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Abstract—Characterizing the cortical activity from electro- and
magneto-encephalography (EEG/MEG) data requires solving an
ill-posed inverse problem that does not admit a unique solution. As
a consequence, the use of functional neuroimaging, for instance,
functional Magnetic Resonance Imaging (fMRI), constitutes an
appealing way of constraining the solution. However, the match
between bioelectric and metabolic activities is desirable but not
assured. Therefore, the introduction of spatial priors derived from
other functional modalities in the EEG/MEG inverse problem
should be considered with caution. In this paper, we propose
a Bayesian characterization of the relevance of fMRI-derived
prior information regarding the EEG/MEG data. This is done
by quantifying the adequacy of this prior to the data, compared
with that obtained using an noninformative prior instead. This
quantitative comparison, using the so-called Bayes factor, allows
us to decide whether the informative prior should (or not) be
included in the inverse solution. We validate our approach using
extensive simulations, where fMRI-derived priors are built as
perturbed versions of the simulated EEG sources. Moreover, we
show how this inference framework can be generalized to optimize
the way we should incorporate the informative prior.

Index Terms—Bayes factor, EEG, fMRI, fusion, MEG, prior, rel-
evance.

I. INTRODUCTION

B ECAUSE neuroimaging gives access to both the localiza-
tion and the dynamics of the sources of cerebral activity, it

is nowadays a major tool for the investigation of any cognitive

Manuscript received September 30, 2004; revised March 2, 2005. J. Dau-
nizeau was supported by the Association pour la Recherche contre le Cancer.
C. Grova was supported by the J. Timmins fellowship from the Montreal Neu-
rological Institute. G. Marrelec was supported by the Fondation Fyssen. The
associate editor coordinating the review of this paper and approving it for pub-
lication was Guest Editor Dr. Guido Nolte.

J. Daunizeau, and H. Benali are with INSERM UMR-S U678/UPMC, Paris,
France, and also with the Centre de Recherches Mathématiques, Montréal,
QC, H3C 1K3 Canada (e-mail: jean.daunizeau@imed.jussieu.fr; habib.be-
nali@imed.jussieu.fr).

C. Grova is with the Montréal Neurological Institute, McGill University,
Montréal, QC, H3A 2T5 Canada. (e-mail: christophe.grova@mail.mcgill.ca)

J. Mattout is with the Wellcome Department of Imaging Neuroscience,
University College London, London, U.K. WC1N 3BG (e-mail: jmat-
tout@fil.ion.ucl.ac.uk)

G. Marrelec is with INSERM U494, Paris, France, and also with the Func-
tional Neuroimaging Unit, Université de Montréal, Montréal, QC, H3W 1W5
Canada. (e-mail: guillaume.marrelec@umontreal.ca)

D. Clonda and B. Goulard are with the Centre de Recherches Mathéma-
tiques, Montréal, QC, H3C 3J7 Canada (e-mail: clonda@crm.umontreal.ca,
goulard@crm.umontreal.ca).

M. Pélégrini-Issac is with the INSERM UMR-S U678/UPMC, Paris, France.
(e-mail: melanie.pelegrini@imed.jussieu.fr)

J.-M. Lina is with the Ecole de Technologie Supérieure, Montréal, QC, H3C
1K3 Canada, INSERM UMR-S U678/UPMC, Paris, France, and also with the
Centre de Recherches Mathématiques, Montréal, QC, H3A 2T5 Canada (e-mail:
jmlina@ele.etsmtl.ca).

Digital Object Identifier 10.1109/TSP.2005.853220

process. In contrast to positron emission tomography (PET)
and functional magnetic resonance imaging (fMRI), which
measure cerebral vascular and metabolic variations resulting
from changes in neuronal activity, electroencephalography
(EEG) and magnetoencephalography (MEG) are direct phys-
ical measurements of neuronal currents. Moreover, they are the
only modalities capable of resolving temporal patterns of neu-
ronal activity in the millisecond range [1]. However, knowledge
of the scalp electric (resp. magnetic) field does not allow an
estimation of, in an unequivocal manner, the current generators
with which this field is associated. The so-called EEG/MEG
inverse problem is said to be mathematically ill-posed; it has
no unique solution in the most general unconstrained case.

