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Abstract: In BOLD fMRI data analysis, robust and accurate estimation of the Hemodynamic Response
Function (HRF) is still under investigation. Parametric methods assume the shape of the HRF to be known and
constant throughout the brain, whereas non-parametric methods mostly rely on artificially increasing the
signal-to-noise ratio. We extend and develop a previously proposed method that makes use of basic yet
relevant temporal information about the underlying physiological process of the brain BOLD response in order
to infer the HRF in a Bayesian framework. A general hypothesis test is also proposed, allowing to take
advantage of the knowledge gained regarding the HRF to perform activation detection. The performances of
the method are then evaluated by simulation. Great improvement is shown compared to the Maximum-
Likelihood estimate in terms of estimation error, variance, and bias. Robustness of the estimators with regard
to the actual noise structure or level, as well as the stimulus sequence, is also proven. Lastly, fMRI data with
an event-related paradigm are analyzed. As suspected, the regions selected from highly discriminating
activation maps resulting from the method exhibit a certain inter-regional homogeneity in term of HRF shape,
as well as noticeable inter-regional differences. Hum. Brain Mapping 19:1–17, 2003. © 2003 Wiley-Liss, Inc.
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INTRODUCTION

Discovered in the early 1990s, functional MRI
(fMRI) has quickly become the leading method to

study hemodynamic changes in the brain in response
to cognitive and behavioral tasks [Chen and Ogawa,
1999]. The relation between neural activity and the
Blood Oxygen Level Dependent (BOLD) response is
not yet clearly understood and is still under investi-
gation [Vazquez and Noll, 1996; Buxton and Frank,
1997; Buxton et al., 1998; Li et al., 2000; Logothetis et
al., 2001]. It is, therefore, convenient to model the
various processes intervening in the brain, from recep-
tion of the stimulus to measurement of the BOLD
contrast signal, as a whole system characterized by its
transfer response function, the so-called Hemody-
namic Response Function (HRF) [Friston et al., 1994].
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The HRF is the theoretical signal that BOLD fMRI
would detect in response to a single, very short stim-
ulus of unit intensity. The key assumptions related to
this model are the stationarity and linearity of the
underlying physiological process. Such hypotheses
are good approximations of the actual properties of
the system as long as the inter-stimulus interval does
not decrease below about two seconds [Dale and
Buckner, 1997; Buckner, 1998].

Estimation of the HRF is a recent concern. Knowl-
edge about the response function is believed to be a
key issue to a better understanding of the underlying
dynamics of brain activation and the relationship be-
tween brain areas [Biswal et al., 2000; Miezin et al.,
2000]. HRFs are increasingly suspected to widely vary
from region to region, from task to task, and from
subject to subject [Aguirre et al., 1998; Buckner et al.,
1998a,b; Miezin et al., 2000]. Unfortunately, precise
and robust estimation of the HRF is still the subject of
ongoing research, since the problem is badly condi-
tioned, and various methods have been devised so far.

On the one hand, parametric methods assume that
the HRF is a generally non-linear function of certain
parameters that are to be estimated. These parameters
are often bestowed with some physiological meaning.
Such approaches have been applied to block or event-
related stimuli. Function shapes that are typically used
include Gaussian [Kruggel and von Cramon, 1999a, b;
Kruggel et al., 2000] or spline-like [Gössl et al., 2001b].
Gössl et al. [2001a] use a parametric model on the
temporal scale, whereas a more general prior is used
on the spatial extension of the signal. Integration of a
physiological model as prior information has also
been considered to constrain parametric estimation of
the HRF [Friston, 2002]. But assuming the shape of the
hemodynamic response to be known a priori and in-
variant throughout the brain is a very strong con-
straint, since it fluctuates greatly.

