimation, bias([x, y, z]est) (green results in
Figures 9 or 10).

• Estimate the scattering coefficients for a target at this location from Equations (18), (19) and
extract the single bounce contribution Sest

SB.

• Perform a single PSO estimation for this Sest
SB database.

Results are pretty good when comparing the parameters estimate to the corresponding mean parameter
averaged over the Ntest = 500 PSO estimations or to the ground truth. It is all the more important
that the PSO process is particularly slow: we have been obliged to reduce the Ntest value from 1000
to 500 to keep an acceptable computation time but far away from what is called real time. Reducing
the process to a single PSO estimation is then a challenge.

5.3. Covariance and CRB Predictions

The last results presented in this paper are gathered in Table 2. Homogeneous to a standard deviation,
they are the square root of the diagonal terms of the CRB and the covariance matrices, respectively
σCRB =

√
CRB and σcov =

√
diag(covariance). Notice that the covariance matrix is obtained using the

Ntest = 500 samples of the cylinder estimated parameters set ξest = (radius a, height h, phase center
locations (x, y, z), and relative permittivity ϵr). These results lead to the conclusions:

• σCRB coefficients are less than the covariance ones, to see as a numerical validation.

• (x, y, z)-locations values indicate that a minimum variance unbiased estimator (MVUE) is found
as σCRB and σcov coefficients are in the same neighborhood. Furthermore, σCRB for z coordinate
is larger than for (x, y) ones when being computed for a vertical cylinder, whereas for the tilted
one, the σCRB for (x, y, z) coordinates is more balanced. One can observe here the effect of the
cylinder’s main axis tilt.

• as found before, σCRB coefficients for height and radius are a bit weaker for the tilted cylinder than
for the vertical one. σcov coefficients are larger but have the same trend.

• σcov coefficients for ϵr are unacceptably huge, particularly for the vertical cylinder.

Comparisons between σcov and σCRB coefficients predict that a better estimator exists for
biophysical parameters estimation than the PSO does. To reach a better estimation with a much
lower variance is a crucial issue for the relative permittivity.

Table 2. Covariance and CRB of biophysical parameters for noisy simulated data.

Vertical Cylinder Tilted Cylinder

Phys. parameter σCRB σcov σCRB σcov
radius a [m] 2.5e-4 1.4e-2 1.6e-4 1.8e-3

height h [m] 6.2e-3 1.05e-2 5.3e-3 6.1e-3

x location [m] 4.7e-4 6.6e-4 2.3e-3 2.7e-3

y location [m] 5.6e-4 7.4e-4 1.4e-3 1.7e-3

z location [m] 2.9e-3 4.6e-3 1.5e-3 2.2e-3

ℜ(ϵr) 8.9e-2 3.4 9.5e-2 7.5e-1

ℑ(ϵr) 4.4e-2 2.6 7.7e-2 4.5e-1

6. CONCLUSIONS AND DISCUSSION

This paper introduces an original way to inverse the physical parameters of two different dielectric
cylinders lying above a PEC soil, seen as a “primitive” tree from an electromagnetic point of view,
using VV-polarization low-frequencies (300–320MHz) radar simulated data. Simulation results prove
that a first step forward is taken successfully using:
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• a target subspace decomposition based on simulations which is an efficient way to introduce a priori
information and to linearize the physical problem allowing a full-inversion.

• a sparse optimization method which is particularly well suited for 3D imaging applications

• a block structure enabling to retrieve the scattering coefficient separately:

– for each target (cylinder)
– for each polarization channel (expected theoretically)
– for each scattering mechanism

• a stochastic inversion algorithm to estimate the biophysical parameters.

Finally, this first study aims to identify what is necessary to process simulated data and to point
out the relevant questions for further investigations, that are:

• Investigate other estimators for scattering complex coefficients and biophysical parameters retrieval.

• a direct scattering model is used to simulate pure and noisy radar measurements. Its formalism
is also used to inspire the inversion process. That constitutes a typical “inverse crime” case. One
way to overcome this lack would be to simulate measurements with another electromagnetic direct
model such as [18] which has been validated in [19, 20].

• As we have built one target subspace for each cylinder orientation, one could imagine studying the
ability of this inversion process to recognize targets types through their respective target subspace:
target recognition application.

• How to sample physical parameters domain to build a relevant database for target subspaces?