Relying on the physical concept of current dipole, which is
a plausible bioelectric source model [2], distributed methods
consist of describing a predefined dense set of dipoles, typi-
cally spread all over the cortical sheet [3]. Each of these ele-
mentary dipoles models a neuronal macrocolumn whose acti-
vation could potentially explain the measurements. Given this
anatomical constraint, estimating the amplitude of each elemen-
tary dipole is a linear problem and should allow not only the
localizaton of the activated areas but the quantification of their
spatial extent as well. However, the major drawback of this ap-
proach is the huge number of parameters to be estimated (ap-
proximately ) compared to the available data ( sensors).
Thus, the problem remains underdetermined, and regularization
is all the more needed to constrain the solution space by spec-
ifying some a priori information [4] (see also [5] and [6] for
typical Bayesian approaches). It is extremely appealing to intro-
duce spatial priors obtained from different neuroimaging tech-
niques (like fMRI) in order to improve the spatial accuracy of
the EEG/MEG inverse problem methods. The basic assumption
underlying such an approach is the existence of a coupling be-
tween the bioelectric activity and the Blood Oxygenation Level
Dependent (BOLD) response, which is the main biophysical
effect exploited by fMRI to infer part of the brain metabolic
activity. Previous EEG/MEG-fMRI fusion approaches have re-
lied on this implicit link to build their methodology [7]–[9]. Yet
divergences between the anatomical localization obtained by
functional techniques and those obtained from electrocortical
stimulations are not unfrequent (cf. [10] or [11] for review and
insights). This has insidious consequences in the constrained es-
timation of the EEG/MEG sources. For instance, in [7], the au-
thors have recognized that when fMRI was considered as the
“truth” for spatial information, serious bias might occur when
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an actual EEG/MEG source did not induce significant varia-
tions of the BOLD signal. Therefore, as it has been claimed in
[11]: “integration of functional modalities into the solution of
the neuroelectromagnetic inverse problem should be cautiously
considered until a more tight coupling between BOLD effects
and electrophysiological measurements could be established”.

Since the estimates of the EEG/MEG sources will be different
depending on the chosen prior, the reliability of the inverse
reconstruction should depend on the credibility of the prior
information, but given solutions constrained or unconstrained
by fMRI, which one should be chosen? One should evaluate
how much one can trust the constrained estimation, since it is
known that fMRI and EEG/MEG may not be fully concordant.
Any regularized estimation is the result of a tradeoff between
a data adequacy term (likelihood) and a regularization term
(prior). Intuitively, if the informative prior derived from fMRI
is more or less concordant with the underlying EEG/MEG
activity sources (which is desirable, but not necessarily so),
both the EEG/MEG data and the prior should “pull in the same
direction.” Conversely, the higher the mismatch between the
fMRI-derived prior and the EEG/MEG underlying sources,
the worse the conflict between the EEG/MEG data adequacy
and the fMRI-derived prior, compared with the result obtained
using a noninformative prior instead. This conflict, if it could be
quantified, should assess the relevance of the informative prior
assumption. In this paper, we propose to use the only EEG/MEG
data to characterize the relevance of any fRMI-derived prior
that could be incorporated in the EEG/MEG inverse problem.
This is done in a hierarchical Bayesian inference framework
[12], which allows the taking into account of the uncertainty
arising from any parametrization of the probabilistic model
(e.g., through the use of unknown variance hyperparameters).
The so-called Bayes factor then compares the posterior proba-
bility of the informative prior to that of a noninformative prior.
This index of the relevance of the informative prior allows us to
decide whether a given fMRI-derived prior should be included
(or not) in the inverse problem. Furthermore, we show how
this inference can be used to optimize the way we include the
informative prior.

In Section II, we detail the Bayesian framework built in order
to assess the relevance of the fMRI-derived prior model. In Sec-
tion III, we describe the strategy used to evaluate the proposed
methodology. The results are presented in Section IV and finally
discussed, together with the method in Section V.

