
www.elsevier.com/locate/ynimg

NeuroImage 36 (2007) 69–87
Symmetrical event-related EEG/fMRI information fusion in a
variational Bayesian framework

Jean Daunizeau,a,b,c,d,k,⁎ Christophe Grova,e Guillaume Marrelec,b,c,f,k Jérémie Mattout,a,g,h,k

Saad Jbabdi,b,i,k Mélanie Pélégrini-Issac,b,c,k Jean-Marc Lina,b,d,f,j,k and Habib Benalib,c,f,k

aWellcome Department of Imaging Neuroscience, London, UK
bINSERM U678, Paris F-75013, France
cUniversité Pierre et Marie Curie, Faculté de Médecine Pitié-Salpêtrière, Paris F-75013, France
dCentre de Recherches Mathématiques, Montréal, Québec, Canada
eMontreal Neurological Institute, Montréal, Québec, Canada
fUniversité de Montréal, MIC/UNF, Montreal, Canada H3W 1W5
gCEA/SHFJ, Orsay, France
hINSERM U821, Dynamique Cérébrale et Cognition, 69000, Lyon, France
iFMRIB Lab., Oxford, UK
jEcole de Technologie Supérieure, Montréal, Québec, Canada
kIFR49, Paris, France

Received 21 April 2006; revised 12 December 2006; accepted 3 January 2007
Available online 15 February 2007
In this work, we propose a symmetrical multimodal EEG/fMRI
information fusion approach dedicated to the identification of event-
related bioelectric and hemodynamic responses. Unlike existing, asym-
metrical EEG/fMRI data fusion algorithms, we build a joint EEG/fMRI
generative model that explicitly accounts for local coupling/uncoupling
of bioelectric and hemodynamic activities, which are supposed to share a
common substrate. Under a dedicated assumption of spatio-temporal
separability, the spatial profile of the common EEG/fMRI sources is
introduced as an unknown hierarchical prior on both markers of cere-
bral activity. Thereby, a devoted Variational Bayesian (VB) learning
scheme is derived to infer common EEG/fMRI sources from a joint
EEG/fMRI dataset. This yields an estimate of the common spatial
profile, which is built as a trade-off between information extracted from
EEG and fMRI datasets. Furthermore, the spatial structure of the
EEG/fMRI coupling/uncoupling is learned exclusively from the data.
The proposed data generative model and devoted VBEM learning
scheme thus provide an un-supervised well-balanced approach for the
fusion of EEG/fMRI information. We first demonstrate our approach
on synthetic data. Results show that, in contrast to classical EEG/fMRI
fusion approach, the method proved efficient and robust regardless of
the EEG/fMRI discordance level. We apply the method on EEG/fMRI
recordings from a patient with epilepsy, in order to identify brain areas
involved during the generation of epileptic spikes. The results are
validated using intracranial EEG measurements.
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Introduction

Because of the complementary temporal and spatial resolutions
of electroencephalography (EEG) and functional magnetic reso-
nance imaging (fMRI), combining measurements originating from
both modalities may reveal fine spatio-temporal structures of neu-
ronal activity that would otherwise remain undetected if the ana-
lyses were conducted using data from only one modality. This
fusion of information is essential to understand the physiological
processes mediating the treatment of a cognitive task or spon-
taneous brain activity.

The main cause of EEG measurements is likely to be the post-
synaptic cortical currents associated to the large pyramidal neurons,
which are oriented perpendicular to the cortical surface (Nunez,
1981). Even though fMRI is believed to reveal some complementary
features of neuronal activity (Nunez and Silberstein, 2000;Mukamel
et al., 2005), it is only an indirect measure thereof, through meta-
bolism, oxygenation and blood flow. Despite the increasing amount
of literature in the field of neuro-vascular coupling (see, for a recent
example (Riera et al., 2006)), none of the existing biophysical
models specifies precisely what is meant by the “neural activity” that
drives the hemodynamic response. Therefore, these models cannot
tell us what aspect of neural information processing is reflected by
the BOLD signal. As a matter of fact, neural information processing
within a given cortical unit can be described along many different
dimensions, and its relationship with existing neurophysiological
processes can be characterized on different scales, for example, local
field potentials versus spiking activity, excitatory versus inhibitory
postsynaptic potentials or different types of receptor at synapses
(Stefan et al., 2004).
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Sophisticated animal studies that combine multielectrode recor-
dings with fMRI (Puce et al., 1997; Logothetis et al., 2001; Logo-
thetis and Wandell, 2004) or with optical imaging techniques (Ma-
thiesen et al., 1998; Martindale et al., 2003) have started to address
these issues. However, the quantitative contribution of each of the
neurophysiological processes that occur within the “active” areas to
both EEG and fMRI measurements is nowadays mostly unknown.
As a consequence, the state-of-the-art (invasive) experimental
evidences are probably not understood so as to ground a robust
neurophysiologically informed model of the neuro-vascular coupling
(Gonzales et al., 2001; Stefan et al., 2004; Daunizeau et al., 2005a).

Nevertheless, we might define “neuronal activity” operationally:
it is the set of dynamic processes that characterizes the nodes
belonging to the brain network specifically involved in the treatment
of a given event (e.g. a cognitive/sensory/motor task or spontaneous
brain activity) (Friston, 2005b). This allows us to consider event-
related (ER) EEG and fMRI datasets as different measures of this
“neuronal activity”, since the ER response is indeed defined as the
reproducible EEG or fMRI signature that is systematically
consecutive to the appearance of a single event (Friston, 2005a).
In that perspective, the bioelectric and metabolic activities (under-
stood as ER responses), as detected by EEG and fMRI, do not
necessarily match.

The “neuronal activity” ζ can then be decomposed into two
non-orthogonal sub-spaces ζEEG and ζfMRI that correspond to the
part of ζ that contributes to EEG and fMRI datasets, respectively
(Pieger and Greenblatt, 2001). The intersection ζ1 of ζEEG and
ζfMRI (see Fig. 1) defines the “common substrate” of neuronal
activity. Conversely, ζ2 (respectively ζ3) denotes the subspace of
neuronal activity detected by EEG (respectively fMRI) that does
not contribute to fMRI (respectively EEG) measurements. This
decomposition formalizes the apparent coupling/uncoupling pro-
cess occurring between bioelectric and hemodynamic ER responses.

Then, the following question arises: what should we expect to
learn about neuronal activity by combining EEG and fMRI
information? Since no information about ζ2 (resp. ζ3) is available
from the fMRI (resp. EEG) data set, no multimodal procedure will
provide a finer characterization of this activity subspace than a uni-
modal EEG (resp. fMRI) data analysis. By contrast, it seems
reasonable to expect that such a multimodal approach should benefit
from the complementarity of EEG and fMRI information about the
subspace ζ1 to refine our knowledge about the commonalities of the
bioelectric and hemodynamic ER responses.

Most current EEG/fMRI fusion strategies mainly rely on the
introduction of constraints derived from a preliminary analysis of
Fig. 1. Formalization of the coupling/uncoupling between brain activities
observed using multimodal ER EEG/fMRI experiments (adapted from
Pieger and Greenblatt, 2001).
fMRI into the EEG source reconstruction problem (Liu et al., 1998;
Babiloni et al., 2003; Ahlfors and Simpson, 2004). Stated in Pflieger
and Greenblatt’s formulation (Pieger and Greenblatt, 2001), these
approaches try to explain EEG data using an estimate ζ̂fMRI of ζfMRI

as a prior information on ζEEG. They are asymmetrical, since they do
not consider EEG and fMRI data sets as equivalent and do not
analyze them jointly (Trujillo et al., 2001). Importantly, the
estimation bias arising from a potential discrepancy between ζEEG
and ζfMRI will mainly depend on the exibility in the way the fMRI
priors are introduced (Mattout et al., 2006).

On the opposite, the objectives of a symmetrical well-balanced
approach for the fusion of multimodal EEG/fMRI information are
twofold. First, the approach should be able to identify the part of
EEG and fMRI signals that conveys complementary information
about the common substrate of the underlying brain activity. Second,
it should exploit such information, as extracted from joint data sets,
in order to decrease the uncertainty relative to our knowledge of this
common subspace of ER responses.

As a consequence, a symmetrical fusion approach would require
the explicit definition of the common neuronal substrate that elicits
both EEG and fMRI measurements. This entails building a model
that encompasses our knowledge about the link between bioelectric
and hemodynamic activities. Here, we propose to define this neuro-
vascular coupling through the common properties exhibited by the
“active” areas specifically contributing to both event-related EEG
and fMRI measurements. Due to our lack of precise knowledge
regarding the coupling between the temporal properties of bio-
electric and hemodynamic ER responses, we restricted these
common properties to the spatial profile (i.e. the position and the
extent) of the common EEG and fMRI sources. In other words, the
only common substrate (or subspace) of bioelectric and hemody-
namic “activities” (or ER responses) is defined as the spatial support
of the EEG/fMRI common signal generators.

Noticeably, the dual estimation of the bioelectric and hemo-
dynamic ER responses does not circumvent the potential diffi-
culties of the inverse problems related to each modality. On the one
hand, reconstructing cortical sources current density from EEG
measurements is a well known intrinsically spatial ill-posed inverse
problem (Baillet et al., 2001). This has a temporal drawback: we do
not know what the temporal dynamics of the true bioelectric sources
are. On the other hand, estimating the hemodynamic response using
deconvolution approaches is a difficult temporal inverse problem
due to potential overlapping of fMRI responses to consecutive
events (Marrelec et al., 2003a). Similarly, this implies uncertainty in
the localization of the hemodynamic activity.