• From a general point of view, we could imagine a large set of target subspaces computed for several
tilt angles samples to image any tilted cylinder and extract a tilt angle information from the target
subspaces. But one question arises: how to sample appropriately the tilt angles ranges and extract
a tilt angle in this case?

• Introduce the spatial resolution minimization as a prior constraint.

• How to take into account a more realistic scattering model of the soil? A dielectric flat ground
reflection coefficient G in Equation (1) would introduce soil permittivity parameter. How does it
impact the process? Would this process be able to retrieve soil parameters?

APPENDIX A. ALGORITHM INPUTS

A.1. Measurements Simulation Inputs

A.1.1. Ground Truth Parameters

First, we build a ground truth by defining the geometric dimensions of each cylinder (the radius a, the
height h), its tilt if needed (the Euler angles α and β), its phase center coordinates (x, y, z), and its
complex relative permittivity ϵr. The soil is modelled as a perfect conducting plane. The parameters
used to simulate a vertical and a tilted cylinder respectively are:

• radius a = 10 and 7 cm.

• height h = 12 and 7m.

• location of the phase center in the imaging box mark x = 1.5m, y = −1m, z = 6m (= h/2) and
x = −1m, y = 2m, z = 5m (> h/2).

• Euler tilt angles α= 0◦, β= 0◦, γ= 0◦ and α= 30◦, β= 60◦, γ= 0◦.

• cylinder relative permittivity ϵr= 11− i.7 and ϵr= 8− i.10. (−) indicates a exp+iωt time
convention.

• for simplification purpose the metallic ground is directly taken into account through its Fresnel
reflection coefficients (1 for the VV polarization and −1 for the HH one, both gathered in a diagonal
matrix reflection operator).
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A.1.2. Antennas Parameters

Second, we define radar parameters with frequencies, polarizations of interest, and antennas locations.
As we allow monostatic and bistatic configurations, antennas locations are defined separately for
the emitter with the (Ri, θi, ϕi) spherical coordinates with (Rs, θs, ϕs) for the receiving antenna.
Furthermore, we can apply an additive zero-centered gaussian noise through a signal to noise ratio
(SNR) on the simulated radar measurements.

As a first step and for simplification purpose, we omit to take into account the antennas radiation
pattern. That supposes a narrow primary lobe always directed toward the center of the target searching
box (the imaging zone) whose location is depicted by the translation vector Cloc in this paper.

The simulation parameters are:

• 5 linearly spaced frequencies in the range freq = [300; 320]MHz.

• the radius of the half-sphere Rs = Ri = 4000m.

• 4 linearly spaced zenithal angles in the range [20; 80]◦ for θs and θi and 5 azimuth angles respectively
[0; 4/5 ∗ 360]◦ for ϕs and ϕi.

• the total number of measurements used is then M= 2000.

• polarization of interest is VV even if the electromagnetic scattering models we developed can
simulate the four polarization channels (co- and cross-pols).

• a SNR = 100 in linear scale or SNR = 20 dB and Ntest = 1000 (or Ntest = 500 for PSO
computations) noisy measurement vectors samples.

A.2. Inversion Processing Inputs

The inversion process needs its own parameters. The dedicated inputs provide boundaries on the sought
parameters.

A.2.1. Meshing Parameters

The volume of interest where we want to locate the target (a cylinder) is defined as a meshing in the
three directions for 3D imaging. For each (x, y, z) dimension the user provides a minimum, a maximum,
and a mesh size value. This 3D box can be translated according to the global coordinate axes with
the Cloc = [τx, τy, τz] vector. This allows breaking the geometrical symmetries between the antennas
half-sphere locations and the imaging box meshes.

• the meshing on x axis: [−2.5, 2.5, 0.5]m.

• the meshing on y axis: [−2.5, 2.5, 0.5]m.

• the meshing on z axis: [1, 10, 0.5]m.

• translation from the global axis center: Cloc = [0, 0, 0]m or [−1000, 1000, 0]m.

A remark on the minimum value of the grid on z axis: it is not equal to zero because, for a mesh on
the ground single, double and triple bounce scattering mechanisms are no more distinguishable by their
propagation phases. Moreover, that configuration would mean that trunks or branches were horizontally
lying on the ground and inside for a half.

A.2.2. Biophysical Parameters

Each cylinder parameter is bounded in a realistic domain. This domain and the values taken inside are
used to build a target subspace (see 3.1). They are defined such as:

• the radius bounds bounda = 6 to 12 cm with 7 linearly spaced samples.

