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Abstract—Electroencephalography (EEG) allows us to observe
brain activity through electrical signals. Phase-amplitude cou-
pling (PAC) is a way to analyze EEG data by focusing on the
interaction between the low- and high-frequency components of
these signals. However, PAC analyses are often challenged by
various methodological issues. We here propose a novel approach
which alleviates these issues. Our method has the following
features: (i) it addresses the transient nature of coupling through
data epoching; (ii) it ensures the presence of low-frequency
oscillations through peak detection in the power spectrum; (iii)
it applies adaptive high-frequency filtering; and (iv) it performs
statistical validation using surrogate data. The efficiency of our
method is demonstrated through both a simulation study and the
analysis of experimental EEG data, offering new insights into the
intricate workings of brain signal interactions.

Index Terms—brain oscillations; electroencephalography
(EEG); resting-state EEG; phase-amplitude coupling; cross-
frequency coupling

I. INTRODUCTION

Electroencephalography (EEG) is a non-invasive brain ex-
ploration technique that makes it possible to record electrical
signals resulting from neuronal activity. These recordings are
driven by oscillations arising from the synchronized activity of
neuronal populations. Observed oscillations can vary in their
frequency, with distinct bands like delta (1-4 Hz), theta (4—
8 Hz), alpha (8-12 Hz), beta (12-30 Hz), and gamma (above
30 Hz), each associated with specific functions [1]. In particu-
lar, it is hypothesized that high-frequencies could be associated
with localized brain activity, while lower frequencies may be
a signature of large-scale interactions between distant brain
areas [1]. Since one could expect a coordination between local
activities and large-scale interactions, it has been suggested
that low- and high-frequency bands could interact with each
another, a phenomenon called cross-frequency coupling (CFC)
[2]. A particular form of CFC, called phase amplitude coupling
(PAC), analyzes the relationship between the phase of a low-
frequency signal, typically in the theta and alpha bands, and
the amplitude of a high-frequency signal, commonly in the
beta and gamma ranges. PAC can be quantified using various
methods [3]-[6]. It has been related to processes like atten-
tion [7], decision making [8], synaptic plasticity [9], and has
been investigated as a biomarker in clinical alterations [10]—
[12].
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Various methodological issues still hamper PAC analyses
[13]-[16]. First, the transient nature of coupling means that
this phenomenon should be studied over relatively short time
scales (issue I). Second, PAC only has a meaning in the case
of low-frequency oscillatory signals, i.e., in association with
a clear peak in the corresponding range of the power spectral
density (PSD) (issue II). Third, an overly broad or narrow
bandwidth for the high-frequency filtering can respectively
introduce unrelated neural activities or overlook amplitude
modulations (issue III). Fourth, raw values of PAC are often
hard to interpret and their relevance in terms of coupling
can usually only be determined though a statistical analysis
(issue 1V).

In the present abstract, we are interested in the extraction
of PAC from resting-state EEG signals, focusing on potential
interactions between the theta-alpha band (4-12 Hz, for the
low-frequency oscillations) and the gamma band (30-60 Hz,
for the high-frequency oscillations). To our knowledge, no
method proposed so far [17]-[19] simultaneously solves the
four issues mentioned above. We propose a detailed pipeline
that attempts to address these concerns.

The outline of the abstract is the following. We first intro-
duce the details of our approach (Section II). We then validate
it through data simulations (Section III) and finally illustrate
it on experimental EEG data (Section IV).

II. METHODS

Our PAC method is structured into 4 successive steps.
We begin by decomposing our signal into epochs of short
duration (Section II-A), addressing issue 1. For each epoch,
we calculate the PSD and extract the low-frequency peaks; we
only keep epochs that show one or several clear peaks in the
low-frequency band of interest and focus on low-frequency
intervals within the extracted peaks (Section II-B), thereby
addressing issue II. We then perform PAC analysis using an
adaptive high-frequency window (Section II-C), addressing
issue III. Finally, we identify significant PAC by performing
surrogate analysis, correcting for multiple comparisons with
the pixel-based maximum statistic (Section II-D), addressing
issue I'V.