On the other hand, non-parametric methods have
been developed in an attempt to infer the HRF at each
time sample. Such methods make no prior hypothesis
about the shape of the response function. Since the
low signal-to-noise ratio of fMRI data precludes direct
voxelwise analysis (e.g. with averaging over time),
more complex schemes have been proposed. Methods
include: averaging over regions [Kershaw et al., 2000],
selective averaging [Dale and Buckner, 1997], intro-
duction of non-diagonal models for the temporal co-
variance of the noise [Burock and Dale, 2000], or in-
troduction of smooth FIR filters [Goutte et al., 2000]. In
a similar fashion, we recently proposed a Bayesian,
non-parametric estimation of the HRF [Marrelec and
Benali, 2001; Marrelec et al., 2001]. Relevant physio-

logical information was introduced to temporally reg-
ularize the problem and derive estimates of the HRF.
This approach had the advantage of introducing no
bias into the estimation, since the constraints imposed
were clearly derived from physiological requirements.
In Marrelec et al. [2001], the estimation features were
based on a few examples and the authors’ experience
of the model. Real data consisted of the mean signals
of BOLD fMRI measurements in a few regions of
interest. Robust voxelwise analysis had, therefore, yet
to be assessed.

In this report we quantify the performances of the
estimation introduced. Simulations are used to ana-
lyze the behavior of the HRF estimator. When com-
pared to the ML estimator, dramatic performance in-
crease is actually proven. With these evaluations, we
also show that robustness is achieved regarding the
actual noise sampling distribution and the stimulus
sequence.

The outline of the article is as follows. In the next
section, we recall the theoretical background neces-
sary for the understanding of the model treatment. We
also develop a statistical tool to deal with model test-
ing, including activation detection. In the third sec-
tion, the major features of the model are assessed:
importance of the prior, relevance of the actual noise
structure and influence of the stimulus sequence. The
method is finally applied to real data, where both HRF
estimation and activation detection are performed on
the same time series.

THEORETICAL BACKGROUND

Notations

In the following, x denotes a real number, x a vector,
and X a matrix. “t” is the regular matrix transposition.
IN stands for the N-by-N identity matrix. “�” relates
two expressions that are proportional. For two vari-
ables x and y, “x�y” stands for “x conditioned on y”,
or equivalently “x given y”, and p( x) for the proba-
bility of x.

Model

Let x � ( xn)1 � n � N be the time series of stimuli
describing an experimental paradigm, and y �
( yn)1 � n � N the corresponding BOLD fMRI time
course of a voxel. A discrete linear model is assumed
to hold between the stimulus vector x and the data y:

�H� yn � �
k � 0

K

hkxn�k � �
m � 1

M

�mdm,n � en
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n � K � 1, . . . , N.

The (K � 1)-dimensional vector h � (hk)t represents
the unknown HRF to be estimated. K is the order of
the convolution model, and L � N � K is the actual
amount of data used in the calculation. X � ( xn � k)
is the regular L-by-(K � 1) design matrix, consisting
of the lagged stimulus covariates. The L-by-M matrix
D � (dm,n) is a basis of M functions that takes a
potential drift and any other nuisance effect into ac-
count, and the � � (�m)t are the corresponding co-
efficients. For the sake of simplicity, the basis is as-
sumed to be orthonormal, i.e., 1

L
DtD � IL. e � (en)t

accounts for noise and is supposed to consist of inde-
pendent and identically distributed Gaussian vari-
ables of unknown variance �2, assumed to be inde-
pendent from the HRF. As will be shown in the
simulation section, this assumption by no way re-
quires that the sampling frequencies of the noise ac-
tually corrupting the data be normally distributed. In
matrix form, (H) boils down to

y � Xh � D� � e,

also called General Linear Model.

Bayesian Analysis With Temporal Prior

What is sought is estimation of the HRF h given the
data y. To cope with this issue, a suitable theoretical
framework is required for dealing with information
coming from various origins. On the one hand, the
data follow a known mode, (H). The noise is also
supposed to follow a definite (yet general) model,
since it is Gaussian. On the other hand, it should be
possible to take available information into account, in
order to optimize the estimation. The problem faced
being ill-conditioned, a priori knowledge about the
HRF needs to be incorporated into the model in order
to constrain it and enable coherent estimates. For do-
ing so, Bayesian analysis imposes itself, allowing for
robust yet flexible integration of a wide range of in-
formation types in a probabilistic framework.

Prior information

Since the underlying physiological process of BOLD
fMRI is as of yet only partially understood, setting
“hard” constraints on the HRF is most likely to intro-
duce unwanted bias into the estimate. For this reason,
we investigate basic and soft constraints that do not

contradict current knowledge. More precisely, the fol-
lowing is assumed:

(P0) the HRF starts and ends at 0;
(P1) the HRF is smooth.

