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In this paper we propose a novel approach for characterizing effective connectivity in functional magnetic
resonance imaging (fMRI) data. Unlike most other methods, our approach is nonlinear and does not rely
on a priori specification of a model that contains structural information of neuronal populations. Instead,
it relies on a nonlinear autoregressive exogenous model and nonlinear system identification theory; the
model’s nonlinear connectivities are determined using a least squares method. A statistical test was
developed to quantify the significance of the influence that regions exert on one another. We compared
this approach with a linear method and applied it to the human visual cortex network. Results show that
this method can be used to model nonlinear interaction between different regions for fMRI data.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

There has been an increasing interest in studying effective con-
nectivity using functional magnetic resonance imaging (fMRI)
analysis. Most studies have considered the question of connectivity
within the range of linear models. For instance, path analysis or
structural equation model (SEM) has been applied in different
brain connectivity studies (McIntosh and Gonzalez-Lima, 1994;
Buchel and Friston, 1997; Bullmore et al., 2000; Marrelec et al.,
2008). This method is based on the assumption of linear influences
between brain regions, an hypothesis that has already been chal-
lenged when modelling the dynamics of the human brain in fMRI
(Friston et al., 2003).

Other methods include Granger causal modelling (GCM) (Roe-
broeck et al., 2005), vector multivariate autoregressive (MAR)
models (Valdes-Sosa et al., 2005; Yamashita et al., 2005), and auto-
regressive moving average (ARMA) models (Moller et al., 2003).
These methods do not rely on a priori specification of a structural
model, but on the concept of Granger causality to define the exis-
tence and direction of influences between two stochastic fMRI time
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series. However, these methods can only cope with linear interac-
tions between brain regions. Although nonlinear GCM was recently
proposed and applied to simulated signals, its practical usefulness
is yet to be demonstrated (Pereda et al., 2005). Furthermore, this
method also assumes that the experimental input causing neuro-
nal responses of the network is unknown, which is not realistic
for fMRI data with a prior experimental design (Friston et al.,
2003).

Besides these works, there has been a sustained effort to study
brain networks based on modelling nonlinear interactions of neu-
ronal population activity in fMRI data. For example, dynamic cau-
sal modelling (DCM) (Friston et al., 2003; Stephan et al., 2008)
has been developed to model neuronal network interactions
between different brain regions. The basic idea of this method
is to treat the brain as an input–output system. Generally, the
nonlinear model of the brain is established beforehand, and the
causality is inherent in the differential equations that specify
the model. Therefore, establishment of the right model is crucial
to a successful study of the interaction. However, the neuronal
population model in fMRI data is nonlinear (Friston et al., 2000;
Friston, 2002), and the nonlinear nature of the blood-oxygen-level
dependent (BOLD) hemodynamic response makes it difficult to
build an exact model although there are several enhanced Balloon
models available. There is still debate regarding which nonlinear
model should be used for fMRI connectivity studies (Deneux and
Faugeras, 2006). In addition, solving the differential equations

http://dx.doi.org/10.1016/j.media.2009.09.005
mailto:Habib.Benali@imed.jussieu.fr
http://www.sciencedirect.com/science/journal/13618415
http://www.elsevier.com/locate/media


X. Li et al. / Medical Image Analysis 14 (2010) 30–38 31
that specify the model is also a difficult task. Usually, bilinear or
nonlinear methods are used to approximate the Volterra series
and a Bayesian expectation-maximization (EM) algorithm is
adapted to infer the equation parameters. This leads to another
difficulty, namely that the solution depends upon the prior distri-
bution selected in the Bayesian inference scheme.

The motivation for our work was to develop a general nonlinear
system identification framework for the effective connectivity
study of BOLD responses. We devised a scheme which identifies
nonlinear connectivities using a nonlinear autoregressive exoge-
nous model (NARX) method and provides statistics which can be
used to test model interactions. First, the basic theory of NARX is
introduced to fMRI analysis, where we show how the model is con-
structed for the investigation of nonlinear dynamic connectivity.
Then, we present the least squares algorithm to identify the
strength of the various connectivities. Lastly, we apply this method
to the human visual system to study the brain region interactions.
We found the method is effective in studying nonlinear interaction
in fMRI with or without consideration of the experimental input.