II. THEORY: ASSESSING THE RELEVANCE OF

FMRI-DERIVED PRIORS

Let us assume that we have a linear forward model at our
disposal, which links the available data (EEG/MEG measure-
ments) to the parameters of interest (the intensities of the
dipoles):

(1)

where is the data matrix ( is the number of sensors
and the number of time samples), models an additive noise,

is the matrix of unknown parameters ( is the number of
dipoles), and is the linear transform operator (forward
operator). In the distributed source framework, is obtained by

solving the so-called forward problem for a given set of dipoles
with fixed position and orientation (spread perpendicularly to
the cortical surface) [13]. Each column of gives the expected
measurements on the scalp associated with the corresponding
unit dipole (its so-called forward field).

The ill-posed estimation of is done under ad-
ditional constraints derived from a given prior assumption.
The tradeoff between the data likelihood and the prior terms
is driven through additional parameters denoted as “hyperpa-
rameters” that have to be estimated. We wish to quantify the
posterior probability of any prior assumption included in the
inverse problem. Hence, we have to account for the uncertainty
arising from any varying parameter of the model. This is
done by considering all unknowns as nuisance parameters and
integrating the joint posterior probability density function (pdf)
upon them.

In the following, tr and will denote the trace and the
transpose of the matrix , respectively. Given any column
vector , diag is the diagonal matrix whose diagonal
elements are those of the vector . denotes the gamma
function evaluated at . For two variables and , stands
for “ given ” and for the probability of .

A. First Level of Inference: Estimating the Parameters

Assuming a specific prior model for the unknown parameters
of interest , the Bayesian inference framework allows us to
derive their estimation. Let us write Bayes’ rule:

(2)

where we have the following.

• is the pdf of , given the data, a
set of mutually independent hyperparameters , and
a certain hypothesis to be defined. The Maximum A
Posteriori (MAP) of maximizes this quantity.

• is the data likelihood, knowing the model
parameters and the hyperparameter . Here, we build
it, assuming both independence between and
and an i.i.d., zero-mean, and Gaussian noise

tr (3)

where the hyperparameter is the noise variance.
• is the prior pdf of , dependent on the hy-

perpameters , and on the hypothesis . We chose
to express the hyperparameter of the Gaussian prior pdf
of as a formal rescaling of the noise variance
[14]. This allows us to infer directly the relative weight
of the prior term in the posterior covariance pdf (see Sec-
tion II-B). Then, the prior pdf of is built as a zero-mean
Gaussian pdf, with the covariance matrix dependent on ,

, as follows:

(4)



DAUNIZEAU et al.: ASSESSING THE RELEVANCE OF FMRI-BASED PRIOR IN THE EEG INVERSE PROBLEM 3463

Note that we further assume the independence of the dif-
ferent time samples (as in the likelihood definition).

• is the data “evidence” that is conditional
on the hyperparameters and hypothesis . This quantity
does not play any role at this level of inference.

Given a set of hyperparameters , it is possible to de-
fine , which is the MAP estimate of , as the value that max-
imizes . This is equivalent to minimizing
the following functional, which is the sum of the log-likelihood
and a regularization term weighted by :

tr

tr (5)

Its analytical expression is straightforward:

(6)

where is defined as

(7)

In that parametrization of the problem, is formally indepen-
dent from the noise variance , in contrast to the posterior co-
variance matrix of , , which states that the efficiency of
the estimation decreases with the power of the noise.

B. Second Level of Inference: Estimating the Hyperparameters

Equation (6) shows that the estimation of remains condi-
tional on and hypothesis . Therefore, in order to optimize
the previous level of inference, we have to find an estimate for
the hyperparameter . Let us write Bayes’ rule for this second
level of inference:

(8)

where we have the following.

• is the posterior pdf of the hyperparam-
eters conditional on the data and hypothesis . We will
maximize this law to define an estimate of the hyperpa-
rameters.

• is the data likelihood of the hyperpa-
rameters and hypothesis . Since this quantity is the nor-
malization factor of the first level of inference (cf. (2)), it
is derived by integration of the numerator of (2) over (cf.
Appendix A):

tr tr (9)

• is the prior pdf of the hyperparameters. This law
is taken as Jeffreys’ law, which is a noninformative law

(uniform pdf over the log of the hyperparameter) invariant
to one-to-one reparametrization [15]):

and

where and are assumed to be a priori statistically
independent from each other and from the hypothesis .
Furthermore, and are defined as

• is the data “evidence” given the hypothesis ,
which does not have any influence on the inference at this
level.