These priors reflect that the underlying process
evolves rather slowly on the experimental time scale.
Our goal is then to translate this prior knowledge into
information that can be directly implemented into a
Bayesian analysis. First, prior (P0) can easily be intro-
duced into the model by setting the first and last
sample points of the HRF to 0, so that only K � 1
parameters (instead of K � 1) of the HRF are now
unknown. Quantification of prior (P1) is achieved by
setting a Gaussian prior for the norm of the second
derivative of the HRF, whose relative weight is ad-
justed by a hyperparameter �:

p�h��2, �� � � �2

�2� �K � 1�/2

exp��
�2htQh

2�2 � , (1)

where

Q �
1

TR4�
5 �4 1 0 · · · 0

�4 6 �4 1 0

1 �4 6 �4 1 0

0 1 �4 6 �4 1 0 ···
· · ·

· · ·
· · ·

· · ·
· · ·

· · ·
· · ·

··· 0 1 �4 6 �4 1 0

0 1 �4 6 �4 1

0 1 �4 6 �4

0 · · · 0 1 �4 5

�
is the (K � 1)-by-(K � 1) concentration matrix of
the Gaussian prior, chosen as the discrete second-
order differentiation matrix. � represents the relative
weight of the prior probability compared to the like-
lihood of the data in the calculation of the posterior
probability density function (pdf). The higher �, the
more the prior constraint is taken into account. On the
contrary, a vanishing � expresses that the solution
comparatively integrates much more information
from the data. The limiting case � � 0 yields results
that are similar to the Maximum-Likelihood treatment
(i.e., Bayesian with no specific prior).

Bayes’ Theorem

Once the model and the prior information have
been defined, the first step is to use Bayes’ theorem
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stating that, for a set of data compatible with the
model:

p�h, �, �2, ��y� �
p�h, �, �2, �� � p�y�h, �, �2, ��

p�y�
.

(2)

Since p(y) is independent of h, �, �2, and �, it is only a
normalization factor that can be discarded from Equa-
tion (2), yielding

p�h, �, �2, ��y� � p�h, �, �2, �� � p�y�h, �, �2, ��. (3)

This equation relates the prior information p(h, �, �2,
�), the information brought by the data or likelihood
p(y�h, �, �2, �), and the information inferred a poste-
riori about the unknown parameters h, �, �2 and �,
p(h, �, �2, ��y). This posterior distribution contains all
the knowledge about the parameters that can possibly
be inferred from the data and the a priori information
we have at hand.

Posterior pdf

Using the chain rule† and assuming no prior depen-
dence between �, �2 and �, as well as between h and �,
the prior can be further expanded as

p�h, �, �2, �� � p�h��2, �� � p��� � p��2� � p���, (4)

where p(h��2, �) has been defined in Equation (1). p(�),
p(�2), and p(�) are classically set to uninformative
priors (flat prior for �, Jeffreys priors for �2 and �:

p��� � const p��2� � ��2� � 1 p��� � � � 1.

Assuming Gaussian noise, the likelihood rereads

p�y�h, �, �2� � ��2� � L/2exp��
1

2�2 	y � Xh � D�	2� .

(5)

Bringing Equations (4) and (5) together into Equation
(3) leads to the posterior pdf for h, �, �2 and �:

p�h, �, �2, ��y� � �K � 2��2� � 	L � �K � 1�/2 � 1


� exp��
1

2�2 �	y � Xh � D�	2 � �2htQh�� . (6)

This distribution is the core of our inference, since any
question concerning the problem can be answered by
its manipulation and processing.

Marginal posterior pdf for h

In HRF estimation, though, the parameter of interest
is usually h. In this case, all other parameters are only
nuisance parameters whose estimation is not required,
and all information relative to h is contained in the
marginal posterior distribution of h, p(h�y). This pdf
can in turn be obtained from Equation (6) by integrat-
ing it with respect to the other parameters, according
to the marginalization formula‡:

p�h�y� � 
 p�h, �, �2, ��y� d� d�2 d�.

Integrating � and �2 is straightforward, resulting in

p�h�y� � 
 p�h, ��y� d� � 
 p�h�y, �� � p���y� d�.

However, this integral cannot be calculated in closed
form. A common way to circumvent the problem, as in
[Friston et al., 2002a], is to estimate � by �̂ and approx-
imate the sought density by

p�h�y� � p�h�y, � � �̂�.