The hierarchical EEG/fMRI generative model that we propose
here is a generalization of the extended sources mixing model
(Daunizeau et al., 2005b), whose key aspect lies in the separation
between spatial and temporal characteristics of brain activity. The
coupling model is restricted to the spatial profile of ER bioelectric and
hemodynamic responses. The model does not impose any constraint
regarding an eventual coupling between temporal dynamics of the
physiological processes underlying EEG and fMRI measurements.
Moreover, the hierarchical model explicitly accounts for potential
discrepancies between the bioelectric and hemodynamic activation
sites. Indeed, rather than formally constraining the analysis, the
objective of the approach is to find the common spatial substrate that
may explain some features of the joint data sets; the remaining
characteristics (e.g., in the temporal domain) of the activity that are
required to explain some specific features of the respective datasets are
estimated without any EEG/fMRI coupling constraint.



1 This formulation does not refer to the standard GLM, as proposed in
(Friston et al., 1995), where the design matrix is defined by regressors that
model the different types of stimuli and are constructed by convolution of the
stimulus with a canonical hemodynamic response function, while regression
coefficients represent effects sizes. Rather, this forward model is a
discretization of the unknown ER hemodynamic impulse response function.
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Despite its somewhat heuristic aspect, this joint EEG/fMRI
information fusion approach is both robust to the lack of
information about the neuro-vascular coupling and flexible enough
to allow for later incorporation of further knowledge about the
generation of bioelectric and hemodynamic ER responses.

This paper comprises various sections. In Model of spatially con-
cordant ER responses, we show how to rely on the spatio-temporal
decomposition of cerebral activity to formalize the coupling/de-
coupling of bioelectric and hemodynamic event-related responses
(Separation of space and time). We also expose the statistical
assumptions required to specify the associated graphical generative
model (Specification of the hierarchical model). In Learning the
model: variational Bayesian learning scheme, we describe the
Variational Bayesian (VB) algorithm that we developed in order to
make statistical inference on the model. Evaluation presents
elements of evaluation of the whole approach: (1) assessment of
the method’s performance using simulated data and (2) illustration of
the approach in the context of interictal spike localization from EEG/
fMRI data simultaneously acquired on a patient with focal epilepsy.
In Discussion, we discuss the main aspects of the model and
associated VB inference scheme and replace the whole approach in
the context of the general problem of information fusion.

Notations

In the following, XT;Xi;Xij and tr(X) indicate the transpose of
matrix X, the ith vector column of X, the scalar element of the ith
column and jth row of X and the trace of X, respectively. (xi)1≤i≤n
denotes the n×1 vector whose entries are xi. In and 0n stand for the
n×n identity matrix and the n×1 null vector, respectively. For any
n×1 vector x, Diag(x) denotes the n×n diagonal matrix whose
diagonal is x. By contrast, diag(X) denotes the n×1 vector
containing the diagonal entries of the n×n matrix X.⊗ denotes the
Kronecker product, ▵ denotes the Laplacian operator and “∝”
relates two expressions that are proportional. The cardinal of any
set V is written card½V�. For two variables x and y, x|y stands for “x
given y”, p(x) for the probability of x, 〈x〉 for its expectation and x̂
for its estimate. Nðm;VÞ is the Gaussian probability density
function (pdf) with mean m and covariance matrix V and Gða; bÞ is
the Gamma pdf with a degrees of freedom (d.o.f.) and shape
parameter b. Given an a×b matrix X, let us also define an ab×1
vector-valued function denoted by vec(X) such that

vecðXÞ ¼
X1

X2

v
Xb

0
BB@

1
CCA:

Model of spatially concordant ER responses

In the following, we assume that a single type of event is
involved in the experiment. We then provide a generative model that
can account for both fMRI and EEG event-related data in a
hierarchical fashion.

The EEG and fMRI forward problems

On the one hand, solving the EEG inverse problem within the
so-called distributed framework amounts to finding a unique
solution to the following linear system (Dale and Sereno, 1993):

M ¼ GJþ E; ð1Þ
where M stands for the p× t1 matrix of scalp (ER potential) EEG
data set (p∼102: number of sensors, t1∼102: number of time
samples), E is an additive measurement noise, J is the n× t1 matrix
of the unknown time courses of the dipoles (n∼104: number of
dipoles distributed on the cortical surface) and G is the p×n gain
matrix (forward operator) associated with the position and
orientation of the dipoles.

J is the voxelwise description of the bioelectric ER response. G
is obtained by solving the so-called forward problem (de Munck,
1988) for a given set of dipoles with fixed position and orientation
(distributed perpendicular to the cortical surface). Each column Gj

of G indicates the putative contribution of dipole j to the scalp data
(its so-called forward field).

On the other hand, the general linear model (GLM) links the
stimulation paradigm to the fMRI measurements through the
hemodynamic response function (HRF) (Marrelec et al., 2001)1:

Y ¼ Bhþ F; ð2Þ
where Y is the t2×n matrix of voxelwise fMRI measurements
(t2∼/ 102: number of time samples, n∼104: number of voxels),
F is an additive measurement noise, h is the k×n matrix of the
unknown HRF in each voxel (k: order of the convolution model),
and B is the t2×k design matrix, consisting of the lagged stimulus
onset covariates, i.e.:

B ¼
xk N x1
v

xt2þk�1 N xt2

0
@

1
A; ð3Þ

given that (xi)1≤i<t2+k is the event time course.

Separation of space and time

We further assume that cerebral activity is structured by a set of
active areas (brain regions) that are characterized by their temporal
coherence. Therefore, let us consider a given parcelling of the
cortical surface into q anatomically and functionally homogeneous
clusters (see Appendix B). The so-called extended sources mixing
model (see previous work (Daunizeau et al., 2005a)) then associates
each parcel Pi(i=1, …, q) with its single temporal dynamics using
the following hierarchical model of bioelectric sources J:

J ¼ DiagðwEEGÞCXþ R; ð4Þ
where X is an unknown q× t1 matrix made of the q time courses of
the q parcels, C is the known n×q matrix describing the cortex
parcelling (Cji=1 if j∈Pi, and Cji=0 otherwise.), wEEG is a n×1
unknown vector, and R is a residual bioelectric activity that cannot
be explained using the extended sources mixing model. In this
formulation, the temporal dynamics of the ith dipole is defined as the
time course of the parcel to which it belongs, weighted by a scalar
wi
EEG. The vector wEEG expresses the relative within-region

distribution of current intensity. It describes the (time-invariant)
spatial profile of each active extended cortical source. On the
opposite,X embodies the temporal features of the bioelectric sources
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J. Eq. (4) thus enforces a spatio-temporal separability of the
bioelectric activity by means of the parcelling C.

In a similar fashion, let us write the extended sources mixing
model for the hemodynamic ER response:

h ¼ ZCTDiagðwfMRIÞ þ L; ð5Þ

where Z is an unknown k×q matrix containing the HRF temporal
shape of the q parcels, wfMRI is an also unknown n×1 vector
associated with the spatial profile of the hemodynamic activity
sources, and L is the residual discrepancy from the extended
sources mixing model.

Furthermore, we assume that the common feature of bioelectric
and hemodynamic ER responses is the spatial profile of the sources
seen by both neuroimaging modalities. This assumption may be
formalized using the following equation:

wEEG ¼ wfMRI ¼ w: ð6Þ
Hence, X (resp. Z) represents the bioelectric (resp. hemody-

namic) temporal dynamics of activity sources common to EEG and
fMRI, whereas residuals R and L are associated to the activity
sources specific of EEG and fMRI, respectively. Since the physical
units of bioelectric and hemodynamic activities are carried by the
time course variables X and Z, the common substrate of cerebral
activityw is a dimensionless quantity. Fig. 2 illustrates this “spatially
concordant” ER responses model.
Specification of the hierarchical model

In a Bayesian perspective, any uncertainty associated with an
unknown quantity is to be modeled through a probability density
function (pdf). In the previous section, we described the hierarchical
Fig. 2. Schematic illustration of spatio-temporal decomposition entailed by
the spatially concordant ER responses model. Two active areas are depicted,
with their (time invariant) spatial profile. These exhibit coherent bioelectric
and hemodynamic ER responses (the colored time courses are associated
with different voxels belonging to the same parcel), which are supposed to
contribute to EEG and fMRI measurements, respectively.
observation model. Now, we focus on additional assumptions about
the conditional dependencies between the differentmodel parameters.

From now on, we will refer toM as the graphical model depicted
in Fig. 3. This model encompasses all assumptions associated with
the hierarchical generative model. The Markov properties of the
graphical modelM enables us to write the joint posterior pdf of the
model parameters as the following product of conditional pdf:

pðJ;h;w;X;Z; q jM;Y;MÞ~ pðM jJ; a1;MÞ pðY jh; a2;MÞ
pðJ jw;X; ϵ1;MÞpðh jw;Z; ϵ2;MÞ
pðw jg;MÞ pðX jb1;MÞ
pðZ jb2;MÞ pðq jMÞ;

where θ is the set of precision hyperparameters of the graphical
model M:

q ¼ ða1; a2; ϵ1; ϵ2; b1; b2; gÞ:
Each conditional pdf corresponds to prior (and independent)

assumptions regarding the probabilistic link between the model
parameters (see (Marrelec et al., 2003b, 2004) for details about
graphical models in fMRI). The following subsections are devoted
to the derivation of this conditional pdf.

Likelihoods
The data likelihoods result from statistical assumptions about the

measurement noise. We consider E and F (cf Eq. (1) and (2)) as
realizations of independent and identically distributed (i.i.d.)
Gaussian random variables with zero mean and (unknown) precisions
α1 and α2, respectively. Then, EEG and fMRI data likelihoods yield:

p M jJ; a1;Mð Þ ¼
Yt1
i¼1

N GJi;
1
a1

Ip

� �

p Y jh; a2;Mð Þ ¼
Yn
j¼1

N Bhj;
1
a2

It2

� �
:

8>>>><
>>>>:

ð7Þ

Prior densities on bioelectric and hemodynamic activities
Specifying such prior densities amounts to defining the pdf of J

and h conditional on the parameters associated with their
respective spatio-temporal decomposition.