Applying Bayes’ rule [see (8)] and integrating over yields
the posterior joint pdf of the hyperparameter conditional on
the hypothesis (cf. Appendix B):

tr tr (10)

where is a normalization coefficient (that does not depend
on ) such that

We finally define , which is the MAP estimate of , as the
value that maximizes the posterior pdf of given the data (and
hypothesis ):

(11)

No analytic expression exists for this estimate, but since this
pdf is unidimensional, we can evaluate it numerically by scan-
ning the admissible values of . Due to the high underdeter-
mination of the model, numerical difficulties complicate this
computation (see Appendix C). However, this so-called empir-
ical Bayesian strategy allows us to define conditional MAP esti-
mates of and . The former comes from (6), where is eval-
uated at using (7). The latter is derived by noting that

is inverse-Gamma distributed, with scale

and shape parameters tr tr

and , respectively (cf. Appendix B). This yields the
following estimator for :

(12)

C. Third Level of Inference: Assessing the Relevance of the
fMRI-Derived Prior Model

All that we have previously described was conditional on a
certain hypothesis , which was not explicitly stated, but was
introduced in the prior pdf of . In order to assess the relevance
of an fMRI-derived prior, we have to compare its data likelihood
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to that of a noninformative prior. Therefore, we define two hy-
potheses and :

1) : “The source intensities at time sample are inde-
pendent and have the same power.” Under the Gaussian
assumption, this is modeled as

(13)

In other words, the prior covariance matrix relative to
the hypothesis [cf. Section II-A, (4)] is .
Since this hypothesis does not favor any particular source,

will be denoted as the “noninformative” hypothesis
(null hypothesis).

2) : “The source intensities at time sample are indepen-
dent, with their power linked to the activation map de-
rived from fMRI data.” Under the Gaussian assumption,
this is modeled as

(14)

where is the linking function. Again, we can write
. This will be denoted as the “in-

formative” prior hypothesis. Since the prior variance of
each source is the deviation from its null prior mean, the
informative hypothesis may indeed be interpreted
as a parametrization of the prior power of the sources,
whatever the proper statistical nature of the fRMI acti-
vation map .

According to our empirical Bayesian strategy, we wish to
quantify the posterior probability of and , given the
only EEG/MEG data (without any dependence on other model
parameters). Thus, by comparing those two posterior probabili-
ties, we can define a measure of the relevance of the informative
prior.

We then write Bayes’ rule for this third level of inference:

(15)

where we have the following.

• is the posterior probability of the th hypoth-
esis given the data.

• is the data likelihood of . Since it is the
normalization factor of the second level of inference [cf.
(8)], it is derived by integrating upon the joint pdf of
the hyperparameter and hypothesis conditional on the
data (cf. Appendix D):

(16)

where the integral and the constant are defined as
follows:

tr

(17)

The integral has no analytical solution, but we can esti-
mate it by scanning on the admissible values of .

• is the prior law upon the considered assumptions.
In our case, we prefer not to privilege any of those and,
therefore, set a uniform law .

• is the data evidence. In order to normalize the pos-
terior law on our hypothesis space, we write

(18)

The posterior probability of each is, hence, defined as

Then, we define the prior relevance index as the logarithm of
the so-called Bayes factor [16], which, given that and
are a priori equiprobable, is written as

(19)

A positive value would mean that, given the only EEG/MEG
data, the hypothesis is more probable (or relevant) than the
hypothesis . In other words, one can “trust” the active areas
of the fMRI map and, consequently, favor the fMRI-constrained
estimate. Ideally, this should, for instance, correspond to situ-
ations where fMRI and EEG/MEG “see concordant sources”
and where the introduction of the fMRI-derived prior allows
the finding of (true) sources that are not “seen” when using
the noninformative prior. Conversely, a negative value would
mean that the sources identified by fMRI may not strictly corre-
spond to the sources underlying the EEG/MEG measurements,
yielding a biased (thus less probable) fMRI-constrained esti-
mate.

III. EVALUATION USING SIMULATED DATA

1) Objective: The question the methodology is meant to an-
swer concerns the choice of the estimate when both noninfor-
mative and informative priors are available.