2. Materials and methods

2.1. Nonlinear brain system

The physiological processes underlying the BOLD response can
be modelled as a multiple-input and multiple-output (MIMO) sys-
tem (Friston et al., 2000):

x
�
ðtÞ ¼ f ðxðtÞ;uðtÞ; hÞ;

yðtÞ ¼ gðxðtÞ; hÞ

(
and its discrete form is

xðt þ 1Þ ¼ f ðxðtÞ; uðtÞ; hÞ;
yðtÞ ¼ gðxðtÞ; hÞ;

�
ð1Þ

where f and g are nonlinear functions, and h represents the set of
model parameters. y(t) is the BOLD response or nonlinear brain sys-
tem output, x(t) is the state variable of the system, and u(t) is the
system input. Under some mild assumptions the discrete-time mul-
tivariate system (1) with p outputs and q inputs can be described by
an autoregressive moving average with exogenous input (NARMAX)
as follows (Leontaritis and Billings, 1985a,b):

yðtÞ ¼ fg ½yðt � 1Þ; . . . ; yðt � nyÞ;uðt � 1Þ; . . . ;uðt � nuÞ; eðt
� 1Þ; . . . ; eðt � neÞ� þ eðtÞ; ð2Þ
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75, are the sys-

tem output, input and noise, respectively; ny, nu, and ne are the max-
imum lags in the output, input, and noise; e(t) is a zero mean
independent sequence; fg is a new nonlinear function which can
be obtained from nonlinear functions f and g. A special case of the
general NARMAX model (2) is the nonlinear autoregressive with
exogenous inputs (NARX) model:

yðtÞ ¼ fg ½yðt � 1Þ; . . . ; yðt � nyÞ;uðt � 1Þ; . . . ;uðt � nuÞ� þ eðtÞ: ð3Þ

By applying the regression equation, the NARMAX model (2)
and NARX model (3) can be approximated as (Chen et al., 1989;
Zhu and Billings, 1996; Chon et al., 1997):

yðtÞ ¼
XM

m¼0

amPmðtÞ þ eðtÞ; t ¼ 0;1; . . . ;N; ð4Þ

where P0(t) = 1; for M P 1, Pm(t) = y1 � � � yiu1u2 � � � uj, i P 1, j P 0; m
is the number of nonlinear terms;Mis the system order; N is the to-
tal number of time point in the time series; i is the number of con-
nected regions; j is the number of inputs. Eq. (4) denotes a general
case where both input and output terms may be present, but it
should be understood that some of the Pm may contain only input
or output terms and cross-products. For example, for two stationary
series of N values, the inputs uy1

and y2, output y1 of a closed-loop
time-invariant nonlinear brain system can be described as (Faes
et al., 2008):

y1ðtÞ ¼ c0 þ
XS1
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a1ðiÞy1ðt � iÞ þ
XT1

j¼0

b1ðjÞy2ðt � jÞ

þ
XS2

i¼1

XS2
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a2ði; jÞy1ðt � iÞy1ðt � jÞ þ
XT2
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XT2

j¼1

b2ði; jÞy2

� ðt � iÞy2ðt � jÞ þ
XS2

i¼1

XT2

j¼0

c2ði; jÞy1ðt � iÞy2ðt � jÞ

þ c1uy1
ðtÞ þ ey1

ðtÞ; ð5Þ

where the coefficients c0, {a1(i);b1(j);c1}, and {a2(i, j);b2(i, j);c2(i, j)}
denote constant (zero-th order), linear (first order), and nonlinear
(second order) contributions to y1(t), respectively. uy1

represents
the experimental input, and ey1 is the prediction error of y1(t). The
model orders S1 and S2 are the maximum lags of the linear and non-
linear autoregressive (AR) influences, respectively, while the maxi-
mum lags for linear and nonlinear exogenous effects are
determined by the model orders T1 and T2. The model can be repre-
sented in the matrix form:

Y ¼ c0H1 þ Hy1
A1 þ Hy2

B1 þ Hy1y1
A2 þ Hy2y2

B2 þ Hy1y2
C2

þ c1uy1
þ ey1

; ð6Þ

where the vector Y = [y1(1),y1(2), . . . ,y1(N)]T contains values of out-
put series, ey1 ¼ ½ey1 ð1Þ; ey1 ð2Þ; . . . ; ey1 ðNÞ� is the prediction error ser-
ies. uy1

¼ ½uy1
ð1Þ;uy1

ð2Þ; . . . ;uy1
ðNÞ� is the experimental input time

series; A1,B1 and C1 are the first order vector coefficients; A2,B2,
and C2 are the second order vector coefficients. The matrices Hy1

and Hy2 contain the S1 linear AR terms and the (T1 + 1) linear exog-
enous terms respectively:
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the matrix Hy1y1 contains of the S2(S2 + 1)/2 quadratic AR terms gi-
ven by the product of the terms of the matrix Hy1

. In the same
way, the matrix Hy2y2 contains the (T2 + 1)(T2 + 2)/2 quadratic exog-
enous terms, and the matrix contains the S2(T2 + 1) cross-terms. Eq.
(6) can be written as:

Y ¼Wbþ ey; ð7Þ

where W ¼ ½H1;Hy1 ;Hy2 ;Hy1y1 ;Hy2y2 ;Hy1y2 ;uy1 �;b ¼ c0;A
T
1; B

T
1;A

T
2; B

T
2;

h
CT

2; c1�T . Coefficient matrix b can be estimated by least squares:
b
^
¼ pinvðWÞy, where pinv is the Moore–Penrose pseudoinverse of

the matrix.
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By neglecting the nonlinear terms Hy1y1 A2 þ Hy2y2 B2 þ Hy1y2 C2,
experimental input uy1

, and considering only the first order of
AR, i.e. AR(1), this leads to:

Y ¼ c0H1 þ Hy1
A1 þ Hy2

B1 þ ey1

or

y1ðtÞ ¼ c01 þ a11y1ðt � 1Þ þ a12y2ðt � 1Þ þ e1ðtÞ; ð8Þ
y2ðtÞ ¼ c02 þ a21y1ðt � 1Þ þ a22y2ðt � 1Þ þ e2ðtÞ: ð9Þ

This is the well- known two connection linear GCM in fMRI data
analysis.

2.2. Granger causality (GC) tests and directionality indices

Once the coefficients of the model are determined, Granger cau-
sality tests (Granger, 1969; Oxley and Greasley, 1998; Werner-
heim, 2000) are derived based on F statistics. For simplicity and
illustrative purposes, we take the nonlinear models (5) for exam-
ple; the same principle can be applied for the linear system (8)
and (9). The test for determining Granger-cause (GC) is (Werner-
heim, 2000):

(i) y2 is GC of y1 if b1 = b2 = c2 = 0 in Eq. (5) is not true. Given the
data, we reach this conclusion if b1 = b2 = c2 = 0 is rejected.

(ii) Similarly, y1 Granger causes of y2 can be investigated by
reversing the input–output roles of the two series. F statis-
tics are developed to detect significant relations (see
Appendix).

Directionality indices are quantified by computation of the
absolute or relative predictability improvement obtained by the
NARX model compared to the nonlinear autoregressive (NAR)
model (Faes et al., 2008), i.e.:

My1 jy2 ;u1 ¼ My1 jy1
�My1 jy1 ;y2 ;u1 ;

where My1 jy1
represents the residual sum of square (RSS) from its

own past (T1 = T2 = 0 in Eq. (5) for example), and RSS= 1
N

PN
t¼1ey1 ðtÞ

2.
My1 jy1 ;y2 ;u1 denotes RSS for its own past and the past and present

of the input series for a NARX model (T1 – 0, T2 – 0 in Eq. (5) for
example). The relative causality index for the inputs y2 and u1 to
the output y1 is:

NMy1 jy2 ;u1 ¼
My1 jy2 ;u1

My1 jy1

:

This index belongs to [0,1]. In the same way, the causality from
input y1 and u2 to output y2 can be investigated by reversing the
input–output roles of the two series:

My2 jy1 ;u2 ¼ My2 jy2
�My2 jy1 ;y2 ;u2 ; NMy2 jy1 ;u2 ¼

My2 jy1 ;u2

My2 jy2

:

Finally, the relative strength of the causal interactions from y2

to y1 under influence of u1 and u2 is calculated by the directionality
index:

Dy1y2 ju1 ;u2 ¼
NMy1 jy2 ;u1 � NMy2 jy1 ;u2

NMy1 jy2 ;u1 þ NMy2 jy1 ;u2

: ð10Þ

Dy1y2 ju1 ;u2 ranges from �1 to 1. A negative value implies that
direction of causality is from y2 to y1, whereas a positive value indi-
cates that the causality if fromy1 toy2, and 0 means balanced bilat-
eral interactions between y2 and y1.

2.3. fMRI experimental design and data analysis

Six normal subjects (age 29.8 ± 4 yrs) were used in this study
(for more details regarding the protocol, see Li et al. (2007a,b)).
Studies were performed with the informed consent of the subjects
and were approved by the Montreal Neurological Institute Re-
search Ethics Committee and in accordance with the Helsinki Dec-
laration of human rights. Briefly, a Siemens 1.5 T Magnetom
scanner was used to collect both anatomical and functional images.
Anatomical images were acquired using a rectangular
(14.5” � 6.5”) head coil (circularly polarized transmit and receive)
and a T1 weighted sequence (TR = 22 ms; TE = 10 ms; flip an-
gle = 30�) giving 176 sagittal slices of 256 � 256 mm2 image vox-
els. Functional scans for each subject were collected using a
surface coil (circularly polarized, receive only) positioned beneath
the subject’s occiput. Each functional imaging session was pre-
ceded by a surface coil anatomical scan (identical to the head coil
anatomical sequence, except that 80 � 256 � 256 sagittal images
of slice thickness 2 mm were acquired) in order to later co-register
the data with the more homogeneous head-coil image. Functional
scans were multislice T�2-weighted, gradient-echo, planar images
(GE-EPI, TR = 3.0 s, TE = 51 ms, flip angle = 90�). Image volume con-
sisted of 30 slices orthogonal to the calcarine sulcus. The field of
view was 256 � 256 mm, the matrix size was 64 � 64 with a thick-
ness of 4 mm yielding voxel sizes of 4 � 4 � 4 mm.