We assume that the residuals R and L are the realizations of i.
i.d. Gaussian random variables with zero mean and (unknown)
precisions ϵ1 and ϵ2. This assumption is strictly equivalent to the
definition of the following conditional pdf:

p Jjw;X; ϵ1;Mð Þ ¼
Yt1
i¼1

N Diag wð ÞCXi;
1
ϵ1

In

� �

p h4jw;Z4; ϵ2;Mð Þ ¼
Yk
j¼1

N Diag wð ÞCZj4;
1
ϵ2

In

� �
;

8>>>><
>>>>:

ð8Þ

where h4uhT and Z4uZT.

Prior densities of the coupling model parameters
To set the prior pdf on variables X, Z⁎ and w, we make specific

assumptions regarding the expected behavior of brain activity:

• a neuronalmacrocolumn located next to an activemacrocolumn is
expected to be also partially active (Nunez, 1981). As a consequence,
the probability of activation of each macrocolumn depends on its
neighborhood. We a priori expect that the Laplacian of w is zero:

hDwi ¼ 0: ð9Þ



Fig. 3. Graph representing the hierarchical relations between the EEG/fMRI
data generative model parameters. w is the common spatial profile of the
sources, X (respectively Z) is the temporal dynamics of the bioelectric
(respectively hemodynamic) activity. J is the time course of the bioelectric
activity. h is the hemodynamic activity.M (resp. Y) contains the EEG (resp.
fMRI) measurements. The other nodes are the precision parameters that are
associated with prior assumptions about the expected structure of brain
activity, and noise measurements.
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Under Gaussian assumption, this is strictly equivalent to the
following prior pdf for the spatial field w (Gössl et al., 2001):

p wjg;Mð Þ ¼ N 0n;
1
g
ðSTSÞ�1

� �
; ð10Þ

where γ is the (unknown) precision of the Laplacian field ofw, and S
is the n×n discrete Laplacian operator defined as:

Sjj ¼ 1

Sjj V ¼ � 1
card½V j� if j VϵV j

Sjj V ¼ 0 otherwise;

8><
>: ð11Þ

where V j is the neighborhood of voxel j.

• EEG and fMRI are known to provide oversampled measures of
bioelectric and hemodynamic activities, respectively (Nunez, 1981;
Heeger, 2002). This implies some temporal smoothness in the time
courses of bioelectric and hemodynamic activities of the cortical
parcels. Here, we a priori expect that the second temporal
derivatives ofX and Z are zero (Marrelec et al., 2001, 2003b, 2004):

�
B2X
Bt2

�
¼
�
B2Z
Bt2

�
¼ 0: ð12Þ

Under Gaussian assumption, this is equivalent to the following prior
pdf for X and Z (Marrelec et al., 2003a):

p vec Xð Þjb1;Mð Þ ¼ N
 
0qt1 ;

1
b1

�
TT
1T1

��1!

p vec Z⁎ð Þjb2;Mð Þ ¼ N
 
0qk1 ;

1
b2

�
TT
2T2

��1!;

8>>>>><
>>>>>:

ð13Þ
where β1 and β2 are the (unknown) precisions of the second
temporal derivatives of X and Z, and T1 (resp. T2) is a qt1×qt1
(resp. kq×kq) matrix such that:

Tdii ¼ �2
Tdij ¼ 1 if j ¼ iFðqþ 1Þ
Tdij ¼ 0 otherwise:

8<
: ð14Þ

Prior densities on scaling hyperparameters
All precision hyperparameters are unknown quantities. There-

fore, in a full Bayesian approach, we need to specify prior densities
on each of them. These were chosen such that our graphical model
M belongs to conjugate exponential models, which are easier to
manipulate (Gelman et al., 1998).

As for the variances of the EEG/fMRI measurement noise, let
us assume that we have at our disposal two data windows (M0, of
size p× t3 in EEG, and Y0 of size n× t4 in fMRI) containing only
i.i.d. noise. In practice, one can use scalp recordings preceding
bioelectric responses in EEG, and fMRI data corresponding to
regions that do not belong to grey matter. A direct consequence
of the assumption of Gaussian noise is that α1 given M0 (resp. α2
given Y0) behaves as a Gamma variate. The definition of their re-
spective prior pdf thus pertains to the derivation of the conditional
pdf p (α1|M0) and p (α2|Y0):

pða1jMÞ ¼ pða1jM0Þ ¼ Gða1; b1Þ
pða2jMÞ ¼ pða2jY0Þ ¼ Gða2; b2Þ; ð15Þ

where parameters (a1, b1) and (a2, b2) are such that:

a1 ¼ pt3
2

; b1 ¼ trðMT
0M0Þ
2

a2 ¼ nt4
2

; b2 ¼ trðYT
0Y0Þ
2

:

8>><
>>: ð16Þ

Finally, since we have no prior information about the remaining
precision hyperparameters, we consider noninformative Jeffreys’
priors (uniform pdf over the log-hyperparameter) (Kass and
Wassermann, 1996):

pðϵ1jMÞ~ðϵ1Þ�1

pðϵ2jMÞ~ðϵ2Þ�1

pðb1jMÞ~ðb1Þ�1

pðb2jMÞ~ðb2Þ�1

pðgjMÞ~ðgÞ�1:

8>>>><
>>>>:

ð17Þ

All assumptions listed in Specification of the hierarchical model
and associated with the spatially concordant event-related response
model form the graphical (hierarchical) model that is summarized
by the graph represented in Fig. 3.
Learning the model: variational Bayesian learning scheme

There are two main goals in Bayesian learning. The first one is
to provide the posterior distribution over the model parameters; the
second one, to provide a quantitative feedback on the relevance of



Table 1
Functional forms of the variational pdf of the localization parameters of the graphical model M, which are Gaussian densities

Functional form Mean and covariance matrix

qJðvecðJÞÞ ¼ N ðvecðmJÞ; It1 �ΣJÞ mJ ¼ ΣJ
aE
bE
GTMþ aR

b R
Diag mWð ÞCmX

� �
ΣJ ¼ aE

bE
GTGþ aR

bR
In

� ��1

qhðvecðhÞÞ ¼ N ðvecðmhÞ; In �ΣhÞ mh ¼ Σh
aF
bF
BTYþ aL

bL
mZC

TDiag mWð Þ
� �

Σh ¼ aF
bF
BTBþ aL

bL
It2

� ��1

qX ðvecðXÞÞ ¼ N ðvecðmX Þ;ΣX Þ vec mXð Þ ¼ aR
bR

ΣX It1 � DiagðmW ÞCð Þvec mJð Þ

ΣX ¼ aR
bR
It1 �Qþ aX

bX
TT
1T1

� ��1

qZðvecðZ4ÞÞ ¼ N ðvecðmZ4Þ;ΣZÞ vec mZ4ð Þ ¼ aL
bL

ΣZ Ik � DiagðmW ÞCð Þvec mh4ð Þ

ΣZ ¼ aL
bL
Ik �Qþ aZ

bZ
TT
2T2

� ��1

qW ðwÞ ¼ N ðmW ;ΣW Þ mW ¼ ΣW diag aR
bR
mT
J CmX þ aL

bL
mhCmZ4

� �
ΣW ¼ aR

bR
P1 þ aL

bL
P2 þ aW

bW
STS

� ��1
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any data generative model M regarding the observed data. This
second step is achieved by calculating the model evidence
pðY; MjMÞ in order to perform model comparison.

As for most useful generative models, the posterior dependen-
cies between the parameters of our modelM renders pðY;MjMÞ a
quantity difficult to calculate. The main principle of the variational
Bayesian (VB) approach is to approximate the joint posterior pdf
of all unknown parameters with a simpler distribution. This
approximation usually posits further independence assumptions
than those implied by the original generative model. In this work,
we propose to use the so-called mean-field approximation
(Ghahramani, 1995), which states that the joint posterior pdf can
be factorized as the product of the marginal (approximate)
posterior pdf of all nodes of the graphical model M:

qðHÞcqJ ðJÞqhðhÞqX ðXÞqZðZÞqW ðwÞqhðqÞ; ð18Þ

where θ is the vector of precision parameters (θ={α1, α2, ϵ1, ϵ2,
β1, β2, γ}), Θ denotes the full set of nodes (Θ={J, h, X, Z, w,
θ}) and q.(·) denotes the variational approximation of any
marginal posterior pdf pðdjY;M;MÞ. The structure of the graphical
model M (see Fig. 3) implies the separability of the joint posterior
variational pdf qθ (θ):

quðqÞ ¼ qa1ða1Þqa2ða2Þqϵ1ðϵ1Þqϵ2 ðϵ2Þqh1
ðb1Þqh2

ðb2ÞqgðgÞ: ð19Þ
The mean-field approximation enables us to decompose the

model evidence pðY; MjMÞ the following way:

ln pðY;MjMÞ ¼ hln pðQ;Y;MjMÞiPq:ð:Þ þ ASðq:ð:ÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
FðqÞ

þ DKLðqðQÞ; pðQjY;M;MÞÞ; ð20Þ

where SðdÞ is the Shannon entropy of any pdf, DKLðdÞ is the
Kullback–Leibler divergence, “·” denotes each node of the
graphical model, and is therefore associated to some marginal pdf.

The quantity FðqÞ is called the negative free energy. Since the
model evidence is fixed for a given generative model M,
maximizing the negative free energy is equivalent to minimizing
the Kullback–Leibler divergence between the mean-field approx-
imation of the joint posterior pdf and the true posterior joint pdf.
In other words, the higher the negative free energy, the closer to
the true marginal posterior pdf the variational q.(·).

Then, the functional form of the q.(·) falls off from the
maximization of the free energy:

BFðqÞ
Bq:ðd Þ ¼ 0 Z ln q: dð Þ~hln p Q; yjMð ÞiCq:ðd Þ; ð21Þ

where the expectation is taken under the product of the marginals
of the Markov blanket of each node.