We have therefore focused on studying the adequacy between
the relevance index , which is measured with respect to the
data only and some “gold-standard”-driven relevance metrics
that require the “ground truth” (the simulated sources).

2) Data Sets: In order to investigate different levels of
EEG/fMRI concordance/discordance, several fMRI maps
were built as perturbed versions of the actual distribution of
EEG sources . This allowed us to study the behavior of
the prior relevance index as a function of the “truth” of the
prior we defined. Three perturbations of the fMRI map were
considered:

• Random perturbation. The fMRI map was built as
a random perturbation of the simulated sources

, where
was a random vector that followed a zero-mean
Gaussian law . The higher the per-
turbation level , the less “relevant” the resulting
map. For each EEG simulated data, ten prior covariance
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matrices were then built, including the noninfor-
mative one (identity), and nine informative ones based
on nine maps perturbed at different levels ( ,
0.5, 1, 2, 4, 8, 16, 32, and 64). For each noise level, we
performed 50 simulations, and in each of them, two ex-
tended (approximately 2.5 cm ) sources were randomly
chosen onto the cortical sheet.

• Distance between the underlying EEG source and the
fMRI activation focus. For each simulated EEG source

, 13 fMRI foci were randomly drawn within
a corresponding increasing spatial neighborhood of the
EEG source ( 1.3, 1.9, 2.5, 3.2, 3.8, 4.4, 5.1, 5.5, 6.2,
6.9, 7.5, 8.1, and 8.8 cm, where denotes the distance
between the center of the simulated active area and the
center of the fMRI activity focus). Both and
had the same spatial extent. Fifty pairs
per spatial neighborhood were simulated. In this case,
the fMRI prior was defined as

.
• Occurrence of spurious fMRI activations not seen in

EEG. For each simulated EEG source , we built
two fMRI activation foci: one concordant (corresponding
to the simulated map ) and one discordant (em-
bodied in the so-called map). The discordant
fMRI focus, which is randomly drawn on the cortical
sheet, did not correspond to any EEG activation and will
be referred to as a spurious fMRI activation. All sources
had the same spatial intensity profile, but different in-
tensity ratios between the spurious and the concordant
fMRI activations were investigated. The informative
prior was then defined using the fMRI activation map

. For each
of the seven intensity ratios ( 0.01, 0.1, 0.5, 1, 5, 10,
and 100), 50 simulations were generated.

The head model used to simulate EEG signals consisted of
a smoothed three-dimensional (3-D) cortical surface composed
of 1148 sources. As it is commonly done in distributed mod-
eling, the orientation of each source was set to the normal to the
surface. An acquisition system of 117 EEG sensors was sim-
ulated. The forward matrix was calculated according to a
three-layer spherical model [13] using the BrainStorm software
[17]. In all our simulations, the maximum value of the simulated
EEG sources was . A white, zero-mean, i.i.d.
Gaussian noise was added to the induced
signal.

For each simulated EEG data and fMRI map, both MAP
estimators and (derived from and hypotheses, re-
spectively) were then computed, and the relevance of the infor-
mative prior was assessed using the index . The EEG/fMRI
coupling function was defined as the heuristic:

diag (20)

As in [8] and [18], the parameter , which tunes the weight of the
fMRI constraint in the prior covariance matrix, was empirically
set to .

3) Criteria: The sum of square errors
SSE assesses the accuracy of

estimation of the current amplitudes. For the random
perturbation, we also made use of the area under the
receiver operating characteristic curve (AUC) [19] in order
to quantify the detection accuracy. The received operating
characteristic (ROC) curve was constructed by calculating the
pair of sensitivity/specificity values (linked to the true/false
positive/negative detection rates) for the overall range of
possible thresholds of the reconstructed map . In a frequentist
point of view, the area under the ROC curve is, hence, an
estimate of the probability to classify correctly an active dipole
of the model.

From those evaluation metrics, we introduced two scores
and to compare the “fMRI-constrained” estimator and the
corresponding unconstrained estimator :

AUC

AUC

SSE

SSE

Either or means that the “fMRI-constrained”
solution is the most accurate.

Finally, we introduced a third “gold standard”-based criterion
defined as . means that the distance

between the prior spot and the simulated area was greater than
2 cm.