This approximation holds if p(��y) is peaked enough
around �̂. Practically, checking its validity can be per-
formed by examination of p(��y) (see, e.g., Fig. 6 for
results on real data). p(��y) can then be approximated
by a Dirac function and p(h�y) by

p�h�y� � 
 p�h�y, �� � ��� � �̂� d� � p�h�y, � � �̂�.

The strategy applied here is to first calculate the pos-
terior pdf for the hyperparameter � as

p���y� � 
 p�h, �, �2, ��y� dh d� d�2,

†p(1, 2) � p(1�2) � p(2). ‡p(1) � � p(1, 2) d2.
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find an estimator �̂ of � and, then, approximate p(h�y)
by p(h�y, � � �̂), which is calculated from the posterior
pdf:

p�h�y, � � �̂� �
1

p��̂�y� 
 p�h, �, �2, �̂�y� d� d�2.

An approximation for the marginal posterior for �2

can also be calculated along the same lines. Using this
scheme, it was shown in Marrelec et al. [2001] that

• � follows a pdf that does not belong to any known
family, but whose distribution is given by:

p���y� �
�K � 2

�det�XtJX � �2Q�

� 	yt(IL � JtX�XtJX � �2Q� � 1Xt�Jy] � �L � M�/ 2,

(7)

where J � IL � (1/L)DDt is the projection matrix
estimating and removing the nuisance trend from
the data. Numerical calculation of this 1-dimen-
sional pdf is straightforward, and an estimate can
be inferred, such as the Maximum a posteriori
(MAP):

�̂ � arg max p���y�.

Choosing the mean instead of the MAP leads to
similar results, as shown in Bretthorst [1992].

• (�2�y, � � �̂) is scaled inverse-chi-square distrib-
uted, with � � L � M degrees of freedom and
scale parameter s2 � [yt(IL � JtX(XtJX �
�̂2Q) � 1Xt)Jy]/�. An estimator of �2 is given by

�̂2 �
�

� � 2 s2. (8)

• (h�y, � � �̂) is Student-t distributed with � degrees
of freedom, location parameter ĥ � (XtJX
� �̂2Q)�1XtJy and scale matrix V � s2(XtJX
� �̂2Q)�1. The expectation of (h�y, � � �̂) can be
taken as an estimator for the HRF:

E	h�y, � � �̂
 � ĥ � �XtJX � �̂2Q� � 1XtJy. (9)

Equation (9) with �̂ � 0 corresponds to the well-
known Maximum-Likelihood estimate (ML estimate)
or Ordinary Least Squares estimate (OLS estimate)
commonly found in the literature [Mardia et al., 1979;
Draper and Smith, 1981]. For �̂ � 0, this is the form of

a regularized estimator, with �̂ playing the role of the
regularization parameter. In a typical regularization-
optimization process, one has to minimize a quantity
that is the sum of a likelihood function and a regular-
ization/penalization factor (e.g., the norm of the sec-
ond derivative for smooth variations):

	Xh � y	2 � �2	�2h	2.

In a Bayesian framework, the value of � can automat-
ically be estimated and set to the most probable value
�̂.

Divergence Tests on HRFs

Bayesian analysis has recently been applied to acti-
vation detection in fMRI data analysis [Friston et al.,
2002a, b]. Another approach is to take advantage of
the non-parametric framework developed in this
study.

Once the estimation has been carried out as previ-
ously explained, it might be of interest to test whether
a given function h0 qualifies as a HRF in a voxel. For
instance, if h0 originates from a biological or physio-
logical model, adequacy of this model with the exper-
imental results can be tested. In a frequentist frame-
work, this corresponds to testing against the null-
hypothesis (h � h0). In other words, we test whether
h is significantly different from h0. h being Student-t
distributed, the deviance of h0 from model (H), defined
as

��h0� � �h0 � ĥ�tV � 1�h0 � ĥ�,

should be the realization of a (K � 1) � FK � 1,�-
distributed variable. As proposed in Tanner [1994],
we, therefore, define the deviance significance 1 � �0 of
(h � h0) as

1 � �0 � �K � 1,�	��h0�
 (10)

where �K � 1,� is the cumulative distribution function
(cdf) of the FK � 1,� distribution.