Each retinotopic experiment (phase-encoded design, travelling
square wave (Engel et al., 1997)) consisted of four acquisition runs
for each eye (two eccentricity runs, two polar angle runs, two
clockwise order runs, and two count-clockwise runs) each of 128
image volumes acquired at three second intervals for the left and
right eye of normals. Runs were alternated between the eyes in
each case while the subject was performing a task to keep awake
in the scanner. The eye not being stimulated was occluded with
a black patch that excluded all light from the eye. Subjects monoc-
ularly viewed a stimulus back-projected into the bore of the scan-
ner and viewed through an angled mirror.

In addition, the middle temporal (MT) cortex or V5 cortex local-
izer experiment was conducted for all normal subjects. The exper-
iment consisted of two to five acquisition runs for both eyes and
area MT was localized using a block design in which a 16 Hz flick-
ering low contrast checkerboard was compared with a static ver-
sion of the same stimulus as described previously (Dumoulin
et al., 2000). During the MT localizer scanning sessions, subjects
binocularly viewed a stimulus back-projected into the bore of the
scanner and viewed through an angled mirror. In the data prepro-
cessing, the MT area of each subject was defined based on T statis-
tics of BOLD response after different MT localizer runs were
combined by using random effect model (Worsley et al., 2002).
We localized MT in the regions which have large T value
(t = 1.96, P < 0.05). We defined the common boundaries of different
visual areas (from V1 to V4) by combining the retinotopic field sign
map information of each subject (Engel et al., 1997; Sereno et al.,
1995; Warnking et al., 2002 and references therein).

Simulation experiments were designed to validate the method.
A three inputs–three outputs visual system (Fig. 1) was employed,
and the system inputs and outputs were generated by computer
simulation for 1000 repetitions. Gaussian noise was added to the
model to evaluate the method. Statistical analysis was then carried
out to study the connectivity from the simulation results.
3. Results

We applied the nonlinear identification method to a three in-
puts–three outputs visual system as shown in Fig. 1A (Felleman
and Van Essen, 1991; Gonçalvesa and Hall, 2003; Hinrichs et al.,
2006). The method was implemented using MATLAB program
(computer programs are available upon request). Fig. 1B–D
shows the two gamma functions used as the experimental input
to the neuronal network system; typical parameters are used to



Fig. 1. Visual network system. A is the network used in the study; B–D are the experimental inputs of the system. u1, u2, and u3 are inputs for V1, V2, and MT respectively,
which models the indirectly neuronal system inputs derived by stimuli. f1, f2, and f3 are the directional interaction functions between visual regions. e1, e2, and e3 are
unmeasureable noise for V1, V2, and MT respectively.
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approximate the haemodynamic response function as input in
visual cortex (Golver, 1999). Because a retinotopic stimulus is
one kind of phase-encoded design (Engel et al., 1997), its input
can be regarded as a travelling square wave. Some examples of
the fMRI time series within each region are given in Fig. 2
(dotted-dash curve). Because of the combination of the BOLD
response haemodynamic delay and the phase-encoded experi-
ment design, averaging all the time series in each region would
blur the response of delay which is an important factor for the
effective connectivity study. We randomly sampled 96 networks
from V1, V2 and MT, i.e. 96 BOLD time courses in each visual re-
gion. We used y1(t), y2(t), and y3(t) to represent the time series
from V1, V2, and MT regions respectively.

Generally, the first step for nonlinear connectivity study is to
build a neuronal network system as shown in Fig. 1 and get the
BOLD response curves in each region as shown in Fig. 2. The
next step is to select the polynomials Pm(t) in Eq. (4). For the
nonlinear system, the order ofPm(t) is larger than 1, while for
the linear system, Pm(t) includes only the first order polynomials.
In this study, we determine the total number of polynomials
Pm(t) by neglecting the 3rd and the higher order of nonlinearity,
i.e. we include only 2nd nonlinearity (M = 2 in Eq. (4)) in the
analysis, i.e. S1 = S2 = 1 and T1 = T2 = 1 in Eq. (5) of a two connec-
tion system.