Given the simulated sources, , , and allowed us to quan-
tify the relevance of the informative prior. Therefore, the “data-
driven” index of relevance given by (19) was compared with
those three “gold standard”-based validation metrics. In order to
quantify the accuracy of the proposed methodology, the agree-
ment between the “gold standard”-based criteria and the “data-
driven” index of relevance was assessed by calculating a
score (using the decision threshold 0).

IV. RESULTS

A. Random Perturbation

Boxplot representations of the distributions of , , and are
presented in Fig. 1, as functions of the perturbation level .
In all of our figures, boxplots show the median, first, and third
quantiles and minimum/maximum values of the empirical dis-
tribution (apart from possible outliers depicted as single points).
Up to a noise level of variance , the data-driven rele-
vance index favored the fMRI-constrained estimate. This de-
cision was in agreement with both “gold standard”-based rel-
evance criteria AUC and SSE. To study the adequacy between
those criteria, we plotted each relevance metric as a function of
each other one for all simulations (see Fig. 2). The three cri-
teria , , and exhibited a significant statistical dependence
( , , and ; ).

B. Effect of the Distance Between the Actual EEG Source and
the fMRI Focus

Boxplot representations of the distributions of and
criteria, for each distance , are shown on Fig. 3. When the
fMRI source was located close to the EEG source, even though
the match was not perfect, using the fMRI-derived prior still
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Fig. 1. Effect of the noise of the fMRI activation for � = 0, 0.5, 1, 2,
4, 8, 16, 32, and 64, respectively. Distribution of �, �, and  for each noise
level. Boxplot representations show the median, first, and third quantiles and
minimum/maximum values of the empirical distribution (apart from possible
outliers depicted as single points). (a) Distribution of �. (b) Distribution of �.
(c) Distribution of  .

enhanced the performance. A significant statistical dependence
(see Fig. 4) between the three criteria , , and was exhibited
( , , and ; ).
This point is particularly interesting, since we have shown that
the “data-driven” relevance index was able to distinguish
whether the actual EEG source and the fMRI focus were inter-

Fig. 2. Random perturbation: adequacy between the relevance indices. Each
point represents one of the three calculated pairs of relevance indices [(a) �
versus�; (b)� versus ; (c) � versus ] for each source reconstruction. The zero
value on each axis corresponds to the decision threshold for accepting the fMRI
prior or not, based on the corresponding relevance index. This defines two pairs
of quadrants on the plane, which are associated with concordance [top-right
and bottom-left quadrants for (a), top-left and bottom-right quadrants for (b)
and (c)) or divergence (top-left and bottom-right quadrants for (a), top-right and
bottom-left quadrants for (b) and (c)] for the decision of whether the fMRI prior
should be accepted or not. (a) Adequacy between � and � (� = 66:5, P <
0:001). (b) Adequacy between� and  (� = 94:6,P < 0:001). (c) Adequacy
between � and  (� = 239:1, P < 0:001).

secting or not (the latter case corresponding here to 2 cm,
where the noninformative prior should be favored).
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Fig. 3. Effect of the distance between the EEG source and the fMRI source.
Distributions of� and  as a function of the distance d . Boxplot representations
show the median, first, and third quantiles and minimum/maximum values of the
empirical distribution (apart from possible outliers depicted as single points). (a)
Distribution of �. (b) Distribution of  .

C. Effect of the Occurrence of Spurious fMRI Activation Foci

Fig. 5 shows boxplot representations of the distributions of
and as a function of the intensity ratio , as well as the adequacy
between and when pooling results for all intensity ratios. The

test suggests a very good agreement between and (
; ). Moreover, both metrics showed a clear gap

when , from which the relevance of the fMRI-derived prior
significantly drops. This corresponds to situations where the spu-
rious source began to be more powerful than the truly activated
one in the fMRI map . Like the “gold-standard”-based metric

, the “data-driven” relevance index was able to distinguish be-
tweenthosecases.However,inalmostallconfigurations, thesolu-
tionconstrainedbytheinformativepriorwasfavoredbythe“data-
driven” relevance index . This observation is in good agreement
with the distribution of the “gold standard”-based metric .

