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Abstract

Functional brain networks are sets of cortical, subcortical, and cerebellar regions whose neuronal activities are
synchronous over multiple time scales. Spatial independent component analysis (sICA) is a widespread approach
that is used to identify functional networks in the human brain from functional magnetic resonance imaging
(fMRI) resting-state data, and there is now a general agreement regarding the cortical regions involved in
each network. It is well known that these cortical regions are preferentially connected with specific subcortical
functional territories; however, subcortical components (SC) have not been observed whether in a robust or in a
reproducible manner using sICA. This article presents a new method to analyze resting-state fMRI data that en-
ables robust and reproducible association of subcortical regions with well-known patterns of cortical regions. The
approach relies on the hypothesis that the time course in subcortical regions is similar to that in cortical regions
belonging to the same network. First, sICA followed by hierarchical clustering is performed on cortical time se-
ries to extract group functional cortical networks. Second, these networks are complemented with related sub-
cortical areas based on the similarity of their time courses, using an individual general linear model and a
random-effect group analysis. Two independent resting-state fMRI datasets were processed, and the SC of
both datasets overlapped by 69% to 99% depending on the network, showing the reproducibility and the robust-
ness of our approach. The relationship between SC and functional cortical networks was consistent with func-
tional territories (sensorimotor, associative, and limbic) from an immunohistochemical atlas of the basal ganglia.
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Introduction

Functional brain networks are defined as sets of
gray matter regions showing synchronous neuronal ac-

tivities (Varela et al., 2001). Low-frequency fluctuations in the
blood-oxygen-level dependent (BOLD) signal (0.01–0.1 Hz)
during resting-state functional magnetic resonance imaging
(fMRI) should reflect intrinsic neuronal activity, which repre-
sents the condition of the human brain in the absence of external
stimuli (Biswal et al., 1995; Fox and Raichle, 2007). Regions
with similar low frequency fluctuations correspond to relevant
functional networks reflecting cognitive, emotional, and sensori-
motor processes (Damoiseaux et al., 2006; Smith et al., 2009).

Numerous reports in monkeys using biological tracers that
diffuse through antero- or retrograde axonal transport have
demonstrated the presence of cortico-subcortical loops
(Parent et al., 2000; Smith et al., 2004), which connect cor-
tical regions to specific subcortical regions and are recog-
nized as being crucial to functions such as motor skills or
cognition (Alexander et al., 1986; Purves et al., 2004).
Zhang and colleagues (2008) used resting-state fMRI in hu-
mans and an approach based on regions of interest and partial
correlation to study functional connectivity between tha-
lamic nuclei and specific cortical regions. Similarly, using re-
gions of interest to analyze functional connectivity between
the striatum and cortical regions, Gopinath and coworkers
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(2011) demonstrated that the striatum had strong functional
links with sensorimotor and attentional networks as well as
with emotional networks.

Resting-state fMRI networks have also been explored
using data-driven approaches where the brain is analyzed
in its entirety without any a priori information (Beckmann
et al., 2005; Perlbarg et al., 2008). Habas and associates
(2009) extracted subcortical regions associated with cortical
and cerebellar regions by using a group spatial independent
component analysis (sICA), albeit only on a limited number
of functional networks (the default mode, executive control,
and salient networks). However, they did not conduct any re-
producibility study on the results. In previous articles (Dam-
oiseaux et al., 2006; Perlbarg et al., 2008; Smith et al., 2009),
the authors differentiated functional networks by the pres-
ence or absence of specific cortical regions. Subcortical re-
gions (when present) were only listed and not actually
taken into consideration in the classification of functional
networks. Most of the time, sICA found the striatum and
the thalamus gathered in a few number of components (Dam-
oiseaux et al., 2008; Kim et al., 2013; Robinson et al., 2009)
and was not able to subdivide these regions into subcortical
structures associated with patterns of cortical areas.

Thus, sICA as it is usually conducted, that is, on the whole
brain, mostly gives access to a set of cortical networks with
scarce subcortical components (SC) and does not actually
identify cortico-subcortical networks. Intuitively, this sug-
gests that subcortical and cortical regions should be consid-
ered separately through distinct analyses and that a
functional hypothesis is needed to further ensure a correct as-
sociation between subcortical and cortical regions belonging
to the same functional network. In this work, we assume that
the time courses (i.e., the variation of acquired BOLD signals
over time) in the striatum and the thalamus are similar to
those in associated cortical components.