3.1. Simulation experiment

Once the system, model, and the BOLD responses are deter-
mined, the model coefficients are identified by Eq. (7) for both sim-
ulation and real data experiments. We investigate the causality
relations from V2 to V1, this can be done by testing the coefficients
equal to zero in front of terms which contain V2. For example, for
the data from Fig. 2, and 2 order of nonlinearity with experimental
input; the identified connection of V1(y1(t)), V2(y2(t)), and
MT(y3(t)) in Fig. 1 were found to be:

y1ðtÞ ¼ �0:2050þ 0:2533y1ðt � 1Þ þ 0:2335y2ðt � 1Þ

þ 0:1328y3ðt � 1Þ

� 0:0465y1ðt � 1Þy1ðt � 1Þ � 0:2094y1ðt � 1Þy2ðt � 1Þ

� 0:0491y1ðt � 1Þy3ðt � 1Þ þ 0:0534y2ðt � 1Þy2ðt � 1Þ

þ 0:0156y2ðt � 1Þy3ðt � 1Þ þ 0:0910y3ðt � 1Þy3ðt � 1Þ

þ 1:0599u1ðtÞ þ e1ðtÞ; ð11Þ
y2ðtÞ ¼ �0:1555� 0:4603y1ðt � 1Þ þ 0:9358y2ðt � 1Þ
� 0:0026y3ðt � 1Þ
þ 0:0652y1ðt � 1Þy1ðt � 1Þ � 0:2177y1ðt � 1Þy2ðt � 1Þ
� 0:0515y1ðt � 1Þy3ðt � 1Þ þ 0:1122y2ðt � 1Þy2ðt � 1Þ
þ 0:0645y2ðt � 1Þy3ðt � 1Þ þ 0:0434y3ðt � 1Þy3ðt � 1Þ
þ 0:6211u2ðtÞ þ e2ðtÞ; ð12Þ

y3ðtÞ ¼ �0:2001þ 0:1525y1ðt � 1Þ � 0:1122y2ðt � 1Þ
þ 0:3962y3ðt � 1Þ
þ 0:3151y1ðt � 1Þy1ðt � 1Þ � 0:3508y1ðt � 1Þy2ðt � 1Þ
� 0:0826y1ðt � 1Þy3ðt � 1Þ � 0:0034y2ðt � 1Þy2ðt � 1Þ
� 0:0495y2ðt � 1Þy3ðt � 1Þ þ 0:0815y3ðt � 1Þy3ðt � 1Þ
þ 0:3729u3ðtÞ þ e3ðtÞ: ð13Þ

The interaction between V1 and V2 (i.e. f1) includes all the
terms of y2(t) in Eq. (11), that is: 0.2335y2(t � 1) � 0.2094y1

(t � 1)y2 (k � 1) + 0.0534y2 (t � 1)y2 (k � 1) + 0.0156y2 (t � 1)y3

(t � 1). The directionality index is quantified from Eq. (10),
f1 ¼ DV1V2 jMT;u1 ¼ 0:2527. Similarly, we get f2 ¼DV1MTjV2 ;u1 ¼ 0:6647,
f3 ¼DV2MTjV1 ;u2 ¼ 0:4683.

Based on the coefficients in Eqs. (11)–(13), a simulation study
was conducted to validate the method. The model for the simula-
tion study was the three inputs–three outputs nonlinear system
(Fig. 1). Three time series as described in Eqs. (11)–(13) were gen-
erated according to the equations for the simulation study. The
noises e1(t), e2(t), and e3(t) were produced by MATLAB function
random, and it has a normal distribution with mean value of 0
and standard deviation of

ffiffiffiffiffiffiffi
0:2
p

(typical parameters of the noise),
i.e. e1(t), e2(t), and e3(t) � N(0,0.2). We regenerated y1(t), y2(t),
and y3(t) for 1000 repetitions after adding the Gaussian-distributed
noise into the fMRI responses (Eqs. (11)–(13)). Then the method
was applied to estimate the coefficients of the model for 1000 rep-
etitions. Table 1 shows the outcome of the estimation results of Eq.
(11). It was found that most of the coefficients in Eq. (11) are with-
in the range of simulation results. This validates our method for the
fMRI connectivity study.
3.2. Real data experiments

To further verify our method, we also conducted the experi-
ments using real fMRI data. These results are given in Figs. 3–5.
In Fig. 3, different methods are compared; this is done by model-
ling the BOLD response in Fig. 2A. The results of the linear method



Fig. 2. Examples of typical brain response in V1 (A), V2 (B) and MT (C). A–C are from the left hemisphere of one subject. Dotted-dash curve represents the BOLD responses
from V1, V2, and MT respectively (from first run of polar angle stimulus). Solid curve is the two gamma function to approximate the experimental input. Y axis is the image
number; X axis is the normalized BOLD signal magnitude (in proportion).