An interesting case of hypothesis testing occurs
when h0 is set to 0. The estimated HRF is then com-
pared to a flat function, reflecting a model where the
stimulus has no influence on the voxel signal, which is
then nothing more than a baseline signal (drift and
noise). This is nothing else than activation detection.

In this setting, it is hence possible to estimate the
HRF and use the knowledge so gained to perform
activation detection on the same dataset. This is pos-
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sible, since the data are only used once, namely to
infer the value of the HRF at each time sample. This
information, contained in p(h�y, � � �̂) and stating that
h is t-distributed with parameters ĥ and V, is in turn
used to answer questions relative to certain character-
istics of the HRF, such as, “What is the shape of the
HRF,” or “Is the response function significant?”

RESULTS FROM SYNTHETIC DATA

Materials and Methods

This section deals with the performance of the
above estimations and focuses on the three following
topics: importance of the temporal prior, relevance of
the actual noise sampling distribution and influence of
the stimulus sequence. Each feature was analysed us-
ing synthetic data. One thousand 224-point samples
were simulated from the same original HRF h0 (“ca-
nonical” HRF used by the SPM99 software§), stimulus
sequence (one given realization of a random event-
related stimulus) and quadratic drift as illustrated in
Figure 1. Repetition time TR was set to 1.25 sec. The
variance of the Gaussian noise �2 was successively set
in {0.001, 0.005, 0.01, 0.05}, corresponding to SNRs¶

given in Table I. For the analysis, K was set to 20 and
quadratic drift was considered (M � 3).

Investigation of HRF estimation performance was
assessed using three complementary criteria. First, the
quadratic error �1(h) described how close the chosen
estimator is to the real HRF. Second, variance score
�2(h) was a measure of the uncertainty associated with
the given estimator. Now, variance reduction is a de-
sired feature only if the accuracy of the estimator
increases consequently. As a matter of fact, a poor
estimator (i.e., with high quadratic error) with a low
variance is misleading and introduces a bias into the
estimation. For instance, introduction of prior infor-
mation into model (H) has a direct and logical conse-
quence of decreasing the variance of the posterior pdf.
By construction, the higher �, the higher the variance
reduction. Setting � 3 � even implies a vanishing
variance, �V� 3 0, whereas the corresponding estima-
tor ĥ tends towards a flat function, which is obviously
a very bad estimator of the true HRF. Bias estimation
was, therefore, quantified by �3(ĥ, V): the smaller the
bias, the more conservative the estimate.

Quadratic error was defined in a similar fashion as
in Dale [1999]:

�1�ĥ� �
1

K � 1 	ĥ � h0	2. (11)
§www.fil.ion.ucl.ac.uk/spm/spm99.html.
¶Defined as SNR � 20 log10(	Xh	/�L�2).

Figure 1.
Simulations: (i) HRF h0, (ii) paradigm, and (iii) quadratic drift.
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It is the average square error per time sample of the
estimator compared to the true HRF h0. Variance score
was quantified by

�2�V� �
1

K � 1 log det�V�. (12)

As pointed out in Ruanaidh and Fitzgerald [1996], the
determinant of the variance of a distribution has a
simple interpretation in terms of hypervolume in a
Gaussian approximation. The logarithm of this mea-
sure can then be related to an entropic measure.¶

Finally, the bias was measured using the deviance of
the real HRF h0 from the model and Equation (10):

�3�h0� � �K � 1,�	��h0�
. (13)

For each series of 1,000 simulations, the correspond-
ing performance estimator was calculated on all the
samples.

Importance of the Prior

We first compared a model with no a priori infor-
mation corresponding to a Maximum-Likelihood esti-
mation,** called (HL), and the model with the tempo-
ral prior, (HB). For typical simulations, Figure 2a
represents true and estimated HRFs. Performance es-
timators were calculated for the 1,000 noise realiza-
tions using Equations (11), (12), and (13). The results
are summarized in Figures 2b and c.