The objective of this work is to propose a robust and repro-
ducible approach to identify the SC of functional networks
from resting-state fMRI data. We first describe the method:
On the one hand, sICA is carried out for cortical regions
only, which yields functional cortical networks. On the other
hand, SC are identified by means of a general linear model
(GLM) applied to the striatum and the thalamus, based on the
hypothesis that the time course in these regions should covary
with that of cortical components belonging to the same net-
work. The resulting SC are validated by a comparison with
an immunohistochemical functional atlas (Bardinet et al.,
2009; Yelnik et al., 2007), which provides a specific labeling
of subcortical functional territories (SFT). Then, reproducibil-
ity is assessed using an additional dataset. Lastly, limitations
and perspectives are discussed in view of the existing literature.

Methods

The proposed method consisted of several steps. First, the
striatum and the thalamus were masked out and sICA com-
bined with a hierarchical procedure was carried out on corti-
cal data, extracting group and corresponding individual
spatial components. We then linked the cortical components
to regions in the striatum and the thalamus based on time
course similarity, using a GLM. The procedure yielded a
parametric map of SC associated with each cortical compo-
nent. These cortical and subcortical regions, once associated, fi-

nally defined cortico-subcortical functional networks. Figure 1
shows a flowchart of the procedure.

Identification of functional cortical networks

Let Z be the T-by-N matrix of data acquired at rest for each
subject with N voxels and T time samples. Using an immuno-
histochemical postmortem atlas (Bardinet et al., 2009; Yel-
nik et al., 2007), we obtained a mask of the striatum and
the thalamus in the native individual space. Using this
mask, we partitioned Z into two datasets, ZC and ZSC. Data-
set ZSC contained only data from subcortical (i.e., striatal and
thalamic) regions, and complementary dataset ZC contained
data from the cortex, the white matter, and the cerebrospinal
fluid (CSF). ZC is a T-by-N1 matrix and ZSC is T-by-N2, with
N1 and N2 being the number of voxels.

The first step of the analysis consisted of extracting corti-
cal networks from ZC using group sICA as implemented
in the network detection using ICA (NEDICA) software
(Perlbarg et al., 2008). More specifically, the 40 spatial inde-
pendent components (IC) that explained most variance were
first extracted using sICA for each subject in his/her native
space. From the sICA model, these IC are associated with
time courses. The spatial IC obtained for all subjects were
then normalized into the MNI standard space and clustered
into classes that were representative of the population. To
do so, a hierarchical clustering algorithm that maximized
within-class spatial similarity (Hartigan, 1975) was used
and yielded a similarity tree. Spatial similarity was quantified
by a distance d derived from the spatial correlation corr(I-
Ci,ICj) between two normalized IC, as follows:

d(ICi, ICj) =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� corr(ICi, ICj)

p
: (1)

From the similarity tree, all IC were partitioned into classes
that were the most representative of the population, using an
ad hoc automatic procedure detailed in Appendix A. Note that
a subject may not contribute to a class at all or contribute with
one or several components. All normalized spatial maps in
each class were then averaged, and the resulting average map
was thresholded at p < 0.05 using t-test statistics (corrected for
multiple comparisons by using the false discovery rate approach
[Genovese et al., 2002]). Finally, thresholded average maps of all
classes were visually inspected to select a number R of maps that
exhibited a known spatial organization. These maps are further
referred to as cortical networks. The remaining maps were re-
lated to noise processes (either physiological or physical).

Identification of SC

The second step consisted of assigning each voxel in the
striatum and the thalamus to one cortical network, based
on the hypothesis that the time course of subcortical voxels
should covary with that of cortical components belonging
to the same network. For each subject in his/her native
space, we first regressed the signal within each subcortical
voxel on the R characteristic time courses of the cortical net-
works (Worsley et al., 2002)

ZSC = ABþ e, (2)

where A = (ar )r = 1,.,R is the T-by-R matrix of the characteris-
tic time courses, B is the R-by-N2 matrix of regressors to be
estimated, and e is an independent and identically distributed
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Gaussian noise. The characteristic time course of a cortical
network was determined as follows. When only one compo-
nent from the subject contributed to the construction of a net-
work, the time course of this component as estimated from
sICA (i.e., in the native space) was considered the character-
istic time course for this network. When several components
from the same subject contributed to the construction of a net-
work, the average of their time courses was considered the
characteristic time course. Conversely, if a subject did not
contribute to the construction of a network, he/she was simply
excluded from the subsequent analysis.