The VB learning scheme is simply the iterative optimization of
the negative free energy through updates of the sufficient statistics of
the variational marginal pdf of each node of the graphical modelM.
At convergence, the negative free energy is then used as an
approximation (a lower bound) of the model evidence, and may be
used for model comparison purposes. In other words, maximizing
the negative free energy actually allows us to both find the marginal
posterior of the model parameters and compute the model evidence.

Under the mean-field approximation, the variational posterior
pdf of location and scale (precision) parameters of the model M
are Gaussian and Gamma densities, respectively. The sufficient
statistics of each variational posterior marginal pdf q.(·) (mean and
covariance matrix for Gaussian pdf, degrees of freedom and shape
parameter for Gamma pdf) are given in Tables 1 and 2.

Matrices P1 and P2 (size n×n), andQ (size q×q) are defined the
following way:

P1 ¼ Diag diagðCðmXmT
X ÞCTÞ þ

Xt
j¼1

CdiagðΣ½i�
X Þ

 !

P2 ¼ Diag diagðCðmT
ZmZÞCTÞ þ

Xk
j¼1

CdiagðΣ½j�
Z Þ

 !

Q ¼ CT Diag

�
diagðΣW Þ

�
þ DiagðmW Þ2

�
C;

�

8>>>>>>>>><
>>>>>>>>>:

ð22Þ

where Σ[i] is the ith diagonal block (size q×q) of matrix Σ.



Table 2
Functional forms of the variational pdf of the scaling parameters of the graphical model M, which are Gamma densities

Functional form Parameters (d.o.f. and shape)
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Algorithmically, the Variational Bayesian learning scheme simply
updates the sufficient statistics of the variational marginal pdf q.(·) by
successively applying the relations listed in Tables 1 and 2.

At convergence of the VB algorithm, we may define the
parameter estimates as their expectation under their variational
posterior pdf. Since we also quantify the uncertainty affecting these
parameters (e.g., the variance of the variational posterior Gaussian
pdf), we can build test statistics (e.g., Student’s or Fisher’s scores).
2 The ReML approach to the EEG inverse problem included both i.i.d.
and spatial Markov processes prior assumptions on the cortical bioelectric
ER response using a mixture of prior covariance matrices. Their respective
contribution is then assessed by estimating their optimal weight using the
restricted maximum-likelihood scheme. The method is currently available
as part of the SPM 5 software (SPM, 2005).
Evaluation

Numerical Monte Carlo simulations were performed in order to
evaluate the proposed approach, which will be denoted by
BASTERF, for Bayesian Spatio-Temporal Event-Related Fusion.

Simulations

In a sense, the BASTERF approach is a synthesis of analyzes of
identification of ER bioelectric and hemodynamic responses
already existing in EEG and in fMRI, respectively. Indeed, one
of the objectives of the BASTERF approach is to characterize these
responses via the estimation of time courses of current density
(sources J of the distributed model in EEG) and voxelwise
hemodynamic responses (HRF h of the GLM in fMRI).

Noticeably, the VB learning scheme provides us with the
posterior marginal pdf of these quantities (see Table 1). The latter
are used as estimates of modality-specific ER responses.
In the simulation series, the estimations of J and h were
compared to usual estimators that were not dedicated to multi-
modal EEG/fMRI information fusion, i.e.,

• for EEG: minimum norm estimator (MNE) (Hauk, 2004),
LORETA (Pascual-Marqui et al., 1994), ReML2 (Mattout et al.,
2006), and BASTA (Daunizeau et al., 2005a), which is the “pure
EEG” analogue of BASTERF;

• for fMRI: a simple maximum likelihood approach (denoted as
ML), and a fully Bayesian HRF estimation (BHE) method,
which introduces a temporal smoothness prior assumption
similar to that proposed in Prior densities of the coupling model
parameters (Marrelec et al., 2003a).

In addition, we compared BASTERF to a classical asymme-
trical multimodal EEG/fMRI information fusion approach, which
consists of an fMRI-weighted minimum norm approach (WMN)
(Liu et al., 1998). Note that the comparison of BASTERF and
WMN with the “mono-modality” methods was only intended to
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give an idea of the added-value (the gain or loss of information) of
the “multi-modality” approaches.

BASTERF can be distinguished from established EEG or
fMRI generative models by the number and diversity of its model
parameters. Therefore, we chose to define a very simple
simulation environment, in order to bring to light the behavior
of the BASTERF approach with respect to the main issue of
multimodal EEG/fMRI information fusion: the possible mismatch
between bioelectric and hemodynamic activities.

Simulation environment
A cortical surface was extracted from a structural MRI of a

normal subject and down-sampled to about 500 vertices (n=458).
The p=128 EEG sensors were co-registered with the anatomical
frame of reference of the subject, and the gain matrix was
calculated using a three-sphere analytical model (Mosher and
Leahy, 1998) using the SPM software (SPM, 2005).

The parameters of the simulation environment are given in
Table 3.

We ran four series of simulations, mimicking four levels of
concordance/discordance between bioelectric and hemodynamic
sources:

• (S1): perfect concordance. For each simulation, two spatially
extended bioelectrically and hemodynamically active sources
were randomly chosen on the cortex;

• (S2): mixed concordance. For each simulation, two bioelec-
trically active sources were randomly selected on the cortex, one
of them being also a hemodynamically active source. Stated
another way, only one of the two sources that elicited an
electrical potential measured in EEG also yielded a hemody-
namic response;

• (S3): mixed concordance. For each simulation, two hemodyna-
mically active sources were randomly chosen on the cortex, one
of them was also bioelectrically active. In other words, one of
the two fMRI existing sources also generated an electrical
potential measured in EEG;

• (S4): weak concordance. For each simulation, one bioelectri-
cally active source and one hemodynamically active source (non
spatially concordant) were randomly chosen on the cortex. This
was an extreme situation: the spatial support common to
bioelectric and hemodynamic activity sources was the empty set.
However, a given portion of the inactive sources support was
common to both EEG and fMRI modalities.

For each series, 50 source configurations were simulated. Each
source was randomly drawn on the cortical surface, and had a
spatial extent of approximately 2 cm2. Time courses of
Table 3
Parameters of the simulation environment

EEG fMRI

Sampling frequency: 1 kHz Sampling frequency: 1 Hz (TR=1 s)
Number of sensors: p=128 Size of simulated HRF: k=30
Number of time samples: t1=41 Number of time samples: t2=870
Gain matrix G: 3 spheres

(analytic)
Paradigm: random (∼100 occurrences)

Noise E: Gaussian i.i.d. Noise F: Gaussian i.i.d.
Signal-to-noise ratio: SNREEG=1 Signal-to-noise ratio: SNRfMRI=0.01

Number of dipoles/voxels: n=458
Number of cortical parcels: q=21
bioelectrically active sources were half-sine curves (15 ms period).
When two bioelectric sources were present (series (S1) and (S2)),
one of the two sine time courses was shifted by 5 ms with respect
to the other one. Each hemodynamic response was modeled by the
temporal dynamics of a damped oscillator analogous to the
canonical HRF as implemented in the SPM software (SPM, 2005)
(one major positive peak and one minor negative peak 5 s and 12 s
post-stimulus, respectively). When two hemodynamically active
sources were present (series (S1) and (S3)), one of the two HRF
was shifted by 7 s with respect to the other one.

The cortical parcelling required by both BASTA and BASTERF
approaches was derived using the procedure described in Appendix
B in order to obtain q=21 anatomically connected clusters.

Evaluation metrics
The quality of the estimation of bioelectric and hemodynamic

ER responses was evaluated using the following criteria:

• the sum of squared errors (SSE).
• The localization error (LE), defined as the mean geodesic

distance between the reconstructed and the simulated sources.
• The probability of correctly labelling a source as active/inactive,

quantified using the area under the ROC curve.

These estimation adequacy scores were calculated for all
estimated bioelectric and hemodynamic ER responses. We refer the
interested reader to the Appendix C of this paper for the details
concerning their implementation.

The behavior of estimators that are not dedicated to multimodal
EEG/fMRI information fusion, i.e., LORETA, MNE, ReML and
BASTA (for EEG), and ML and BHE (for fMRI), is not expected
to be affected by the different simulations configurations (series
S1, S2, S3 and S4). Hence, these approaches provide reference
estimators to assess the behavior of multimodal information fusion
procedures, i.e., WMN for estimating bioelectric activity and
BASTERF for estimating both bioelectric and hemodynamic
activity.

Results
Fig. 4 shows an example of source configuration from series

(S2). Spatial supports of both brain activity markers (interpolated
on the non-reduced cortical mesh), as well as the corresponding
time courses are presented. In this simulation, both areas where
bioelectrically active. The only hemodynamically non-active area
was that located on the left frontal lobe. The simulated time courses
of the two active areas respectively peaked at 21 and 26 ms, the
latter being the one also exhibiting a hemodynamic ER response.

On this example, the fMRI-weighted MNE EEG inverse
approach failed to recover the left frontal active source (not seen
by fMRI), in contradistinction to the other methods (see
bioelectrical ER response cortical maps in Fig. 4). However, only
BASTA and BASTERF approaches prove able to recover the
simulated time courses with accuracy (see highly noisy estimated
time course on Fig. 4, more specifically for the fMRI-weighted
MNE). Moreover, BASTERF benefitted from fMRI partial
concordant information when estimating the left parieto-temporal
source dynamics. As a consequence, its spatial and temporal
characterization is better using BASTERF than using BASTA.