Figure 2b(i) clearly indicates that, regardless of the
noise level, estimates of �2 were accurate for both
models, showing the robustness of this estimator. Fig-

ure 2b(ii) shows that the relative spread of �̂ in the
Bayesian model increased with decreasing SNR. As
for HRF estimation, benefits resulting from the intro-
duction of a temporal prior were threefold. First, both
models exhibited increasing quadratic error with in-
creasing noise (Figure 2c(i)), but estimator ĥB (corre-
sponding to model (HB)) was much more robust to
increasing noise than ĥL (corresponding to model
(HL)). Second, a dramatic decrease of variance was
achieved when the prior was considered and, again,
the lower the SNR, the larger the difference (Figure
2c(ii)). But this variance reduction was not the source
of a bias in the estimation, since the deviance signifi-
cance of model (HB) was also improved compared to
initial model (HL), as can be seen on Figure 2c(iii).

Relevance of the Noise Sampling Distribution

According to Bretthorst [1999], the Gaussian struc-
ture of the noise in the model is a consequence of the
Maximum-Entropy principle, in which only the mean
and the variance of the actual noise are assumed to be
known and relevant to the analysis. As such, the esti-
mation should not depend on the sampling frequen-
cies of the noise. This was also observed in Marrelec et
al. [2001]. To confirm this, we simulated noise samples
from various sampling distributions. First, in accor-
dance with the model hypothesis, Gaussian noise was
used with mean 0 and variance 0.01. In order to mea-
sure the robustness of the model with regard to the
presence of temporal correlation in the noise, AR(4)
with exponentially decreasing factors was also simu-
lated.†† Finally, physiological noise was considered as
the BOLD fMRI signal of the real data used in the
following section, selected in regions where no activa-
tion was detected. After every sample, the resulting
time series was normed to get the same mean 0 and
variance 0.01. Typical results and estimator perfor-
mances are represented in Figure 3a–c.

As evidenced by the results depicted in Figure
3b(ii), estimation of hyperparameter � varied rela-
tively little with respect to the noise distribution: the
MAP estimates were consistent with each other. As for
the estimate of the noise variance, it was essentially
independent from the noise structure (Figure 3b(i)).
HRF estimation itself exhibited the same property.
From the simulations, it obviously appeared that the
actual sampling distribution of the noise is indeed of
little importance (Figure 3c(i)–(iii)).

¶The entropy of a �(�, �) distribution is given by S �
1
2

log[2�
exp(1)det(�)].
**In this case, the order � changes from K � 1 to K � 1, the
number of degrees of freedom changes from L � M to L � M
� (K � 1), �̂ is set to 0, and all formulas are modified accordingly
[Marrelec et al., 2001].

††With equation en � 0.3679en � 1 � 0.1353en � 2 � 0.0498en � 3

� 0.0183en � 4 � εn and εn � �(0, 0.01).

TABLE I. Simulations*

�2 SNR

0.001 16.39
0.005 9.40
0.01 6.39
0.05 �0.60

*Noise variances and corresponding SNRs for the HRF defined in
Figure 1.
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Influence of the Stimulus Sequence

As pointed out in Buxton et al. [2000] and Worsley
and Friston [1995], the choice of a stimulus sequence

(periodic vs. no-periodic) is very important and can
dramatically influence the power of an estimation
method. To demonstrate the behavior of our technique
and ensure that the method gives reliable results on

Figure 2.
Simulated data: importance of the prior. a: Typical results of
simulations. Top and middle rows: simulated HRF (dotted line) and
estimated HRF plus standard deviation (solid line) for the ML
estimate (top) and the Bayesian estimate (middle). Bottom row:
marginal pdf for �. b: For each noise variance �2 in {0.001, 0.005,
0.01, 0.05}: (i) relative error of the noise estimator for the ML
estimate (light gray) and the Bayesian estimate with prior (dark
gray); (ii) relative spread of the estimated � for the model with

prior. The mean and the upper and lower 2.5% tails are repre-
sented, and the gray area represents the behavior of 95% of the
data simulated. c: For each noise variance �2 in {0.001, 0.005, 0.01,
0.05}: (i) quadratic error �1, (ii) variance score �2, and (iii)
deviance significance �3 of the ML estimate (light gray) and the
Bayesian estimate with prior (dark gray). The mean and the upper
and lower 2.5% tails are represented, and the gray area represents
the behavior of 95% of the data simulated.
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the real data (see Results From Real Data), we com-
pared estimates inferred from a simulation with a
periodic vs. non-periodic stimulus. As in the data
analyzed in this report, the periodic stimulus repeated
itself every 10 s (corresponding to 8 TRs), and we
estimated the HRF on 12.5 s (corresponding to K
� 10). The results are summarized in Figure 4a–c
and must be compared to the results in Figure 2a–c.