A. Data Epoching

The initial step of our pipeline involves the segmentation of
the resting-state EEG signal into epochs of 3-second duration.
The choice of 3 s epochs offers a good compromise between



sensitivity to changes and reliability of PSD estimation. In-
deed, by using short time frames, we enhance our ability to
detect subtle, yet significant, transient PAC. This segmentation
also limits the influence of non-stationarities in the EEG
recordings. A 3 s duration (corresponding to at least 12 cycles
for the considered low-frequency band) is also long enough to
allow proper estimation of the PSD in the subsequent step. At
the end of this stage, the signal is segmented into F epochs.

B. Low-Frequency Peak Detection

We consider the presence of one or several peaks in the
low-frequency range of the PSD to be a prerequisite for PAC
analysis [13]. Following the data epoching step, we calculate
the PSD between 2 and 70 Hz for each epoch e € {1,...,E},
by using the Welch method [20] and extract the peaks (as
intervals of the form [v — Av,v 4+ Av], where v is a local
maximum and 2Avr a width) standing out of an expected
1/f noise background [21]. We then keep the K. peaks
Ve £ Aver, k =1, ..., K., with a nonempty overlap with the
low-frequency range of interest (4—12 Hz). Epochs without at
least one peak in the range (corresponding to K. = 0) are
discarded.

C. Assessing Phase Amplitude Coupling

The following procedure is applied to each epoch e with at
least one peak in the low-frequency range (K. > 1). We split
both the low- and high-frequency ranges into 30 frequency
steps each:

(fiF =4,... A =12) and (/¥ = 30,..., filF = 60).
1)
We consider only the f-F’s that belong to an identified peak,
i.e., for which there exists k € {1,..., K.} such that

Vek — AVek S fZLF S Vek + Al/ek~ (2)

To extract the low-frequency component around f1F, the orig-
inal signal is filtered by application of a bandpass filter around
fEE with a bandwidth of 2 Hz. For the high-frequency signal,
we apply a bandpass filter as well around f;'* with an adaptive
bandwidth of 2fFF [17]. For each pair (fF, f]HF), a Hilbert
transform is applied to the low-frequency signal to extract
the time course of phases and to the high-frequency signal
to extract the time course of amplitudes. Next, we quantify
the PAC between phase and amplitude as MI.(fIF, fI'F)
using the Kullback-Leibler (KL) divergence-based Modulation
Index (MI) method [5]. MI bins phases and, for each bin, com-
putes the average of amplitudes whose corresponding phases
belong to that bin. The averages are then normalized so that
their sum is equal to 1. Departure of the normalized averages
from equality is then quantified as the KL-divergence between
these values and identical normalized averages. Repetition of
this operation for each pair (f-F, fJHF) yields a matrix called
comodulogram. From this comodulogram, we finally calculate
max;; ML (f1'F, f/'F), the maximum value of PAC over all
frequencies considered.

D. Surrogate Data Analysis

In the final step, we evaluate the statistical significance of
calculated PAC for each epoch as follows [22, Chap. 33.6]. We
compute an approximate null distribution using 200 surrogate
datasets, each created by circularly shifting the amplitude
envelope at a random point, thereby disrupting any intrinsic
coupling between low-frequency phase and high-frequency
amplitude. For each surrogate dataset, PAC is calculated over
the same range of low- and high- frequencies as the original
data, and then the maximum value is extracted. Pooling all
surrogate maximum values, we obtain a (surrogate) histogram
approximating the distribution of the maximum value of PAC
under the null hypothesis of no coupling. We then compare
the actual PAC value obtained for the given epoch to its
corresponding distribution, yielding a p-value against the as-
sumption that there is no coupling in a given epoch. An epoch
is deemed to have significant PAC if its p-value is below the
a = 0.05 threshold.

E. Implementation

Implementation of the method was carried out using
Python 3.9. The core data structures used for the signals, data
epoching and PSD analysis were provided by MNE-Python
[23]. For the low-frequency peak detection, we incorporated
the FOOOF algorithm [21]. Additionally, we used filtering
functions provided by Pactools—a Python package specializ-
ing in PAC [17]. Regarding surrogate data analysis, we used
multi-thread processing in order to optimize the calculation
time.