Fig. 5 (resp. 6 and 7) show the empirical cumulative
distribution function of the SSE (resp. LE and ROC) score
corresponding to the estimations of bioelectric ER response J for



Fig. 4. Example of source reconstruction for the series of simulations (S2): bio-electric ER responses. From left to right and top to bottom: simulated EEG sources, BASTERF, fMRI-weighted MNE, BASTA, MNE
and ReML reconstructions. We did not include LORETA for this example because of the poor quality of its estimation. The cortical maps show the summed power of the voxelwise time courses of estimated
bioelectric ER responses, using normalized scales. The maps have been thresholded at the 0.5% quantile of the spatial distribution. The butter y plots show the estimated bioelectric ER responses time courses.
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Fig. 5. Evaluation of the estimation of bioelectric ER response J: SSE
score. Diagrams show the empirical cumulative distribution function (cdf)
of the SSE score over the four series of simulations. x- and y-axis represent
the (log) SSE value and corresponding cdf, respectively. From left to right
and top to bottom: S1, S2, S3 and S4. On each diagram, BASTERF is in
blue, BASTA is in green, LORETA is in red, MNE is in turquoise, ReML
is in violet and WMN is in yellow.

Table 5
Means of LE score (geodesic distance in mm) calculated on the estimation of
the bioelectric ER response J for the four series of simulations: S1, S2, S3
and S4 (and total average over all simulation series)

BASTERF BASTA LORETA MNE ReML WMN

(S1) 56.5 74.8 107.2 78.8 78.6 60.4
(S2) 55.8 68.0 113.8 71.3 74.5 84.8
(S3) 18.7 31.3 101.1 35.5 36.7 21.4
(S4) 27.7 27.5 84.0 39.5 30.8 102.2
Average 39.7 50.4 101.5 56.3 55.1 67.2
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each of the four series of simulations (S1, S2, S3, S4). Means of
these adequacy scores are also presented in Tables 4–6.

Means of SSE and LE adequacy scores associated to the
estimation of the hemodynamic ER response h for each of the four
series of simulations (S1, S2, S3, S4) are also presented in Tables 7
and 8. We did not report the ROC score values in any table, since all
simulations exhibited a ROC score of 1 for all methods. Neither did
we plot the empirical cdf of the adequacy indices because they did
not reveal any significant difference between the three methods.

First of all, we note that the estimation capabilities of the mono-
modality approaches (BASTA, MNE, ReML for EEG and ML for
fMRI) are stable whatever the level of EEG-fMRI discordance (i.e.
the simulation series). Second, whenever there is a significant
difference between the different approaches, BASTERF exhibits
the best results for all adequacy scores (i.e. SSE, LE and ROC)
(Figs. 6−8).

As for EEG, the general ranking of the mono-modality
approaches is the following: BASTA>ReML>MNE>LORETA.
Table 4
Means of SSE score calculated on the estimation of the bioelectric ER
response J for the four series of simulations: S1, S2, S3 and S4 (and total
average over all simulation series)

BASTERF BASTA LORETA MNE ReML WMN

(S1) 0.33 0.79 1.87 1.54 2.00 0.80
(S2) 0.69 0.98 1.99 1.68 1.77 0.99
(S3) 0.83 1.20 2.03 1.81 2.08 0.72
(S4) 1.30 1.33 2.10 1.93 2.10 1.73
Average 0.79 1.07 1.99 1.74 1.99 1.06
Besides, we note that LORETA exhibited the worst behavior in all
simulations, whatever the adequacy score (except for the
simulation series (S4), for which the fMRI-weighted MN algorithm
behaved even worst). Moreover, the three adequacy scores showed
a significant difference between BASTERF and BASTA, except
for the simulation series (S4), where the two methods behaved
similarly. These observations indicate that the improved localiza-
tion properties of BASTERF are mainly due to the contribution of
the fMRI information, whenever the latter is sufficiently
concordant with the bioelectric ER response.

As for the adequacy of the estimation of the hemodynamic ER
response, the simulations did not show any significant effect of the
estimation scheme. Surprisingly, the estimation of the hemody-
namic ER responses h seems to be slightly more perturbed by the
configuration (S3) than for (S4) (cf Table 7). This point will be
made clearer later on.

Detailed analysis of the empirical cdf of adequacy scores SSE,
LE and ROC allowed us to understand the dissimilarity of behavior
between asymmetrical (WMN) and symmetrical approaches for the
fusion of multimodal EEG/fMRI information.

On one hand, it is worth noticing that the quality of the
bioelectric ER response estimation of the algorithm WMN
decreased as the EEG/fMRI discordance increased:

• perfect concordance (S1): the fMRI-based constraint introduced
in the WMN approach was relevant. The estimation of the
bioelectric ER response ĴWMN was better than that of all mono-
modality approaches, and equivalent to that of BASTERF;

• mixed concordance (series (S2) and (S3)): the fMRI-derived
constraint was not fully relevant. The quality of the bioelectric
ER response estimate ĴWMN got closer to that of the MNE
approach. More precisely, for this kind of EEG/fMRI fusion
approach, it seemed more compromising to omit part of the
bioelectric active sources (series (S2)) than to define an fMRI-
derived prior containing spurious sources (series (S3)). This
particular behavior has already been reported in previous
evaluations of WMN-like EEG/fMRI fusion approaches (Liu
Table 6
Means of ROC score calculated on the estimation of the bioelectric ER
response J for the four series of simulations: S1, S2, S3 and S4 (and total
average over all simulation series)

BASTERF BASTA LORETA MNE ReML WMN

(S1) 1.00 0.97 0.67 0.89 0.94 1.00
(S2) 0.97 0.95 0.62 0.85 0.90 0.93
(S3) 0.99 0.95 0.70 0.90 0.92 1.00
(S4) 0.95 0.94 0.71 0.86 0.93 0.85
Average 0.98 0.95 0.68 0.88 0.92 0.95



Table 7
Means of SSE score calculated on the estimation of the hemodynamic ER
response h for the four series of simulations: S1, S2, S3 and S4 (and total
average over all simulation series)

BASTERF ML BHE

(S1) 0.07 0.74 0.24
(S2) 0.06 0.74 0.22
(S3) 0.12 0.73 0.24
(S4) 0.06 0.74 0.22
Average 0.08 0.74 0.23

Fig. 6. Evaluation of the estimation of bioelectric ER response J: LE score.
Diagrams show the empirical cumulative distribution function (cdf) of the
LE score over the four series of simulations. X and y-axis represent the (log)
LE value and corresponding cdf, respectively. From left to right and top to
bottom: S1, S2, S3 and S4. On each diagram, BASTERF is in blue, BASTA
is in green, LORETA is in red, MNE is in turquoise, ReML is in violet and
WMN is in yellow.
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et al., 1998; Ahlfors and Simpson, 2004; Daunizeau et al.,
2005a). We will discuss this point further in Discussion;

• weak concordance (series (S4)): the constraint from fMRI in the
WMN approach was irrelevant. The estimation of the bioelectric
activity ĴWMN was strongly biased. As a consequence, WMN
performed worst than any mono-modality algorithm (except
LORETA).

On the other hand, the bioelectric ER response estimation of the
approach BASTERF was relatively stable, whatever the EEG/fMRI
concordance/discordance level (and w.r.t. all adequacy scores).

Of course, the BASTERF estimation of J was perturbed by the
EEG/fMRI concordance level (cf Fig. 5), and this effect can be
seen clearly on the empirical cdf associated to the ROC score (cf
Fig. 7). That is, estimation of bioelectric and hemodynamic ER
responses is most efficient with a common spatial support that
represents all cerebral activity sources. However, in opposition to
WMN-like asymmetrical EEG/fMRI fusion approaches, BAS-
TERF proved able to downweight the influence of fMRI (resp.
EEG) data in the estimation of the bioelectric (resp. hemodynamic)
activity when the EEG/fMRI concordance became contentious. As
a consequence, the behavior of BASTERF (w.r.t. its bioelectric ER
response estimation abilities) is similar to that of BASTA in
situations of weak concordance between EEG and fMRI (simula-
tion series S4). This might also explain the relative comparison
between the hemodynamic ER response estimation capabilities of
BASTERF for (S3) and (S4) series.

Application to interictal spike localization for one patient with
focal epilepsy

Interictal spikes are transient events, characteristic of epilepsy,
that occur between seizures. They are generated by the brain without
any clinical signs, thus making multimodal imaging studies feasible.

In order to illustrate BASTERF on clinical data, we selected EEG/
MRI data from a 32-year-old woman with drug-resistant focal
epilepsy admitted at the Montreal Neurological Institute for
presurgical investigation. The patient underwent simultaneous EEG-
Table 8
Means of LE score (geodesic distance in mm) calculated on the estimation of
the hemodynamic activity sources h for the four series of simulations: S1,
S2, S3 and S4 (and total average over all simulation series)

BASTERF ML BHE

(S1) 14.9 17.7 17.5
(S2) 16.9 15.7 19.2
(S3) 17.1 19.1 17.9
(S4) 17.5 18.8 17.7
Average 16.6 17.8 18.1
fMRI examination as described in (Gotman et al., 2004). An additional
high resolution EEG recording session was performed outside the
scanner immediately afterwards. This second EEG recording will be
referred to as the “prolonged EEG” to distinguish it from the EEG
recorded during fMRI scanning. Written informed consent was
obtained in accordance with the regulations of the Research Ethics
Board of the Montreal Neurological Institute and Hospital.

During the complete presurgical investigation, intracranial
electrodes were also implanted. In this study, we will use
intracranial analysis as a partial validation tool (Alarcon et al.,
1994) to assess BASTERF results.
Data acquisition
The data acquisition protocol is described in details in (Gotman

et al., 2004). The EEG-fMRI sessions were carried out in a 1.5 T
Siemens Sonata scanner (Siemens, Erlangen, Germany) using 21
electrodes and an EMR32 amplifier recording at a sampling rate of
1 kHz (Schwarzer, Munich, Germany). A standard EPI fMRI
sequence was used (voxel dimensions 5×5×5 mm, 25 slices,
64×64 matrix, TE=50 ms, TR=3 s, ip angle 90°) and an
anatomical scan was also acquired prior to fMRI recording (170
sagittal slices, 1 mm slice thickness, 256×256 matrix, TE=9.2 ms,
TR=22 ms, ip angle 30°). The fMRI data were acquired in runs of
120 images lasting approximately 6 min each, followed by a short
pause. The scanning session lasted for approximately 2 h in total,
with 12 runs of fMRI data acquired. Following the EEG-fMRI
scanning session, the patient was taken directly from the scanner to
the clinical EEG department. Extra electrodes were added
according to the 10–10 standard leading to a total of 44 electrodes.
This prolonged EEG session lasted for approximately 45 min
(sampling rate: 200 Hz).