Table 1
Simulation results for Eq. (11) with Gaussian noise (N)(0,0,2), 1000 repetition.

Coefficient in Eq. (11) Mean value Standard deviation

Constant �0.2050 �0.1541 0.0476
y1(t) 0.2533 0.2340 0.0652
y2(t) 0.2335 0.2107 0.0525
y3(t) 0.1328 0.0897 0.0662
y1(t) � y1(t) �0.0465 0.0500 0.0755
y1(t) � y2(t) �0.2094 �0.1881 0.1255
y1(t) � y3(t) �0.0491 �0.0145 0.1227
y2(t) � y2(t) 0.0534 �3.2715e�04 0.0707
y2(t) � y3(t) 0.0156 �0.0211 0.0953
y3(t) � y3(t) 0.0910 0.0265 0.1011
u(t) 1.0599 1.1933 0.1402
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are given in Fig. 3A and B, while Fig. 3C and D shows the results of
the nonlinear method; Fig. 3A and C is the results without input,
whereas Fig. 3B and D is the results with input. F1 denotes the F
test for ‘‘V2 causes V1”, and F2 represents the causality from MT
to V1 for the fMRI time series in Fig. 2. In Fig. 3A–D, F1 and
F2 � F(1,115), F(1,114), F(4,109), and F(4,108), respectively; RSS
are also given within Fig. 3. The dotted-dash curves represent the
BOLD response in V1, and the solid curves denote the model out-
put. From the comparison, it is obvious that nonlinear models ex-
hibit smaller RSS (comparing Fig. 3A and C; Fig. 3B and D) when the
other parameters are the same. In addition, the systems with
experimental input have smaller RSS than the systems without in-
put (comparing Fig. 3A and B; Fig. 3C and D). Finally, the influence
between V1 and V2 is stronger than the influence between V1 and
MT (F1 > F2).

Group analysis results are given in Fig. 4. The results include a
total of 96 networks from all six normal subjects (from left hemi-
sphere and right hemisphere of each fMRI run). These are fixed ef-
fects inferences and cannot be generalized to a population because
we only sampled 96 networks from six normal subjects.

F1, F2, F5 and F6 denote the interaction between V1 and V2.
F3, F4, F7, and F8 are the F tests for ‘‘MT influences V1”. F1, F3,
F5, and F7 are the F test results for the linear system, while F2,
F4, F6, and F8 are the F tests for the nonlinear system. A paired
t test was applied to study the difference of different methods
in Fig. 4. F1 and F2 are not significantly different (t = 1.7240,
P < 0.05, two tailed, degree of freedom = 190), suggesting there
is not a significant difference between a linear model and nonlin-
ear model for testing V2 influences of V1 when considering



Fig. 3. Results of system identification. Dotted-dash curve represents the BOLD response in V1 (from Fig. 2A); the solid curve denotes the output results of model prediction. A
and C are models without experimental input, while B and D are models with input. Solid curves in A and B are predicted from linear models, while solid curves in C and D are
derived from the nonlinear models. Note that the autoregression order is 1, so the model output has 119 time points. RSS is the residual sum of square; F1 is F test for the
influence from V2 to V1; F2 is the F test for the influence from MT to V1. Y axis is the image number; X axis is the normalized BOLD signal magnitude (in proportion).
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experimental input. However, F3 (linear model with experimental
input) and F4 (nonlinear model with experimental input) are
significantly different (t = 2.1230, P < 0.05, two tailed), indicating
that there is significant difference for ‘‘MT influence of V1”. This
is also true for F5 and F6 (t = 2.0795, P < 0.05, two tailed), suggest-
ing significant difference for ‘‘V2 influence of V1” when no exper-
imental input is considered. F7 and F8 are significant different
(t = 2.5016, P < 0.05, two tailed), suggesting significant difference
for ‘‘MT influence of V1” when no experimental input is included.
Generally, F values of models without experimental input (F5, F6,
F7, and F8) are higher than models with experimental inputs (F1,
F2, F3, and F4), suggesting the influences are stronger if no exper-
imental input is considered. This could be interpreted as the exis-
tence of input reduces the interactions between V1, V2, and MT.
From a statistical viewpoint, this is due to nothing more than
increasing of degree of freedom in the F test. This can also explain
why the F value decreases if the nonlinear terms are added in the
model.