ITII. SIMULATION STUDY

The procedure introduced in Section II was evaluated using
synthetic data. We here present the data generation scheme
(Section III-A), detail our analysis (Section III-B), explain our
assessment method (Section III-C) and state the main results
(Section III-D).

A. Data

Our objective was to generate signals with specific features
that we hoped would satisfactorily mimic those of real data. In
particular, while PAC is a phenomenon that is most likely not
stationary over time, we assumed that it could be approximated
by a succession of stationary processes over windows of
varying duration. During each window, the simulated signal
may or may not exhibit power in the low- and high-frequency
bands. Moreover, in case of power in both bands, there may
or may not be PAC.

Table I summarizes the values for the parameters used in
simulation. We defined M levels of modulation intensity A,S,‘Z),
m = 1,..., M. For each level m, we simulated R resting-
state signals of duration 5 min each sampled at a rate of
fs Hz. Each 5 min simulated signal s,,,,-(t), 1 <r < R, was
decomposed into short windows of random duration sampled
uniformly in [Timin, Tmax]- Within each window w, the signal
Smrw(t) could contain a low-frequency component sL¥ (with

probability 71F), as well as a high-frequency component stF



TABLE I
SIMULATION STUDY. VALUES OF PARAMETERS USED FOR THE SIMULATION.

or in [8,12] Hz for the alpha band. The exact signal was

;__

Parameter ‘ M Ago) )\;0) )\go) Aflm R fs Tmin  Tmax  7EF e Ta AVLE  pHF e o2
Value | 4 05 1 2 3 100 256Hz 25s 6s 2/3 1/2 1/2 1Hz 1/2 2/3 05
(with probability 7HF). The presence of the low- and high- 0.05
frequency components was decided independently from each L T
other. 005 == modulation 1 T
dulation 2 =
If present, the low-frequency component stF (+) could , 004 = mociiation 3
be either in the theta band (with probability 7g) or in the 3
alpha band (with probability m, = 1 — 7). The center £ *%
frequency vLF  of the low frequency was then sampled with £ 00
a uniform distribution, either in [4,8] Hz for the theta band

then obtained as a filtered version of Gaussian white noise,
the filter being a finite impulse response filter with center
frequency v and width AvMF. This allowed to generate
a low-frequency component s¥  with controlled frequency
and varying amplitude [17].

If present, the high-frequency signal s!IF ~was modeled as
a sine with frequency ! set uniformly in [30,60] Hz.

If the window w contained both a low-frequency and a high-
frequency component, we added a coupling ¢, (t) between
both components with probability 7. If present, the coupling

took the form of a sigmoid function [17]:
B 1
S 1+ exXp[—Amrw S, ()]

Cmrw(t) ) 3
where A\ = ASS) is the modulation intensity, and the high-
frequency component was obtained as

Stnpw () = Cmrw(t) SIN(2TV50 1)

“4)

By contrast, in the absence of coupling, we used the same
formulas with A, = 0, leading to ¢, () = 1/2.

Each $,,,,(t) was then set as the sum of sL¥ (¢) and
sHE (t), and the total 5 min signal s,,,(t) was obtained by
concatenating all $,,1,(t), 1 < w < W. To this signal, we

finally added a 1/f noise with variance o2 [24].

B. Analysis

For each 5 min simulated signal, the analysis had to deal
with 5 x 60/3 = 100 3 s epochs. For each epoch, we obtained
a value for the maximum PAC Modulation Index (maxMI),
max;; MI(fFF, f]HF) (set to 0 when the epoch had no power
in the low-frequency range of interest), as well as the result
of a significance test against the null hypothesis that there is
no coupling within the given epoch (threshold of a = 0.05).