Fig. 7. Evaluation of the estimation of bioelectric ER response J: ROC score.
Diagrams show the empirical cumulative distribution function (cdf of the
ROC score over the four series of simulations. x and y-axis represent the log
(p/1−p) value and corresponding cdf, respectively (where p is the area under
the ROC curve). From left to right and top to bottom: S1, S2, S3 and S4. On
each diagram, BASTERF is in blue, BASTA is in green, LORETA is in red,
MNE is in turquoise, ReML is in violet and WMN is in yellow.

Fig. 8. Spatial distribution of a Student score TBASTERF derived from the VB
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Data preprocessing
The artefact induced on the EEG recording by the gradient

switching during fMRI scanning was removed using the FEMR
software (Schwarzer; Hoffmann et al. 2000).

An expert epileptologist detected manually the interictal spikes
on both EEG recordings, i.e. simultaneous and prolonged EEG
sessions. Spikes marked in the EEG acquired in the scanner were
used to define the ER paradigm required for the identification of
the hemodynamic response from fMRI data (i.e., the B matrix, cf
Eq. (3)). The spikes marked in the prolonged EEG recording were
averaged. The resulting scalp ER potential was used for bioelectric
ER response estimation in our approach (i.e. the measurements
matrix M) since it had more electrodes and was much less noisy
than the EEG recorded inside the scanner.

The white matter/grey matter interface was segmented from the
anatomical MRI scan using the BrainVISA software (BrainVISA,
2005). The cortical surface was then down-sampled in order to
obtain a 4000 vertices mesh3. The EEG gain matrix was estimated
using a three-sphere analytical model of the BrainStorm software
(BrainStorm, 2005).

fMRI data were first motion-corrected, realigned and spatially
smoothed (6 mm FWHM) using the BIC software package4. Then,
fMRI data were prewhitened with an autoregressive filter of order
3 This was done using the reducepatch.m MATLAB (MATLAB, 2005)
function.
4 BIC: Brain Imaging Center of the MNI: http://www.bic.mcgill.ca/

software/.
1, and low frequency drifts were removed from the signal by fitting
a third-order polynomial (Worsley et al., 2002).

Moreover, in order to define a common spatial support for both
bioelectric and hemodynamic activities, volumic preprocessed
fMRI data were interpolated on the cortical mesh extracted from
the anatomical MRI (Grova et al., 2006) (see Appendix A). Surface
fMRI data were then temporally linearly interpolated to 1 Hz
pseudo-acquisition frequency.

Results
Fig. 8 shows the spatial distribution of a Student score

TBASTERF derived from the VB estimation of the spatial profile
of the bioelectrically and hemodynamically active sources w:

TBASTERF ¼ jmWijffiffiffiffiffiffiffiffiffiffiffiðΣwi;i

p Þ1ViVn

 !
; ð23Þ

where μW and ΣW are the first two moments (mean and
covariance matrix) of the variational posterior pdf qW (w) of the
temporal invariant w. At convergence of the algorithm, these
moments are given by the corresponding expressions in Table 1.

Four anatomical regions were found to be simultaneously
active according to EEG and fMRI data (Fig. 8). Sources found in
estimation of the spatial profile of the bioelectrically and hemodynamically
active sourcesw. From left to right and top to bottom: top, bottom, left, right,
back and front views of the cortical surface. The three most significant
sources are localized on left and right occipital lobes and on the right post-
central gyrus. Moreover, one supplementary activated region appears onto
the left post-central gyrus (see intracranial EEG results in Fig. 10).

http://www.bic.mcgill.ca/software/
http://www.bic.mcgill.ca/software/


81J. Daunizeau et al. / NeuroImage 36 (2007) 69–87
the right and left occipital lobes and in the right post-central gyrus
were the most significant ones, whereas an additional source
located in the left post-central gyrus was also observed. Time
courses corresponding to estimated bioelectric and hemodynamic
activities within these four regions are shown in Fig. 9. Notice that
all estimated hemodynamic time courses showed mainly a
negative BOLD response (peaking between 4 and 6 s after the
spike), that could be denoted as an fMRI deactivation in agreement
with EEG sources.

Fortunately, implanted intracranial EEG electrodes were close
to the four regions identified by BASTERF and these intracranial
EEG recordings were then used to confirm our results (Fig. 10).
First of all, these intracranial recordings were reviewed by an
experienced electroencephalographer in order to infer which
intracranial pattern of interictal spiking was the most likely to
correspond to the activity visible on the scalp EEG, i.e., the type
of spike we localized using BASTERF. Typical interictal spikes
were manually detected on one particular epidural electrode
located on the cortex (in yellow in Fig. 10(a)) and used to average
the signal over all contacts of all implanted electrodes. Electrode
contacts found close to the four regions identified by BASTERF
are represented in Fig. 10(a) using the same color code as that
used in Fig. 9. Average intracranial EEG signals corresponding to
these four regions as well as all the other contacts are represented
in Fig. 10(b). Intracranial EEG recordings confirmed the
involvement of both occipital areas and the right post-central
gyrus during the generation and the propagation of the interictal
spikes analyzed in this study. Noticeably, intracranial EEG
recordings showed also some activity elsewhere in regions not
detected by BASTERF.

The cortical currents and the measured intracranial EEG electric
potentials correspond to distinct physical quantities. Indeed, the
former is likely to be the physical cause of the latter, i.e.
intracranial EEG observations should be predicted by the electric
potential field generated by the spatial distribution of cortical
currents.

For instance, let us consider the polarity inversion seen on the
10 active plots located in the left occipital lobe (blue time courses
Fig. 9. Time courses of the bioelectric and hemodynamic activities of the common E
Mean estimated time courses of the bioelectric activity of these four regions (x- a
estimated time courses of the hemodynamic activity of these four regions (x- and
respectively). On all subgyrus, green=right occipital region, blue= left occipital
Errorbars show half the standard deviation over the set of voxels belonging to the
on Fig. 10): all sensors showed a highly synchronized activity for
the main peak in addition to a gradient of amplitude from positive
to negative values. This may be interpreted as the expression of a
dipolar electric potential field generated approximatively at the
barycenter of the active plots, i.e. in the middle of the left
occipital BASTERF active source. Noticeably, this active area
appeared to be spatially spread on two cortical parcels with
highly correlated positive (at the main peak) time courses (see
Fig. 9).

Intracranial EEG measurements also exhibited significant
activity (related to the typical spikes analyzed in this study) close
to the right occipital lobe, as well as behind the right post-central
gyrus (cf green and red electrode contacts in Fig. 10(a)). However,
we did not observe any polarity inversion on these intracranial
signals, suggesting probably more distant generators, that could
still be located close to the two most significant regions of the
TBASTERF map shown on Fig. 8. It was not possible to further
confirm such a hypothesis, because of the sparsity of the
intracranial measurements available in these regions (especially
in the right post-central gyrus).

Moreover, according to the intracranial electrodes located close
to the least significant BASTERF region, i.e. left post-central gyrus
(cf cyan electrode contacts in Fig. 10(a)), no significant epilepti-
form activity was observed at the time of the spike likely to be
detected on the surface.

Furthermore, both intracranial EEG (cf Fig. 10(b)) and estimated
cortical currents (Fig. 9(b)) seemed to exhibit a similar temporal
scenario: the epileptiform activity started in the right occipital
region, and later on spread in left occipital and right post-central
gyrus regions, the last ones being mostly temporally coherent.
Hence, the time dynamics of the estimated cortical currents, despite
their enforced smoothness, are likely to be adequately rendered.
These results seem to express a strong agreement between the
BASTERF results and the intracranial EEG findings.

Last but not least, let us notice that the hemodynamic ER
responses did not obey the same chronology as that of the
bioelectric ER responses. From the point of view of fMRI, the right
occipital hemodynamic ER response peak appeared later than that
EG/fMRI sources. (a) Regions found commonly active using BASTERF. (b)
nd y-axis: current density in A m−3 and time in ms, respectively). (c) Mean
y-axis: amplitude of BOLD signal change in arbitrary units and time in s,
region, red=right post-central gyrus and turquoise= left post-cental gyrus.
four activated regions.



Fig. 10. Intracranial EEG results. (a) Superimposition of intracranial electrodes position on the cortical surface extracted from the anatomical MRI. The contact
used to average the intracranial EEG signals is represented in yellow. The contacts located close to the four regions identified by BASTERF are represented using
the same colors as in Fig. 9 (green=right occipital region, blue= left occipital region, red=right post-central gyrus and turquoise= left post-central gyrus). The
remaining contrasts are represented in grey. Regions found commonly active using BASTERF are also represented using the same color code on the cortical
surface. (b) Temporal dynamics of the bioelectric ER potential, as measured by implanted electrodes (yellow=electrode used to select spikes for averaging,
green=right occipital focus, blue= left occipital focus, red=right post-central gyrus and turquoise= left post-cental gyrus and black=remaining electrodes).
Intracranial EEG results confirmed the presence of an epileptic discharge close to the three regions identified by BASTERF, i.e. localized into the right and left
occipital lobes, as well as behind the right post-central gyrus (cf Fig. 8).