V. DISCUSSION

In this paper, we proposed to quantify the relevance (re-
garding the EEG/MEG data itself) of fMRI-derived informative
priors that could be incorporated in the EEG/MEG inverse
problem. Both informative (fMRI-derived) and noninformative
prior hypotheses were compared through the use of Bayes

Fig. 4. Spatial mismatch: Adequacy between the relevance indices�,  , and d.
Each point represents one of the three calculated pairs of relevance indices [(a)�
versus ; (b)� versus d; (c)  versus d] for each source reconstruction. The zero
value on each axis corresponds to the decision threshold for accepting the fMRI
prior or not, based on the corresponding relevance index. This defines two pairs
of quadrants on the plane, which are associated to concordance [top-left and
bottom-right quadrants for (a) and (b), top-right and bottom-left quadrants for
(c)] or divergence [top-right and bottom-left quadrants for (a) and (b), top-left
and bottom-right quadrants for (c)] for the decision of whether the fMRI prior
should be accepted or not. (a) Adequacy between � and  (� = 122:9,
P < 0:001). (b) Adequacy between � and d (� = 177:4, P < 0:001).
(c) Adequacy between  and d (� = 301:8, P < 0:001).

factors in order to decide whether the informative prior should
be included in the inverse problem. The proposed metric
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Fig. 5. Effect of the occurrence of an fMRI spurious source not seen in
EEG. (a) and (b) Boxplot distributions of � and  , respectively, for each
intensity ratio � between the spurious fMRI source and the concordant fMRI
source. Boxplot representations show the median, first, and third quantiles and
minimum/maximum values of the empirical distribution (apart from possible
outliers depicted as single points). (c) Adequacy between � and  . Each
point represents the calculated pair of relevance indices (� versus ) for each
source reconstruction. The zero value on each axis corresponds to the decision
threshold for accepting the fMRI prior or not, based on the corresponding
relevance index. This defines two pairs of quadrants on the plane, which
are associated with concordance (top-left and bottom-right quadrants) or
divergence (top-right and bottom-left quadrants) for the decision of whether
the fMRI prior should be accepted or not. (a) Distribution of �. (b) Distribution
of  . (c) Adequacy between � and  (� = 77:6, P < 0:001).

proved able to predict “gold standard”-based accuracy metrics
that compare the “truth” (the simulated sources) with both con-
strained and unconstrained estimates. This suggests a very good
agreement about the decision we take by introducing (or not)
the informative prior between both the “gold standard”-based
and the “data-driven” relevance indices.

As in any regularized estimation, the inference of is condi-
tional on the hyperparameter controlling the tradeoff between
the data-likelihood and the prior term. Whereas existing clas-
sical techniques use an heuristic criterion (e.g., the L-curve
method [20]), we provide an empirical Bayesian strategy to
choose the optimal hyperparameter . Besides, note that we
chose point MAP estimators for all unknown quantities of
interest, but our approach could, without difficulty, be extended
to a fully Bayesian inference scheme, e.g., based on purely mar-
ginal estimates. As for the third level of inference, our approach
is linked to the Bayesian Model Averaging [16], which was
already applied to the EEG/MEG inverse problem in order to
reduce the support of the underlying sources in [21]. However,
those authors made necessary approximations in the posterior
pdf of the prior submodels (that could be here associated to
different hypotheses ), due to the lack of unidimensional
analytical form for the pdf of the hyperparameter . Hence,
the benefits of our approach in the estimation of both the
hyperparameter and the posterior probability of hypotheses

have to be further investigated.
As we have already stated, numerical difficulties complicate

the computation of the marginal pdf of the hyperparameter
. This is essentially due to the estimation of the determi-

nant of the source posterior covariance matrix . Preliminary
results showed that even in a highly underdeterminated sit-
uation , the algebraic solution we proposed
(cf. Appendix C) allows us to obtain a stable calculus of the
determinant. This seems promising as it should guarantee the
applicability of the method, whatever the dimensionality of the
problem.

In the evaluation strategy, we had to choose the threshold
above which the cortical distance between the center of the un-
derlying active area and the fMRI focus was associated with
an irrelevant spatial prior. The mismatch of 2 cm has been fre-
quently reported in the literature [10], [11], but the influence of
this particular threshold was not quantitatively assessed.