C. Assessment

To assess the behavior of our method, we used the ground
truth to compute the coupling time fraction of each epoch,
that is, the fraction of time spent in coupling within that epoch.
This quantity varied from O (indicating no coupling during the
epoch) to 1 (indicating the presence of coupling throughout
the epoch). Notably, a fraction of 1 may correspond to two
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Fig. 1. Simulation study. Results of analysis. Boxplot of maxMI (top) and
ratio of significant epochs (bottom) as a function of within-epoch coupling
time fraction.
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distinct sets of parameters for the low- and high-frequency
components. We then pooled maxMI across epochs with
similar coupling time fractions, using the following bins: 0
(only epochs with no coupling), 07—0.2 (epochs with coupling
time fraction strictly larger than 0 and lower than or equal to
0.2), 0.21-0.4, 0.47-0.6, 0.67-0.8, and 0.81—1. For each bin,
we also computed the ratio of epochs within that bin that were
detected as significant.

D. Results

Fig. 1 illustrates the results of our analysis. As expected,
maxMI was an increasing function of both the modulation
intensity and the within-epoch coupling time fraction.

The fraction of significant epochs exhibited a similar behav-
ior. For a within-epoch coupling time of 0, we only observed
false positives, about 10%. For epochs featuring coupling,
the fraction of significant epochs increased with increasing
modulation intensity as well as with coupling time fraction.

IV. EXPERIMENTAL STUDY

In this section, we applied our analysis pipeline to ex-
perimental EEG recordings. We detail the employed dataset
in Section IV-A, expound our analytical methodology in



Section IV-B, and subsequently present our findings in Sec-
tion IV-C.

A. Data

Data used is a part of a protocol which was approved by the
INSERM Ethics Committee (protocol #C17-70) and national
ethical authorities (CPP Ouest II Angers, n°18.07.11.57804
2018/58; RCB 2018-A00789-52). Experiment involved a
5 min resting-state EEG recording (4 kHz sampling rate, band-
pass 0.03—-1330 Hz) of a healthy participant (female, age 31,
right-handed). The Neuromag® TRIUX system, an EEG cap
with 74-Ag/AgCl electrodes following 10-20 placement, was
used. The participant was instructed to keep her eyes closed
and minimize movement.

We focused on signal recorded from the C3 electrode,
which is positioned above the left primary motor cortex. This
electrode is particularly relevant for monitoring brain activity
related to sensorimotor processing of a right-handed individual
at rest [25].

Preprocessing of the raw EEG data was conducted using
MNE-Python [23], involving downsampling to 256 Hz, 50 Hz
notch filtering, and 1-70 Hz bandpass. Faulty channels were
interpolated, and signals were average-referenced. Visual in-
spection identified corrupt data segments, and Independent
Component Analysis (ICA) [26] was applied to remove ar-
tifacts from muscle, eye, and cardiac activity.

B. Analysis

PAC analysis pipeline was applied to the preprocessed
empirical EEG data. The 5 min resting state signal was
segmented into 100 3 s epochs. To assess the performance of
the multi-thread processing, we monitored processing time and
memory usage during surrogate data analysis with a number
of threads varying from 1 to 8. Computations were performed
on a computer with Intel® Xeon(R) Silver 4216, 2.10 GHz
CPU, and 64 GB 3200 MHz DDR4 RAM.

C. Results

Fig. 2 displays a comparison of processing time and mem-
ory usage during surrogate analysis as a function of the number
of threads. We observed an exponential decay for time and a
positive linear relationship for memory usage.

Fig. 3 illustrates results of PAC analysis applied to one
particular epoch. The p-value corresponding to the observed
maxMI was lower than the 0.05 significance threshold, indi-
cating the presence of significant PAC.

Fig. 4 shows a summary of analysis for all epochs. PSD
analysis resulted in 3% of epochs without peak in the 4-12 Hz
frequency range, compared with 97% with at least one peak.
Of epochs with significant low-frequency power, we found
that maxMI ranged from 0.0015 to 0.012. 8% of epochs were
detected with significant coupling. Importantly, we did not
find a purely monotonic relationship between maxMI and p-
value, as similar maxMI values across different epochs could
translate into quite different p-values. In other words, raw
values of maxMI were not per se good indicators of the
presence or absence of coupling.
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Fig. 2. Experimental data. Performance of multi-thread processing. Memory
usage (green line, scale on the left side) and processing time (blue line, scale
on the right side) as a function of the number of threads used for surrogate
analysis.
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Fig. 3. Experimental data. Example of intermediary steps for a given epoch
(red dots in Fig. 4). Top: PSD and low-frequency peak detection with FOOOF
algorithm. Middle: PAC comodulogram between low-frequency phase and
high-frequency amplitude, focusing on the low-frequency range corresponding
to a peak in the PSD. Bottom: Actual maxMI compared with histogram of
surrogate maxMI.