For each subject, this analysis provided one map B̂r of re-
gression coefficients for each cortical network r. To put it
differently, once all individual GLM were completed, we
obtained a number Sr of regression coefficients maps for
each cortical network, with Sr being the number of subjects
contributing to this network. These maps contained subcorti-
cal voxels whose time course was correlated to the character-
istic time course of the network. They were further spatially
normalized to the MNI standard space.

For each network r, a parametric random-effect analysis
was then performed and a voxelwise Student’s t-test was car-
ried out to test the null hypothesis that the average of the Sr

maps was zero. This provided us with a t-value for each
voxel, denoted by t0. A nonparametric bootstrap approach

was then used to ensure robust inference. More precisely, a
set of 10,000 samples were created by resampling 10,000
times the Sr maps with replacement. For each sample, a
new voxelwise t-value was computed, denoted by t*. Final
statistical inference was finally conducted based on the
achieved significance level Q, defined as follows (Efron
and Tibshirani, 1993):

Q =
card(t� � t0)

10, 000
, (3)

where card(A) denotes the cardinality of set A. As a result of
this procedure, the group maps comprising subcortical vox-
els were reproducible across subjects. These maps are further
referred to as SC.

Lastly, cortico-subcortical functional networks were
obtained by combining the cortical group maps from NED-
ICA analysis and the associated SC obtained from GLM
and bootstrap inference.

Validation

Cortical networks

Spatial and frequential comparisons were carried out in
order to validate the functional cortical networks obtained

FIG. 1. Flowchart of the method. Individual analyses are conducted in the native space of each subject. Group analyses are
conducted in the standard MNI space.
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from ZC data. Indeed, masking the striatum and the thala-
mus before NEDICA analysis naturally raises the following
questions: Are there any differences between cortical spatial
components, depending on whether fMRI data comprise the
striatum and the thalamus or not? We, therefore, tested the
influence of the presence of these subcortical structures on
the extraction of cortical components with sICA at the indi-
vidual level, and on the functional networks at the group
level. To this end, cortical networks obtained from the com-
plete data (Z) were compared with those obtained from the
data where subcortical voxels were masked (ZC).

To compare their spatial patterns, matching between
group networks extracted from Z data and those extracted
from ZC data was carried out visually by an expert ( J.Y.);
similar networks were assigned the same label. The spatial
overlap of group networks with the same label was then de-
fined by the ratio: Nid/(Nid + Ndiff), where Nid is the number of
voxels identified with the same network label for both data-
sets and Ndiff is the number of voxels with different labels.

To compare their temporal patterns, we resorted to fre-
quency analysis. The power spectra of the signals from
sICA components were compared as follows. First, the
power spectrum for a given group network r was obtained
by calculating the power spectra of all individual character-
istic time courses [ar, see Eq. (2)] of the components contrib-
uting to this network and averaging these spectra. Then, we
calculated the correlation, otherwise known as the ‘‘match-
correlation,’’ between the power spectrum of each group
network from ZC data and that of the corresponding group
network obtained from Z data.

To further quantify temporal similarity at the individual
level, the correlation (with associated p-value) between the
time course obtained from Z for each subject and each net-
work and that obtained from ZC for the same subject and
the same network (when it existed) was computed. For
each network, we counted how many times this correlation
was significant ( p < 0.05). Correlation values were finally
averaged across subjects.

Subcortical components

In this section, we wished to validate the location of the
subcortical regions corresponding to the different functional
networks. More precisely, the purpose was to accurately
classify which parts of the striatum and the thalamus were
specific to a given functional network to assess whether the
proposed functional segregation was consistent with a seg-
mentation from an atlas. In order to do this, we used an
immunohistochemical atlas (Bardinet et al., 2009; Yelnik
et al., 2007), which describes the caudate nucleus, the puta-
men, and the thalamus, and their functional segmentation in
sensorimotor, limbic, and associative territories. Each sub-
cortical territory from the atlas is indexed according to its
functional domain. For example, the putamen is divided
into three different and disjoint structures: the associative,
sensorimotor, and limbic putamen. These structures are re-
ferred to as SFT in the rest of this article. The right and
left hemispheres are differentiated for each structure.