• the height bounds boundh = 6 to 14m with 9 linearly spaced samples.

• the real part of the relative permittivity bounds boundRepsr = 6 to 12 with 7 linearly spaced
samples.

• the imaginary part of the relative permittivity bounds boundRepsr = 6 to 12 with 7 linearly spaced
samples.



182 Dahon et al.

A.2.3. Target Subspace Size

The inversion process involves the target subspace vectors (see Section 3.1): retrieving the target location
(Section 3.2) and the scattering coefficient inversion (Section 3.3). There are different target subspaces
for each scattering mechanisms (single, double and triple bounces). The size K of each of them is chosen
according to the results obtained in Section 4.4: The target subspace size for target localization, namely
the support:

• Vertical cylinder: [KSB
supp,K

DBa
supp ,K

DBb
supp ,K

TB
supp] = [17, 12, 12, 17].

• Tilted cylinder: [KSB
supp,K

DBa
supp ,K

DBb
supp ,K

TB
supp] = [17, 12, 12, 17].

The target subspace size for target scattering coefficient linearization:

• Vertical cylinder: [KSB
scatt,K

DBa
scatt ,K

DBb
scatt,K

TB
scatt] = [14, 14, 14, 14].

• Tilted cylinder: [KSB
scatt,K

DBa
scatt ,K

DBb
scatt,K

TB
scatt] = [20, 20, 20, 20].
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15. Mermoz, S., M. Réjou-Méchain, L. Villard, T. Le Toan, V. Rossi, and S. Gourlet-Fleury, “Decrease
of L-band SAR backscatter with biomass of dense forests,” Remote Sensing of Environment ,
Vol. 159, 307–317, 2015.



Progress In Electromagnetics Research B, Vol. 95, 2022 183

16. Ulaby, F. T., K. Sarabandi, K. Mcdonald, M. Whitt, and M. C. Dobson, “Michigan microwave
canopy scattering model,” Int. Journal of Rem. Sens., Vol. 11, No. 7, 1223–1253, 1990.

17. Thirion, L., E. Colin Koeniger, and C. Dahon, “Capabilities of a forest coherent scattering model
applied to radiometry, interferometry, and polarimetry at P- and L-band,” IEEE Trans. on Geosc.
Rem. Sens., Vol. 44, No. 4, 849–862, 2006.

18. Bellez, S., C. Dahon, and H. Roussel, “Analysis of the main scattering mechanisms in forested
areas: An integral representation approach for monostatic radar configurations,” IEEE Trans. on
Geosc. Rem. Sens., Vol. 47, No. 12, 4153–4166, 2009.

19. Bellez, S., H. Roussel, C. Dahon, and J. M. Geffrin, “A rigorous forest scattering model validation
through comparison with indoor bistatic scattering measurements,” Progress In Electromagnetics
Research B , Vol. 33, No. 7, 1–19, 2011.

20. Bellez, S., H. Roussel, C. Dahon, J. C. Castelli, and A. Cheraly, “Full polarimetric bistatic radar
imaging experiments on sets of dielectric cylinders above a conductive circular plate,” IEEE Trans.
on Geosc. Rem. Sens., Vol. 51, No. 7, 4164–4176, 2013.

21. Fenni, I., H. Roussel, M. Darces, and R. Mittra, “Fast analysis of large 3-D dielectric scattering
problems arising in remote sensing of forest areas using the CBFM,” IEEE Trans. on Ant. and
Prop., Vol. 62, No. 8, 4282–4291, 2014.

22. Fall, M., H. Roussel, C. Dahon, M. Casaletti, I. Fenni, and R. Mittra, “A high performance MPI
implementation of numerical modeling of electromagnetic scattering from forest environment,”
IEEE APURSI , 2011–2012, 2016.

23. Sarabandi, K., Electromagnetic Scattering from Vegetation Canopies, Michigan University Press,
1989.

24. Ulaby, F. T., Radar Polarimetry for Geoscience Applications, Artech House, Inc., 1970.

25. Haupt, R. L. and S. Ellen Haupt, Practical Genetic Algorithms, Wiley Online Library, 2004.

26. Karam, M. A. and A. K. Fung, “Electromagnetic scattering from a layer of finite length, randomly
oriented, dielectric, circular cylinders over a rough interface with application to vegetation,” Int.
Journal of Rem. Sens., Vol. 9, No. 6, 1109–1134, 1988.