V. DISCUSSION

In our study, we introduced an efficient pipeline for extract-
ing transient PAC from resting-state EEG signals, addressing
key challenges with data epoching (issue I), low-frequency
peak detection (issue II), adaptive high-frequency filtering (is-
sue III), and statistical testing using surrogate data (issue IV).
This approach was validated on synthetic data and illustrated
on experimental data.
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Red dots correspond to intermediary steps illustrated in Fig. 3.

The simulation study confirmed the good behavior of our
approach. In particular, it emphasized the fact that maxMI
tended to increase in response to an increase in both the mod-
ulation intensity and the within-epoch coupling time fraction.
This increase in maxMI was also mirrored in the growing frac-
tion of epochs classified as significant. These results confirm
the relevance of our procedure for PAC analysis.

Our procedure was also successfully applied to experimental
EEG signals, illustrating the existence of the following three
kinds of epochs in real data: those with no power in the low-
frequency band, those with low-frequency power but no cou-
pling, and those with both low-frequency power and coupling.
While the relative ratio of these three cases is expected to vary
from subject to subject, we showed that our method was able
to discriminate between these three types of epochs.

In our experimental data, we observed temporal fluctuations
in both the low-frequency peaks (Fig. 4, top panel) and the
strength of PAC (Fig. 4, bottom panel), giving credit to the hy-
pothesis of transient coupling (issue I). Data epoching allowed
us to deal with these fluctuations separately. Additionally,
low-frequency peaks were not consistently present across all
epochs or did not always span the entire frequency interval of
interest (issue II). Consequently, focusing on low-frequency
bands where signal power was evident helped reduce the risk
of misinterpretation. Furthermore, large values of raw maxMI
did not consistently indicate significant coupling, confirming
that the existence of PAC could not be solely determined
by the raw values of maxMI (issue IV). This underscores
the sensitivity of PAC analysis and emphasizes the need for
caution when interpreting raw maxMI values, as well as the
importance of employing appropriate statistical tests. Lastly, to
address issue III, we applied variable high-frequency filtering.
A more comprehensive analysis is required to fully validate
this last point.

We have to keep in mind that our method summarizes a
whole comodulogram with one single value. There are two
common ways to perform this type of summary, by taking
either the maximum of the comodulogram (i.e., maxMI), or its
mean (leading to a quantity that could be called "meanMI”).

In our methodology, the low-frequency range was identified
using a peak detection procedure, while the high-frequency
range was manually selected by the operator. Consequently,
PAC was computed across potentially broad low- and high-
frequency ranges. However, it is important to note that cross-
frequency coupling may occur within very narrow frequency
bands. Therefore, our comodulograms might display extensive
areas of low PAC together with localized areas of high PAC. To
effectively capture these potentially small areas of significant
coupling, we chose to use maxMI rather than meanMI. We
were concerned that averaging the values with meanMI could
obscure these critical localized coupling events.

Regardless of the summary chosen, it is important to rec-
ognize that this approach provides only a limited view of the
qualitative properties of coupling. In particular, it will not de-
tect changes in the features of a coupling (such as frequency or
modulation) nor differentiate multiple simultaneous couplings
within the same epoch.

While our study primarily utilized the MI method [5] to
quantify PAC, the pipeline’s versatility easily allows adaptation
to other methodologies [3], [4], [6] and EEG contexts as sleep
EEG studies and stimulation protocols, reinforcing its wide
applicability in neurophysiological research.

Finally, we hope to apply our method to a broader range
of real data in the future, aiming for a more comprehensive
understanding and generalizability of our findings.
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