Specifically, for each functional network at the group
level, the corresponding SC (i.e., thresholded group
maps in the MNI standard space obtained from Identifica-
tion of SC section) were mapped to the atlas with a specific

procedure (Bardinet et al., 2009) so as to verify whether
these components were parts of specific SFT. In order to
quantify the overlap between the atlas and the SC, we
computed

� the volume of the intersection between each atlas terri-
tory (SFTj) and each subcortical component obtained
for a network r and a threshold p (SCp

r ), denoted by

V (SFTj \ SCp
r);where V ð:Þ is the volume in voxels;

� the relative importance of a functional territory within
the subcortical component of a given network, defined
as follows:

Vcomp = V(SFTj \ SCp
r )=V(SCp

r ): (4)

Reproducibility

In this section, the aim was to assess the reproducibility of
the method by applying the proposed approach to two differ-
ent datasets. Only the subcortical group components were
studied, as reproducibility of the cortical regions has been
widely reported in the literature. We examined the overlap
between thresholded SC ( p < 0.01, uncorrected) for both
datasets and each cortical network. To do so, we calculated
Nid as the number of voxels identified with the same network
label for both datasets and Ndiff as the number of voxels with
different labels. The overlap was then defined as in Cortical
Networks section by the ratio: Nid/(Nid + Ndiff). Furthermore,
differences in spatial distribution of the SC in atlas SFT
(Vcomp) between datasets were assessed using a two-sample
nonparametric test that tests the equality of two distributions,
the Kolmogorov–Smirnov (KS) test.

MRI Data

Dataset 1

Twenty healthy volunteers (right handed, age 24 – 30, 12
men) provided their informed consent and took part in a
study comprising the acquisition of two resting-state fMRI
sessions and a high-resolution anatomical image. The protocol
was approved by the ethics committee of the Centre de
Recherche de l’Institut Universitaire de Gériatrie de Montréal
(CRIUGM; Montreal QC, Canada). Subjects lay down in the
magnet and were asked to stay still, to keep their eyes closed,
and to restrain from overt activity. Functional MRI series were
recorded using a single-shot, gradient-recalled echo planar
imaging sequence (field of view: 224 · 224 mm2; repetition
time [TR]: 2500 msec; echo time [TE]: 30 ms, flip angle:
90�). One hundred and sixty volumes were acquired for
each run, and each volume consisted of 41 contiguous axial
slices (3.5 mm isotropic voxels). The anatomical volume
(128 axial slices, voxel size: 1 mm isotropic) was acquired
using a three-dimensional, spoiled gradient echo sequence
(TR: 22 msec, TE: 4 msec, flip angle: 30�; matrix size:
256 · 256 voxels). All data were recorded using a 12-channel
3T Siemens TRIO magnet at the CRIUGM.

Dataset 2

We used a dataset kindly provided by A. Villringer and
freely available from the 1000 Functional Connectomes
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Project website (http://fcon_1000.projects.nitrc.org) (Biswal
et al., 2010). The acquisitions were performed in Leipzig, Ger-
many, on 37 healthy subjects (age 20 – 42, 16 men). Acquis-
ition parameters available to us were as follows: for the
resting-state fMRI data, 195 volumes of 34 contiguous axial
slices, matrix size: 64 · 64 voxels, voxel size: 3 · 3 · 4 mm,
TR = 2300 msec; for the T1-weighted anatomical volume,
256 axial slices, matrix size: 176 · 240 voxels, voxel size
1 mm isotropic.

Preprocessing of fMRI data

All preprocessing was performed using the SPM5 software
(www.fil.ion.ac.uk/spm/software/spm5). Functional MRI data
were corrected for slice-timing effects and subject’s rigid mo-
tion and spatially smoothed with a 3D isotropic Gaussian ker-
nel with a full width at a half maximum of 5 mm. Individual
estimated motion parameters as well as mean signals of the
white matter and of the CSF were included as confound regres-
sors in the GLM that was used to identify SC (Identification of
SC section). The mean white matter and CSF signals were
computed in white matter and CSF masks obtained by seg-
menting the anatomical image of each subject during the nor-
malization procedure (see Normalization Procedure section).
This yielded white matter and CSF images representing the
probabilities of finding white matter or CSF at any point.
The final white matter and CSF masks were obtained by sup-
pressing voxels with a probability less than 0.7.

Normalization procedure

When necessary for group analyses, the transformation
from the individual space to the standard MNI space was com-
puted as follows: Functional images were first coregistered to
the structural T1-weighted image of each subject; then, a non-
linear transformation was calculated to map the structural
image to the SPM5 T1-weighted template in the MNI space.
This transformation was subsequently applied, on the one
hand, to all individual cortical IC obtained from ZC analysis
(Identification of Functional Cortical Networks section) and,
on the other hand, to the individual regression coefficient
maps obtained in subcortical structures from ZSC analysis
(Identification of SC section).