82 J. Daunizeau et al. / NeuroImage 36 (2007) 69–87
of the two other activated regions (according to fMRI temporal
resolution and sampling rate). This point will be discussed further
in Discussion.
Discussion

The spatially concordant ER responses model

In this work, we proposed a symmetrical approach to EEG/
fMRI information fusion, which aims at estimating both bioelectric
and hemodynamic ER responses. We therefore relied upon the
spatially concordant ER responses model, which can be summar-
ized as follows:

• a set of general and reliable prior assumptions about the expected
features of brain activity are introduced via the data generative
model M. For instance, the prior spatio-temporal separability of
J and h enables us to enforce a common and robust representation
for both bioelectric and hemodynamic ER responses;

• coupling or uncoupling between EEG/fMRI is enabled through
the notion of spatial support common to both bioelectric and
hemodynamic ER responses. Importantly, given this profile, the
structure of the generative model implies the independence of
these two different types of brain activity. Moreover, at the limit,
w→0n, equations related to EEG and fMRI data observation
(Eqs. (1) and (2)) are decoupled. In other words, the classical
EEG and fMRI data generative models pertain to the
“uncoupling” limiting case for the spatially concordant ER
responses model. Let us note that this situation is a priori
assumed since the prior pdf of w has zero mean. As a
consequence, the structure of the EEG/fMRI coupling is learned
exclusively from the data;

• the specification of the data generative model M relies on a
graphical (hierarchical) formalization of the problem, whose
structure guides the variational approximations required for full
Bayesian inference.
As a matter of fact, within our generative model, the spatio-
temporal factorization is a practical route to define the common
subspace of bioelectric and hemodynamic ER responses, i.e. the
spatial support of the EEG/fMRI common sources. Moreover,
through the parcelling, it offers “for free” a dimension reduction of
the problem. This dimension reduction, in some way, is mandatory
for a truly balanced EEG/fMRI information fusion approach.
Indeed, the efficiency of any parameter estimation depends on the
balance between the data likelihood and the prior. That is, the
influence of the data in the estimation depends on the “quantity of
information” available for each parameter. Now, fMRI provides a
substantial amount of information regarding the spatial properties of
the ER response. Therefore, in order to build a balanced symmetric
information fusion, we have to reduce the “ill-posedness” of the
EEG inverse problem. That is the “last but not least” consequence of
the spatio-temporal factorization. Thus, this model for spatially
concordant ER responses substantiates a true unsupervised well-
balanced symmetrical EEG/fMRI information fusion approach.

Lastly, note that the introduction of the residuals R and L in the
generative model has been motivated by the potential existence of
modality-specific “neuronal activities” (cf subspaces ζ2 and ζ3 on
Fig. 1). However, these residuals also potentially model some
discrepancy between the actual common sources dynamics and
their assumed spatio-temporal decomposition. a priori, it seems
difficult to expect a particular spatial structure for these potential
residuals. For that reason, we assumed R and L were realizations
of i.i.d. Gaussian random variables, which is the least compromis-
ing hypothesis we could make. As a consequence, the VB learning
scheme is exactly returning a minimum norm estimate of these
quantities. As such, it is likely that the residuals are under-
estimated, which might be a potential limit of the current approach.
The variational Bayesian learning scheme

The VB learning scheme relies on the specification of the prior
conditional pdf of the generative model parameters. In our
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generative model, we have made use of non-informative prior pdf
(for instance, Jeffreys priors on precision hyperparameters). Indeed,
the building of non-informative distributions is the heart of a
controversial debate: how should we parameterize our prior
ignorance? Jeffreys priors are derived from formal rules (invariance
principles) for choosing non-informative priors associated to
families of parameters (location, scale, …). Unfortunately, these
priors are improper, i.e. unnormalized. The practical alternative to
Jeffreys-like priors is the use of diffuse but proper prior pdf. In our
case, this pertains to specify vague Gamma prior pdf for all precision
parameters, which would embody the expected scale of magnitude
of all the unknown hidden states (J, h, w, X and Z). This would
theoretically prevent the posterior from its potential impropriety.
However, when improper priors lead to badly behaved posteriors, it
is a warning that the problem itself may be hard; in this situation
diffuse proper priors are likely to lead to similar difficulties (Kass
and Wassermann, 1996).

A second argument in favor of our use of non-informative
priors for precision hyperparameters may come from both the
intuitive understanding of the hierarchical generative model and
the simulation series. The observation Eqs. (1) and (2), combined
with the informative (Gamma) prior on the measurement noises (cf
Eq. (15)) are very likely to enforce a certain scale of magnitude for
the estimated voxelwise dynamics J and h. Then, the conditional
pdf given by Eqs. (8), (10) and (13) can be rewritten as a zero mean
prior pdf for J and h, with a given covariance structure. This
covariance structure is decomposed into spatial and temporal
components (through the spatio-temporal factorization), which
have to match the (data) imposed scale of J and h. In other words,
the spatial and temporal variability of J and h is parameterized by a
mixture of covariance matrices, which has to be “adjusted” through
the estimation of the precision hyperparameters. Two limiting
situations may then occur: either there is enough information in the
data to fit the hyperparameters, or there is not. In the latter case,
one may claim that the posterior Gamma hyperparameter pdf
derived from the VB learning scheme may reflect any potential
lack of data information, by showing, for instance, a high posterior
variance of the precision hyperparameters. However, the simula-
tion series did not show any striking difference between the
posterior variances of the measurement noise precisions (whose
marginal posterior are assured to be proper) and the other precision
hyperparameters (whose posterior might, a priori, be improper).

Another comment is to be made about the VB inversion of the
generative model. The hierarchical prior on w is derived by
making use of the discrete Laplacian operator S (cf Prior densities
of the coupling model parameters), which is rank deficient (i.e. of
rank n−1). As a consequence, the prior Gaussian pdf of w is
formally degenerate, i.e. one of the principal axis of its prior
covariance matrix has an infinite variance. Nevertheless, this does
not lead to an improper posterior pdf, because its posterior
covariance matrix is full-rank (see Table 1). An equivalent remark
can be made for X and Z, whose hierarchical prior made use of
the discrete second temporal derivative operators T1 and T2.
Despite the fact that this rank-deficiency does not invalidate the
use of application of the VB framework, it may be a problem for
the actual calculation of the variational free energy, for which one
may have to resort to some full-rank approximation of the above-
mentioned operators.

Furthermore, we should shed some light on the VB learning of
the time invariant w, which is the EEG/fMRI coupling key quantity.
The common spatial profile of brain activity w is estimated
according to a trade-off in fitting both the EEG and fMRI data.
More precisely, the functional form of the variational marginal
posterior pdf qW is such that:

• this trade-off between the two terms of attach to the bioelectric
and hemodynamic activities, respectively, is related to a measure
of uncertainty associated to these cerebral activity markers (via
the precision hyperparameters ϵ1 and ϵ2, cf Table 1). In other
words, the influence of the EEG or fMRI datasets in the
estimation of their common spatial profile w is an increasing
function of the plausibility of the information they contain;

• the variational posterior covariance matrix of w is a decreasing
function of the variational posterior covariance matrices ofX and
Z (cf Table 2, Eq. (22)). This phenomenon illustrates the
conservation of the total uncertainty associated with the
subsystem (w, X, Z), which is a commonly observed
characteristic of dual variables. This enforces a weighting that
penalizes the voxels/dipoles whose temporal (bioelectric and/or
hemodynamic) characteristics are highly uncertain. In other
words, the iterative estimation of w may be considered as a
selecting process of brain areas whose characteristics are the least
uncertain given the observed EEG/fMRI datasets.

By construction, the estimated common spatial profile w should
reveal the bioelectrically and hemodynamically active areas that
are characterized with no uncertainty by the joint EEG/fMRI
datasets. w then yields a quantitative image of the true fusion of
multimodal information.

Indeed, the simulation series highlighted the expected behaviour
of the invariant spatial profile w. Let us consider the difference
between WMN-like and BASTERF fusion approaches, which is
most prominent for the simulation series (S4). These series have
been described as “weak concordance” situations because despite
the fact that no active source was contributing to both EEG and fMRI
datasets, both datasets partially agree about the inactive sources.
This puts into light another difference between the proposed
approach and the more classical fMRI-weighted minimum norm
approach to the EEG inverse problem: the VB inference scheme is
explicitly estimating the uncertainty of the model parameters
associated to both EEG and fMRI data generative models. As a
consequence, the areas of the brain that do not contribute to any of
the EEG and fMRI datasets are considered as certainly inactive.
However, the areas that are expressed in one of the two datasets will
be associated to a higher local variance. Intuitively, the algorithm has
then to choose between these less certainly inactive areas to explain
the respective datasets. This is not the case for fMRI-weighted
minimum norm approaches, because these do not consider the local
uncertainty of the fMRI prior.

The variational Bayesian learning scheme further enables us to
test for the significance of the estimated common spatial profile w.
Such a test might reveal the “common spatial support” of bioelectric
and hemodynamic activities. By spatial support of activity, we mean
the infinite set of significantly activated voxels. Hence, the common
spatial support is the intersection of bioelectrically and hemodyna-
mically active voxels. This classification would allow us to localize
the regions that exhibit a strong bioelectric/hemodynamic coupling
for a given subject and a given experiment.

However, the mean-field approximation implies an under-
estimation of the degree of uncertainty associated to the estimations
of the graphical model parameters. For instance, this may explain the
large T-values obtained in the epileptic patient study (cf Fig. 8). As a
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consequence, it might be difficult to propose an absolute way of
thresholding the mapw. This particular point should be tackled with
great care, and might benefit from an exhaustive comparison with
classical Bayesian sampling approaches (such as Gibbs sampling).

The cortical parcelling

Up to now, we did not discuss the specific influence of the
parcelling (C), which constitutes, in this work, a fixed prior
assumption about the structure of cortical activity.

As a matter of fact, the adequacy of the local spatio-temporal
factorization assumption (within the parcels dynamics) is definitely
dependent on the cortical parcelling itself. Noticeably, this
sensitivity has been evaluated when first proposing the spatio-
temporal model for the EEG inverse problem in (Daunizeau et al.,
2005b). The conclusions were the following: as long as each parcel
dynamics can be described using one approximated time course, the
model is actually fine. Moreover, even when at least one prior
cortical parcel contains more than one active source, the subsequent
perturbation on the estimated spatial profilew is “acceptable”, in the
sense that the corresponding cortical source estimation (J=Diag(w)
CX) is most of the time better than the standard LORETA (Pascual-
Marqui et al., 1994), MN and WMN methods.