By reversing the roles of V1 and V2, we investigated the influ-
ence between V2 and MT. We found that there was not a signifi-
cant influence between V2 and MT, but there was a significant
influence between V2 and V1. The results are given in Fig. 5
although these are fixed effects inferences.
4. Discussion

4.1. Relation with previous models

In this study, we have proposed an identification method to
analyze effective connectivity in fMRI data. It is nonlinear, and
can be used for modelling neuronal population systems with or
without experimental input. The basic idea of this method is based
on nonlinear system identification theory. It enables one to model
nonlinear interactions between regions. A few previous studies of
effective connectivity have modelled changes in connection
strength as a function of activity in different regions (Buchel and
Friston, 1997; Moller et al., 2003; Riera et al., 2004; Roebroeck
et al., 2005; Yamashita et al., 2005). However, all of these studies
differed in at least two ways from the approach presented here.
First, previous models were essentially linear; nonlinear interac-
tions were simply neglected or accounted for by including more



Fig. 4. Group analysis results of visual networks. F1, F3, F5, and F7 are linear
models; F2, F4, F6, and F8 are nonlinear models. F1, F2, F3, and F4 are models with
experimental inputs; F5, F6, F7, and F8 are models without experimental inputs. F1,
F2, F5, and F6 values from V2 influences of V1; F3, F4, F7, and F8 are values derive
from MT influences of V1. � denotes significant difference (t > 1.96, P < 0.05)
between linear and nonlinear model.
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linear regressors in the model. A second difference is that our
method can take experimental input into account. This is different
from GCM and ARMA models used in fMRI connectivity studies.
These methods, therefore, cannot detect forwarded interaction be-
tween experimental input and fMRI response. Our method is more
general; ARMA and GCM approaches can be regarded as special
cases of our model. The disadvantage of including inputs is that
the neuronal system is too complex to know exactly what the neu-
ronal network input is at the neuronal level; only approximations
have been used for neuronal populations in fMRI data analysis so
far.

4.2. Comparison with DCM

Recently, bilinear and nonlinear DCM have been used to model
the interactions in different brain regions (Friston et al., 2003; Ste-
phan et al., 2008). Although DCM and our methods are both based
on a nonlinear system identification technique, unlike DCM which
builds a model before quantifying brain interactions, our method
identifies the connectivity without prior structural model informa-
Fig. 5. Group influence results. We found stronger influence (thick line) between V1
tion of neuronal populations. Moreover, the computation time for
the connectivity estimation may differ. When calculating the mod-
el parameters, an EM algorithm is employed in DCM. In the M-step
of EM (maximization step), Newton–Raphson method is often
adapted, which is computationally demanding because it is itera-
tive. Our method is a non-iteration method (using pinv to calculate
the matrix inverse in Eq. (7)) which does not need to collect all the
data and could be implemented online to study real time dynamic
connectivity. If the noise terms in Eqs. (4)–(9), (11)–(13) are auto-
correlated, pre-whitening the data (Eq. (4) in Worsley et al. (2002))
so that pinv method can be used to estimate the parameters of the
model. An alternative method to calculate the matrix inverse is to
employ fast orthogonal search (FOS) algorithm which is also a non-
iteration method, it may allow a fast search online fMRI networks
(Bagarinao et al., 2003; Li et al., 2004).

4.3. F test for GC

Instead of using RSS to qualify the influence causality (Faes
et al., 2008), we developed the F test to study the causality be-
tween different brain regions. This has at least two advantages.
First, it has more statistical power than RSS, because there are sit-
uation when RSS is small while the standard derivation is large.
This may lead to misleading conclusions. Second, it is easy to test
the significant/magnitude of the causality relation. This is achieved
simply by testing whether the coefficient of interest is equal to
zero or not.

4.4. Nonlinear model

Although no significant differences of F values between linear
and nonlinear models were found in our data when including
experimental input (Fig. 4F1 and F2), the nonlinear model is pref-
erable for connectivity studies. This is because the nonlinear model
is more accurate than the linear model in term of nonlinear system
identification theory. The nonlinear model includes not only linear
interactions but also nonlinear ones; this makes the model more
realistic and less based on assumptions. Moreover, the nonlinear
method has lower RSS in the connectivity study. It is interested
to compare Fig. 3B with D and its F values within Fig. 3, we found
that the F2 (MT influence of V1) has decreased from a significant
(F(1,114) = 3.94, P < 0.05) to an insignificant level in Fig. 3D. One
reason for this is that the retinotopic mapping stimuli used in
the study do not produce strong fMRI response in the region of
MT. Another way to compare the linear model with the nonlinear
model is to test linear terms against nonlinear terms within the
and V2. Weaker influences (thin lines) between V1/V2 and MT were also found.
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regression model. This can be done by setting the coefficients be-
fore linear or nonlinear terms to be zeros (null hypothesis) within
the model, then F statistics can be employed to test the hypothesis
as given in the Appendix.