Results

Results obtained for dataset 1

At the group level, NEDICA extracted 11 functional net-
works from Z data and 10 from ZC data. For ZC, the variance

explained by the 40 IC ranged from 57.2% to 82.2% of the
total variance for all subjects and runs (mean: 68.6%). Sim-
ilar values were obtained for dataset 2. Ten of the 11 net-
works obtained from Z were very similar to those obtained
from ZC and were consequently labeled identically according
to the classification proposed by Smith and colleagues
(2009). We obtained three networks related to attentional
processes—a dorsal attentional network (dATT) as well as
a left and a right ventral attentional network (LvATT and
RvATT, respectively)—, a default mode network (DM), a
limbic network (LIMB), a visual network (VIS), two motor
networks—a premotor network (MOT) and a sensorimotor
network (MOT2)—, a network related to executive control
(EXCTR), and a salient network (SAL).

The only network extracted from Z that did not correspond
with any of the networks extracted from ZC mostly comprised
the caudate nucleus, the putamen, and a large part of the thal-
amus, all bilaterally (Fig. 2). Quantification of the resem-
blance between networks extracted from Z and from ZC

(Table 1) showed a large overlap of networks with the same
label. Table 1 further shows that the mean correlation between
time courses of networks obtained from Z and ZC was high
and significant for most of the subjects. This highlights the
fact that the networks extracted from the two datasets were
very similar not only spatially but also temporally. Moreover,
an analysis of the power spectra revealed that the match cor-
relation was systematically greater than 0.95.

Figure 3 shows the MOT network obtained from Z and ZC.
Both networks were spatially similar, but the parahippocam-
pal gyrus was only present in the network extracted from Z.
Figure 4 shows all the cortico-subcortical networks were
obtained with the proposed method from the first dataset.
While the MOT network obtained from Z included only a
few voxels in the putamen (Fig. 3), the method combining
sICA and the GLM approach identified numerous voxels in
the putamen (Fig. 4).

The comparison between SC obtained using the proposed
method and functional territories from the atlas is illustrated
in Figure 5, which shows for the MOT network the regions
classified as sensorimotor, such as the sensorimotor putamen
and the pulvinar in the thalamus.

Comparison of datasets 1 and 2

Figures 6 and 7 show Vcomp (SC thresholded at p < 0.01,
uncorrected) for the right and left hemispheres, respectively.
In the first dataset, the most involved SFT were the right and
left sensorimotor putamen for both motor networks (MOT

FIG. 2. Component
obtained with NEDICA from
Z data, comprising mostly
subcortical structures. All
images in the article are in
radiological convention: The
right hemisphere is on the left
of the axial view.
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and MOT2) and the associative putamen for the MOT2 net-
work. For the default mode network, the main SFT were the
associative and limbic caudate nucleus, the limbic putamen,
as well as several (ventro-lateral and medio-dorsal) thalamic
nuclei. A comparison of datasets 1 and 2 revealed greater sta-
bility of the results in the right hemisphere than in the left
hemisphere.

Furthermore,nostatisticaldifferencewasobserved(KStests,
all nonsignificant) when comparing the spatial distributions of
the LvATT, LIMB, dATT, EXCTR, SAL, DM, MOT, and
MOT2networks,bilaterally,confirmingaverystableextraction
ofSC.Reproducibilityfor theRvATTnetworkwaslesssatisfac-
tory for the left hemisphere only (KS test, p < 0.05).

Table 2 summarizes the overlap scores between datasets 1
and 2. Overlap scores were greater than 69% for all net-
works; more than 90% overlap was achieved for the DM net-
work. This highlights the good consistency between the two
datasets.

Discussion

In the past years, studies conducted on resting-state fMRI
data have mainly reported functional networks on the basis

of their cortical components (Damoiseaux et al., 2006; Perl-
barg et al., 2008; Smith et al., 2009) and only a few studies
extracted subcortical regions, either in a few number of com-
ponents (Damoiseaux et al., 2008; Kim et al., 2013; Robin-
son et al., 2009) or associated to cerebellar and cortical
regions (Habas et al., 2009).

In this article, we put forward a new method for extracting
cortico-subcortical networks from resting-state fMRI data.
First, using sICA at the individual level followed by a hier-
archical classification at the group level, cortical networks
were extracted from data where the striatum and the thala-
mus had been masked out. Then, SC associated to the cor-
tical regions were extracted from the striatum and the
thalamus data exclusively, by means of an individual GLM
and statistical inference at the group level, using a bootstrap
technique.