Furthermore, the linking function was defined using
heuristic considerations as in [8]. In order to enhance the
realism of the informative prior, we introduce in the EEG/MEG
inverse problem, future works on real data should build this
function according to neurobiologically plausible consid-
erations. In that respect, recent works proposed a parametric
coupling of bioelectric and metabolic activities [22]. The third
level of inference could then be used in order to infer the addi-
tional parameters of the coupling model. Note that and
indeed already correspond to two limiting cases of the heuristic
parametrization of the linking function [cf. (20)]: (no
link) and (high link), respectively. Applied on real
datasets, the third level of inference may be used to optimize
the heuristic parameter that weighted the fMRI contrast in the
linking function, by scanning on its admissible values, and
by defining as its MAP estimate. Reject of the (fMRI-based)
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informative prior hypothesis can then be associated with low
MAP estimates.

Finally, note that while some of the fMRI activated areas
may correspond to spurious EEG sources, some may be truly
concordant. Therefore, the method might benefit from being
adapted to evaluate not only fMRI priors globally but by con-
sidering the different areas separately. Indeed, at a higher com-
putational expense, all combinations of activated areas may be
included through a proper parametrization of the linking func-
tion (which may act as a mask). Those “disturbed maps” can
then be compared with each other in order to select the most
probable subset of truly activated areas.

APPENDIX A
DERIVATION OF THE LIKELIHOOD OF THE HYPERPARAMETERS

According to Bayes’ rule associated with the first level of in-
ference [see (2)], the likelihood of the hyperparameters is de-
rived as in (21), shown at the bottom of the page. Rearranging
the exponential term and introducing [the MAP estimate of
cf. (6)], we obtain

(22)

where is a normalization coefficient such that

(23)

and . Indeed, the posterior pdf
of , given the hyperparameters, is a Gaussian law of mean
and variance-covariance matrix . Then, the integral is
straightforward:

(24)

This yields the data likelihood of the hyperparameters:

tr tr (25)

APPENDIX B
DERIVATION OF THE MARGINAL PDF OF

Given the data likelihood knowing the set of hyperparame-
ters, we apply Bayes’ rule associated with the second level of
inference [see (8)] to derive the joint posterior pdf of and :

tr tr (26)

where is a normalization coefficient such that

(27)

We recognize for an inverse-Gamma law . Note that
if , then its pdf is written as

. Identifying the different param-
eters yields

(28)

where the parameters of the inverse-Gamma law are

and tr tr . This allows us to
obtain the exact law of the hyperparameter by integrating upon

(which is considered to be a nuisance parameter)

tr tr

(29)

(21)
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tr tr

tr tr
(36)

where is a normalization coefficient such that

(30)

APPENDIX C
NUMERICAL RECIPES

Typically, the (forward) distributed model underlying the
EEG/MEG measurements is underdetermined: There are more
parameters to be estimated than available data . This
has a consequence in terms of the inversion of the posterior
variance-covariance matrix of the sources, which is numerically
instable (not to mention its determinant…). Yet, this step of
numerical calculus is critical for our second and third levels
of inference. We therefore have to rewrite the usual algebraic
forms in order to end up with numerically stable calculus. Let
us recall the MAP estimate of

(31)

Now, the inverse of any matrix of the form
(where is an invertible matrix and for any and matrices)
is given by the Shermann–Morrison–Woodbury formula [23]:

(32)

Using , , , and , we then
can write

(33)

where is the matrix defined as

(34)

This matrix is crucial, since it is strictly equivalent to the pseudo-
inverse of used in the “simple” form of the MAP estimate of

. It is indeed straightforward to show that if is of full rank,
. Hence, we can rewrite the MAP estimate of in

the numerical stable form .
Furthermore, (33) allows us also to rewrite the determinant

of in the following way:

(35)

This result can then be included in the posterior probabilities
calculus of the second and third levels of inference as in (36),
shown at the top of the page.

APPENDIX D
DERIVATION OF THE LIKELIHOOD OF THE PRIOR ASSUMPTION

The normalization constraint on the posterior pdf of the hy-
perparameter given to the data and the th hypothesis allow us
to write

tr tr

where is a normalization coefficient such that

(37)

It is now possible to evaluate the data likelihood under the hy-
pothesis in the following way:

tr tr

(38)

where represents the numerical evaluation of the above inte-
gral.
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