Nevertheless, the sensitivity of the whole approach to the
potential inadequacy of the prior cortical parcelling still remains to
be properly evaluated. The simulation series S1, S2, S3 and S4
were conducted such that no cortical parcel contained more than
one active simulated source. Therefore, we did not evaluate the
behavior of the whole approach when the prior hypothesis of
temporal coherence of the parcels was mainly irrelevant. Although
important, the question of estimating such a cortical parcel falls
beyond the scope of this article. Several approaches have already
been proposed to derive a cortical parcelling based on functional
neuroimaging data (see (Flandin et al., 2002; Bellec et al., 2004)
for fMRI and (Daunizeau et al., 2004; Lapalme et al., 2006) for
EEG). However, no multimodal approach has yet been proposed.
We are currently investigating the putative usefulness of such an
approach, which, interestingly, might be consecutive to the
inability of the model to describe properly the cortical voxelwise
ER response. Indeed, in that case, the data itself will “require” a
more adequate parcelling to be properly modelled.

Noticeably, the data generative model M introduces J and h as
perturbations of their respective spatio-temporal decomposition (cf
Eqs. (4) and (5)). Hence, the residuals R and L enable us to relax the
estimation of J and h and prevent it from inappropriate constraint of
temporal coherence. As a consequence, it is possible to explicitly
look for the parcelling that is associated with a maximal intra-parcel
temporal coherence, according to both EEG and fMRI data. This
optimization scheme may be introduced during the iterations of the
VB algorithm, by specifying a prior pdf 5 for the new unknown
variable C. Another practical alternative would be to compare
differentmodels associated to a reduced set of given parcellings using
the variational free energy (approximation of the model evidence).

Comments on the observed neurovascular coupling

The validation part of this work has involved the use of
multimodal epilepsy data, and relied on the available intracranial
5 For example, this pdf could be a multinomial pdf (living in the labels
space), whose mode might be defined as the Brodmann cortical parcelling.
EEG measurements to draw some conclusions regarding the
behavior of the whole approach. First of all, one must emphasize
the limitations of the intracranial EEG neuroimaging modality: it is
based on local measurements. As a consequence, intracranial EEG
does not provides us with any information about any potential
activity remote to the implanted electrodes. Moreover, a quantitative
comparison of intracranial EEG signals and reconstructed cortical
currents would involve a dedicated forward model, exactly
equivalent to that underlying the calculation of the EEG gain matrix
(Chang et al., 2005). Particularly, this model should inform us about
how to distort the amplitude of the intracranial EEG signals by
rendering the spatial shape of the electrical potential field that could
have been generated by the cortical currents. Though highly
relevant, such a quantitative analysis of the intracranial EEG
measurements is beyond the scope of this article.

Nevertheless, despite these concerns, the intracranial EEG
measurements allowed us to (partially) validate the results of the
BASTERF analysis of the epilepsy data, and to compare the
bioelectric and the hemodynamic ER responses in the (clinical)
context of interictal spikes localization. The latter lead us to make
two striking observations:

1. The local hemodynamic ER responses do not obey the same
chronology as the bioelectric ER responses;

2. A significant bioelectric ER response is locally associated to a
negative hemodynamic ER response, i.e. a local deactivation.

The concern related to the temporal precedence of the ER
responses has already been reported in (Bandettini et al., 1997). This
has outstanding implications for any causality analysis within the
active network: one may draw complete opposite conclusions about
the causal relations of the nodes by relying on either bioelectric or
hemodynamic ER responses. Since the hemodynamic response is
partly driven by biophysical processes that are independent of the
underlying neuronal activity (e.g., dynamics of the muscular cells
which regulate the vasodilation), we are inclined to favor EEG-
related analysis in any inference regarding the causal relations within
the active network. In other words, one should always complement
any fMRI analysis with EEG recordings in order to be able to infer
both the nodes and the links of the active network.

The second point brings to light the difficulty in linking the
temporal dynamics of bioelectric and hemodynamic activities. As a
matter of fact, very few works have specifically focused on
experimental evidence for candidates processes to deactivation.
Deactivation is commonly interpreted as a transient metabolism
suspension related to the event (Raichle et al., 2000). Relying on
the “sharp-slow wavy” pattern of the scalp ERP of this patient, the
fMRI deactivation may be interpreted by an increase in the
inhibitory activity, which is believed to reduce the net presynaptic
activity (Arthurs and Boniface, 2003). One explanation is that
strong local inhibition is playing a role in keeping these epileptic
discharges from spreading, and therefore could represent the most
prominent phenomenon from the metabolic point of view
(Stefanovic et al., 2005). We have no evidence, however, for
whether this putative inhibitory activity is the cause or the
consequence of the observed epileptiform activity.

Noticeably, these results would have unlikely been obtained by
using a method enforcing a prior link between the time courses of
the bioelectric and hemodynamic ER responses (e.g.: through an
extension of the Balloon model (Riera et al., 2006)). This is
mainly because the existing neurovascular coupling models do not
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entail specific mechanisms of deactivation. Hence, it may be of
interest to primarily develop models able to generate coupling/
uncoupling for both activation and deactivation processes, in order
to design efficient and robust EEG/fMRI information fusion
approaches.
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Fig. 11. Anatomical parcelling for BASTERF application. (a) Cortical field
of handles associated with the parcels (all vertices belonging to the same
parcel are represented using the same color). (b) Histogram of the
distribution of the cortical parcel sizes.

6 This was done using the reducepatch.m MATLAB (MATLAB, 2005)
function.
Appendix A. Anatomically informed interpolation of fMRI
data on the cortical surface

The purpose of such an interpolation is to associate an fMRI time
series to each vertex of the cortical surface defining the EEG
distributed source model. Designing an optimal scheme to interpolate
fMRI raw data on the cortical surface relies on a trade-off between
choosing large enough interpolation kernels, because of the
distributed nature of the hemodynamic response, and avoidingmixing
data issued from different anatomical structures. The definition of
these interpolation kernels should be robust to slight mis-alignments
or distortions between anatomical and functional data.

Given these requirements, the method proposed in (Grova et al.,
2006) automatically adjusts the level of such a trade-off, by
defining interpolation kernels around each vertex of the cortical
surface using a geodesic Voronoï diagram. Geodesic 3D distance to
take into account cortical morphology. Interpolation kernels are
then generated around each node of the surface using a geodesic
Voronoï diagram, which ensures by construction the constraint of
proximity around each node and the robustness to mis-registration.
To integrate functional data over a sufficiently large area, the
spatial support used to generate the Voronoï diagram consisted of
the mask of the gray matter tissue segmented from the MRI, after a
morphological dilatation of 3 mm, in order to take into account the
spatial resolution of fMRI data.

To summarize, the different steps used to perform such an
interpolation were the following: (1) segmentation of the cortical
surface from the anatomical MRI, (2) definition of the anatomical
and functional masks used as spatial supports for the interpola-
tion, (3) construction of interpolation kernels using geodesic
Voronoï diagrams starting from each node of the cortical surface
and (4) integration of the fMRI signal at each node of the cortical
surface.

Appendix B. Obtaining the cortical parcelling

In this work, we implicitly assumed that the cortical parcelling
(C) was common to both data sets. This constraint enabled us to
make a straight comparison of the temporal dynamics of bioelectric
and hemodynamic activities of the parcels. Cortical parcelling
methods from EEG (Daunizeau et al., 2004; Lapalme et al., 2006)
or fMRI (Bellec et al., 2004; Simon et al., 2004) data sets already
exist. However, no process has been yet developed to obtain such a
parcelling from the structure of both bioelectric and hemodynamic
activities. Therefore, we propose to use a very simple anatomical
parcelling analogous (in the sense that it is not derived from any
functional neuroimaging data) to Brodmann parcelling.
In the clinical application presented in this article, this anatomical
parcelling was obtained using a two-step procedure dedicated to cut
the cortical mesh into connected regions. The first step consisted in
down-sampling the cortical mesh up to 39 vertices6. Then, a region-
growing algorithm handled neighboring vertices of the 4000-
vertices mesh to the 39 seeds. Fig. 11 shows the cortical parcelling
and the observed distribution of the sizes of the cortical parcels (i.e.
their number of vertices).

Appendix C. Adequacy metrics

The sum of squared errors (SSE) was defined as:

SSEðJ ̂Þ ¼

Xt1
i¼1

����
����Ji � Ĵi

����
����2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXt1

i¼1

����
����Ji
����
����2Xt1

i¼1

����
����Ĵi

����
����2

s ð24Þ

where J and Ĵ are the bioelectric ER responses simulated and
estimated, respectively. The application to the hemodynamic ER
response is straightforward.

The localization error (LE) was an estimation of the cortical
(geodesic, i.e. non-Euclidean) distance between the center of the
simulated source and the global maximum of the squared cortical
bioelectric/hemodynamic ER response at the peak of the simulated
source. Whenever two sources were simulated (simulations series
(S1) and (S2) for EEG, (S1) and (S3) for fMRI), we reported the
mean localization error.

The ROC analysis was conducted such as to compare the
cortical binary mask corresponding to the simulated areas and the
power map PJ defined as:

PJ ¼
Xt1
i¼1

J 2i;t

 !
i¼1; N ;n

ð25Þ

for the bioelectric ER response (and equivalently for the
hemodynamic ER response). The area under the ROC curve is
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then the probability to correctly disambiguate between an activated
and an inactivated elementary dipole, on the basis of the power
map PJ. Note that this index provides an accurate estimation of the
global spatial behavior of an estimator (in terms of both its
localization and extent estimation capabilities).
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