The proposed method better characterized cortico-subcortical
functional loops than the NEDICA method alone. Damoi-
seaux and coworkers (2008) and Robinson and associates
(2009) demonstrated that when extracting functional net-
works using sICA, they obtained a single component group-
ing together a large part of the pallidum, putamen, substantia
nigra, subthalamic nucleus, and thalamus, bilaterally, which
we also detected in both datasets using NEDICA on Z data. A
reason that would explain why NEDICA failed to differenti-
ate these subsections is that the signal in a subregion of the
striatum and the thalamus may be made up of two compo-
nents: one fairly homogeneous component within the en-
tirety of the structure and another component more specific
to the function subserved by this subregion. The fact that a
single component comprising mainly the caudate nucleus,
the putamen, and a large section of the thalamus was
extracted from Z data suggests that the signal within these
structures is specific and synchronous within these regions,
but different from the signal detected in the other cortical re-
gions. This subcortical component would explain why part of
the dynamics within the striatum and the thalamus is homo-
geneous. The GLM proposed in this work segregates the
striatum and the thalamus into several subregions, whose sig-
nal is closely linked to the average signal corresponding with
the different functional networks. This suggests that within
the striatum and the thalamus some features of the signal
are specific to the function carried out by their subregions.

An intuitive idea would have been to apply sICA directly
on the striatum and the thalamus extracted from the rest of
the brain to identify the SC of the functional networks. For
instance, Kim and coworkers (2013) applied a group ICA
on a volume of interest comprising subcortical regions.

Table 1. Comparison Between Cortical Regions

of Networks with the Same Label Obtained

from Z and from ZC

Label Overlap (%) Correlation p < 0.05

LvATT 0.9702 0.8346 19/20
RvATT 0.9702 0.8446 20/20
dATT 0.9749 0.7558 18/20
LIMB 0.9820 0.9240 20/20
EXCTR 0.9717 0.5430 16/20
SAL 0.9656 0.5952 20/20
MOT 0.9765 0.3315 15/20
MOT2 0.9630 0.8897 20/20
DM 0.9698 0.8730 19/20
VIS 0.9744 0.6929 19/20

First column: network label; second column: relative overlap of
cortical regions for networks with the same label but obtained
from Z and from ZC; third column: mean correlation value across
subjects between characteristic time courses obtained from Z and
from ZC; fourth column: proportion of subjects with p < 0.05 for
the p-value associated to correlation.

dATT, dorsal attentional network; DM, default mode network;
EXCTR, network relating to executive control; LIMB, limbic net-
work; LvATT, left ventral attentional network; MOT, premotor net-
work; MOT2, sensorimotor network; RvATT, right ventral
attentional network; SAL, salient network; VIS, visual network.

FIG. 3. MOT networks
obtained from Z (in green)
and ZC (in dark blue), and
their overlap (in cyan),
superimposed on an anatom-
ical template from the MNI.
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However, such a method should be taken with caution, be-
cause sICA requires the presence of noise in the data,
whether physiological (cardiac or respiratory) or not, to de-
tect reproducible spatial components. In fact, for NEDICA
to extract these independent spatial components, the type
of noise present in the striatum and the thalamus should be
similar to that in cortical areas. The areas most often studied
for noise components are the CSF, the white matter, the out-
line of the brain, and so on. Therefore, it is necessary to in-

clude these structures when extracting the components.
Cordes and Nandy (2007), indeed, demonstrated that the ad-
dition of noise in sICA model increased the accuracy of the
mixing matrix by 5% and, as a result, the accuracy of the spa-
tial sources. The alternative could have been to apply sICA
on a dataset where only the cortical ribbon would be masked,
hence containing subcortical gray matter, white matter, and
CSF. However, we suspect that the proportion of gray matter
would have been low compared with that of white matter and

FIG. 4. Networks obtained with the proposed method (cortical and subcortical components [SC] in red) superimposed on
an anatomical template.
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CSF, therefore preventing sICA from separating gray matter
subcortical regions into individual components. On the other
hand, if sICA had succeeded in segregating individual SC,
this would not have solved the issue of matching these com-
ponents to cortical functional networks. We still would have
needed a functional criterion to associate striatal and tha-
lamic regions to the cortical areas and this would have led
us anyway to assume time course similarity.