For models with experimental input, it is possible to study the
forward connectivity in brain networks. This can be demonstrated
by the coefficient in front of the experimental input (for example in
Eq. (11)). The bigger the coefficient is, the stronger the forward
interaction between input and neuronal system will be. In addi-
tion, we found that when we add an experimental input into the
model, the system RSS is reduced (comparing Fig. 3C with D),
although it is not significant (comparing F1 and F5 in Fig. 4). This
is expected, because we add more bases in the regression model
for the F test, suggesting the advantage of adding the experimental
input in the model.

We found a smaller RSS in the nonlinear model than in the lin-
ear model although the difference between the two models is not
significant (comparing linear with nonlinear model with experi-
mental input, t = 1.2413, P < 0.05). This could be due to the fact that
the nonlinear model used in this study includes only 2nd nonlin-
earity, the 3rd and the higher order of nonlinearity were simply ne-
glected in the analysis although the total number of polynomials
Pm(t) or nonlinearity can be determined by AIC (Akaike, 1974) in
theory. These higher orders of nonlinearity could play an important
role in reduction of RSS. The future work will entail an investiga-
tion of the role of higher order nonlinearity in the connectivity
study.
4.5. Possible further extensions and applications

This method could be extended to EEG and MEG studies. Be-
cause the time resolution of EEG is higher than fMRI, and the
advantage of our nonlinear connectivity modelling would be more
evident. This is because the method could be extended to high
temporal resolution signals within a long range of autoregression
model and it is fast and computation less demanding to estimate
the connectivity. Another possible extension would be to apply this
method to a fast online large scale network using FOS algorithm to
estimate the coefficients (Korenberg et al., 1988a; Korenberg,
1988b; Chen et al., 1989; Zhu and Billings, 1996; Chon et al.,
1997). This is interesting especially with the increasing space and
time resolution of fMRI. We have applied this method in a human
visual network system. It could also be interesting to apply it to
other networks such as the motor system or the auditory system.
Furthermore, it could be extended to clinical studies. For example,
it would be of interest to investigate any deficit to network inter-
actions in patients with impaired cortical function.

In summary, we have proposed a new method to identify con-
nectivity from the fMRI response. The idea and formation of the
method relies on nonlinear system identification. Our method
can model nonlinear interactions between different brain regions.
Our method offers advantages over both present GCM and DCM.
In terms of the former, our method computes both linear and non-
linear effects and can take experimental design into account. In
terms of later, our method is more efficient being non-iteration
and can operate without any prior structural model information
of neuronal populations. We illustrated the feasibility of the meth-
od in a human visual cortex network. Results showed it can be
used to model the nonlinear brain interaction for fMRI data.
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Appendix. Statistical test for nonlinear connectivity analysis

From Eqs. (4) and (7), and considering the auxiliary system
(Doornik, 1996; Edgerton and Shukur, 1999; Kiviet, 1986):

Y ¼Wbþ V ; ðA:1Þ

where Y is T � n, W is a T � K linear or nonlinear basis, b is K � n;
V = e in Eq. (4) or V ¼ ey1 in Eqs. (5) or (7), and E[V] = 0; E[VV

0
] = r2.

The coefficients b̂ can be obtained from least squares as in Eq. (7),
where the residuals are defined by V̂ ¼ Y �Wb̂. Testing Granger
causality is equivalent to test whether the elements of b are zero.
This can be done by Wald, likelihood ratio (LR), and likelihood mul-
tiplier (LM) principle (Engle, 1984). Partitioning the coefficients as
b = (b1:b2) and W = (W1:W2) accordingly, we can write this test as:

H0 : b2 ¼ 0 versus H1 : b2–0;

with the maintained hypothesis given in (A.1). Defining a R2-type
measures of goodness of fit:

R2
r ¼ 1� V̂V̂ 0

��� ��� V̂0V̂ 00
��� ����1

;

where V̂0 is the residual from regression of Y on W1 (that is, under
H0; this is the original system), while V̂ results from the auxiliary
system (A.1), the corresponding F-approximation to the likeli-
hood-ratio is (Doornik, 1996, Eq. (7)):

LMF ¼ 1� ð1� R2
r Þ

1=r

ð1� R2
r Þ

1=r � Nr � q
np

;

where: r¼ n2p2�4
n2þp2�5

� �1=2
;q¼ 1

2np�1;N¼T�k�p� 1
2ðn�pþ1Þ, and k is

the number of regressors in the original system (k is the column of
W1), n is the dimension of system, T is the number of observations,
and p = ns(s is the column of W2). LMF has an approximate
F(np,Ns � q) distribution (the F-approximation is exact for fixed

regressors when p 6 2 or n 6 2). When n¼1; R2

1�R2
T�k�s

s �Fðs;T�k�sÞ ,

where R2¼ RSS0�RSS
RSS0

. RSS0 and RSS are the residual sum of squares

(RSS) of the original and auxiliary system respectively, and
RSS¼

PT
i¼1V2ðiÞ.
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