Kim and associates (2013) addressed this issue by comput-
ing a functional connectivity index (namely, the correlation)
between cortical IC from a group ICA conducted on the
whole brain, and subcortical IC from a separate group ICA
conducted on subcortical regions, looking for significant cor-
relations between pairs of IC time series. This approach is
similar to connectivity analyses based on regions of interest.
By contrast, we proposed to use a GLM to parcellate the
striatum and the thalamus into different subregions that
can directly be associated with the different cortical net-
works. Indeed, the GLM tries to determine the subcortical
voxels whose measured time course is closely related with
the average time course of the cortical networks. The corti-
cal information is taken into account in the GLM through
the choice of regressors, which are nothing but the average
signals in cortical regions for each functional network.
The proposed procedure is a mixed-effect statistical analy-
sis, including a first-level individual GLM accounting for
within-subject variance and a second-level group analysis
accounting for between-subject variance, using bootstrap-
based inference to ensure robustness of the regions at the
group level.

The method presented in this article enables voxels in the
striatum and the thalamus to be segmented according to their
functional links with the voxels in the cortex and classified
into regions belonging to different functional networks.
This has been visually and quantitatively validated with
two datasets, thanks, in particular, to the use of an immuno-
histochemical functional atlas (Bardinet et al., 2009; Yelnik
et al., 2007). We showed good consistency between SC
detected in the striatum and the thalamus and functional ter-
ritories from the atlas. Furthermore, within the striatum and
the thalamus, the regions obtained for a given cortical net-

work overlapped by at least 69% between both analysed
datasets. The atlas also played a vital role in classifying the
subcortical regions for each functional network, leading to
the determination of functional belonging for these regions.
We found that sensorimotor territories were mainly present
in the motor functional networks, and associative sections
from the atlas were found mainly in the right and left atten-
tional ventral and attentional dorsal networks; limbic sec-
tions from the atlas were found mainly in the default mode
network and the executive control network. In particular,
for the default mode network, the subcortical regions that
were detected included the associative and limbic caudate
nucleus, the limbic putamen, and several (ventro-lateral
and medio-dorsal) thalamic nuclei. These regions with lim-
bic dominance are in agreement with the literature. For the
VIS, the functional territories of the atlas were not involved,
which may seem surprising as some thalamic structures
(namely the lateral geniculate nucleus [LGN], the pulvinar,
and the reticular peri-thalamic nucleus [Trpt, also known
as the thalamic reticular nucleus]) are known to be involved
in visual function (Saalmann and Kastner, 2011). Indeed, the
LGN sends inputs to the primary visual cortex V1; however,
this very small structure was not referenced in the immuno-
histochemical atlas, and hence was not present in the subcor-
tical mask used in our procedure. This explains why we did
not find any overlap between the SC of VIS and the atlas.
‘‘Top-down’’ inputs from V1 to the Trpt have also been
suggested to be a consequence of attentional activation in
V1 (Montero, 2000); however, our study was based on rest-
ing-state data with eyes closed and no external stimulus, and
this may explain why no implication of this structure was
found. On the other hand, we found that the pulvinar and
the Trpt were involved for instance in the dorsal and ventral
attentional networks, which contained associative visual
regions.

Besides, it should be noted that the functional networks
extracted did not belong exclusively to one functional cate-
gory, sensorimotor, associative, or limbic. Indeed, in most
cases, they belonged to two categories with a dominant
component. For example, the motor network MOT2 mainly
overlapped not only the sensorimotor putamen but also
the associative putamen. Similarly, the default mode network
overlapped not only limbic regions (limbic caudate nucleus
and limbic putamen), but also the associative (medio-dorsal)
thalamus and the caudate nucleus. This demonstrates that the
functional networks identified cannot be considered purely
associative, limbic, or sensorimotor, but rather, they result
from a set of cognitive functions interacting with one an-
other, through common regions.

The results also show that the striatum was highly in-
volved in all functional networks. This finding conforms to
other studies, which indicate that the striatum receives pro-
jections from the entire cortex (Alexander et al., 1986; Gopi-
nath et al., 2011). This implies that this subcortical region has
many connections with the sensorimotor cortex as well as
with associative and limbic cortices.

Furthermore, the fact that results from both datasets were
similar for the majority of functional networks (at least
69% subcortical overlap between the two datasets, and non-
significant KS tests when comparing the datasets network by
network, hemisphere by hemisphere) demonstrates the ro-
bustness of the method put forward in this work.

FIG. 5. Comparison between SC obtained using the pro-
posed method and the postmortem atlas. Axial view (left)
and sagittal view (right) of the SC for the MOT network
(color scale from red to white), superimposed on the post-
mortem atlas. The atlas segmentation for the motor territory
of the putamen and pulvinar is outlined in black; the outline
of the entire putamen is shown in blue.
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FIG. 6. Percentage of voxels (Vcomp) of the SC maps (thresholded at p < 0.01, uncorrected) in each subcortical functional
territory (SFT) of the atlas for each functional network, for the right hemisphere. The results from dataset 1 (resp. dataset 2)
are shown in black (resp. white). The structures examined included the caudate nucleus (C) and the putamen (P) and their
respective associative (as), limbic (li), and sensorimotor (sm) territories, and the thalamus (T) with the anterior ventral
(va), ventrolateral (vl), intermediary ventral (vim), ventral posterior external and internal (vpe and vpi, respectively), anterior
(ant), mediodorsal (md), parafascicular (pf), and centromedian (cm) parts, the pulvinar (pu), and the reticular peri-thalamic
nucleus (rpt).
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FIG. 7. Percentage of voxels (Vcomp) of the SC maps (thresholded at p < 0.01, uncorrected) in each SFT of the atlas for each
functional network, for the left hemisphere. See Figure 6 for notations.
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The most important limitation that we can raise about the
method is related to the actual lack of independence in spatial
components extracted by sICA. Indeed, Daubechies and col-
leagues (2009) highlighted that algorithms such as InfoMax
and FastICA accurately capture spatial variability in activity
patterns, but these algorithms are barely selective for indepen-
dence. Moreover, they showed that the components were more
sparse than independent. Another limitation comes from the
low threshold used to compare datasets and SFT. Due to pos-
sible normalization inaccuracy in the striatum and the thalamus,
and since the studied SFT are really close to one another, the
detection of accurate SC is far from easy. If we chose a higher
threshold, the overlaps between the two datasets would be less
significant. Moreover, the lack of independence of individual
spatial components may hinder the detection of accurate SC
with a high threshold, across many datasets.

Later on, it would be interesting to study cortico-subcortical
interaction using diffusion MRI (dMRI). Indeed, dMRI enables
noninvasive access to cortico-subcortical loops, by tracking
white matter fibers. It can be used alone (Draganski et al.,
2008; Lehéricy et al., 2004) or combined with fMRI (Johan-
sen-Berg et al., 2005). Behrens and coworkers (2003) segre-
gated the thalamus using anatomical connections obtained by
probabilistic tractography between the thalamus and the cortex.
We plan to compare their segregation with the results obtained
with the proposed method.

Another aspect of the study would be to compare results
obtained from healthy subjects with those from patients suf-
fering from pathologies associated with a documented dys-
function of cortico-subcortical loops.

Conclusion

We have proposed a mathematical data-driven method that,
for the first time, provided access to both cortical and subcort-
ical components of functional networks using resting-state
fMRI. The proposed method accurately identified cortico-
subcortical functional networks, as shown by the agreement
between these networks and well-known anatomical and
functional cortico-subcortical networks. The similarity of
the results obtained from two different datasets further dem-
onstrated the robustness of the method.
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Appendix

Appendix A

This appendix describes the automatic iterative proce-
dure used to merge all the independent components into
classes that are the most representative of the population.
Ideally, each class should contain one and only one inde-
pendent component (IC) from each subject. Thus, from
the similarity tree (the so-called dendrogram) that describes
IC clustering as a function of within-class spatial similarity,
group-representative classes are chosen so as to optimize both
the degree of representativity (DR) and the degree of unicity
(DU) of each class. For a given class, DR is defined as the
number of subjects Ns that contribute to the class, divided
by the total number of subjects. Since a subject may contribute

to a class with more than one IC, DU is defined as the number
of subjects that contribute to the class with one and only one
IC, divided by Ns. An optimal class would then be character-
ized by DR = 1 and DU = 1. In our procedures, we set score
limits to DR > 0.5 and DU > 0.75, that is, for each class, at
least half of the subjects contribute to the class and at least
75% of these subjects contribute with only one IC. When
both conditions are not simultaneously fulfilled, DR is priv-
ileged over DU. For instance, consider a class B with
DR(B) > 0.5 but DU(B) < 0.75, obtained by merging two clas-
ses A1 and A2 with DR(A1) < 0.5 and DR(A2) < 0.5. The pro-
cedure retains class B rather than the separate classes A1 and
A2. The algorithm ends when all IC are assigned to a class.
The final number of classes is not predefined.
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