Our first conclusion is that Bayesian analysis is ro-
bust with regard to the stimulus sequence. Even
though estimates were, as predicted, worse for a pe-
riodic stimulus sequence than in the case of non-
periodic stimulus (Fig. 4c vs. Fig. 2c), they did not
mislead us, since the variance increased consequently.
The resulting bias is comparable to the case where the
stimulus is non-periodic.

RESULTS FROM REAL DATA: VISUO-SPATIAL
JUDGMENT TASK

Materials and Methods

Participants and task

Eleven healthy right-handed volunteers (age 24–
35), with no neurological or psychiatric illness, gave
written informed consent and were scanned, while
performing the following visual task: they had to de-
cide whether two visual dots flashed on the periphery
of an 8-ray wheel projected on a screen were symmet-
rical with respect to the central fixation cross. The two
dots were presented simultaneously for 150 ms every
10 seconds and their position had to be compared
immediately. Subjects had to give a motor response by
using a keypad (symmetrical: click with their right
index finger; nonsymmetrical: click with their right
middle finger). Participants were instructed to main-
tain eye fixation on the central cross throughout the
whole experiment.

Data imaging and preprocessing

A 1.5 Tesla General Electric Signa imager (La Sal-
pêtrière Hospital, Paris) with a standard head coil was
used for the imaging. High resolution structural T1-
weighted MPRAGE images were acquired from all
participants for anatomical localization (0.9375
� 0.9375 � 1.5 mm). The functional images were
produced by T2*-weighted echo-planar MRI at 8 con-
tiguous 6-mm axial slices covering dorsal prefrontal
and parietal regions (field of view: 24 cm, repetition
time TR: 1.25 sec, echo time TE: 60 msec, flip angle: 90
degrees, 64 � 64 matrix of 3.75 � 3.75 mm voxels).Figure 2.
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Figure 3.
Simulated data: relevance of the noise sampling distribution.
a: Typical results of simulations with noise variance �2 � 0.01 and
different noise sampling distributions. Right column: simulated
HRF (dotted line) and estimated HRF with standard deviation
(solid line). b: For each noise variance �2 in {0.001, 0.005, 0.01,
0.05} (x-axis): (i) estimated noise and (ii) � for Gaussian noise
(light gray), AR(4) noise (middle gray) and physiological noise (dark

gray). c: For each noise variance �2 in {0.001, 0.005, 0.01, 0.05}: (i)
quadratic error, (ii) variance score, and (iii) deviance significance
for Gaussian noise (light gray), AR(4) noise (middle gray) and
physiological noise (dark gray). The mean and the upper and lower
2.5% tails are represented, and the gray area represents the
behavior of 95% of the data simulated.
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Participants were studied in a single 224-scan session
with a total duration of 4 min 40 sec. The scanner was
in the acquisition mode for 20 sec before the experi-
ment onset in order to achieve steady-state transverse
magnetization. To compensate for subject motion, im-
ages were realigned to the middle image by using a
rigid transformation and linear interpolation. The re-
aligned images were filtered for low-frequency
changes in BOLD signal over time by using high-pass
filtering (namely, estimation of the baseline fluctua-
tions using a moving average window and substrac-
tion of the estimated baseline from the input signal).

Data analysis

We estimated the HRF in each voxel. For the anal-
ysis, we set the order to K � 10, corresponding to a
length of 12.5 sec. We also accounted for quadratic
drift (M � 3). To handle significance levels, which
were very high, we used the log-scale: for a signifi-
cance level 1 � �0, we therefore set q0 � � log10(1
� �0). We hereafter present the results from one sub-
ject.

Activation maps

Using the deviance test proposed in Equation (10),
we defined voxel activation as the deviance of the zero
HRF function (h0 � 0) from the model.

The corresponding voxelwise activation map is rep-
resented in Figure 5(i). This map can be compared to
Figure 5(ii), which was calculated by linear regression
from a model with voxelwise adaptive Gaussian func-
tions as proposed by Rajapakse et al. [1998]. It first
appears that the two maps are comparable. On the
other hand, the significance test developed in this
study had a much higher discrimination level com-
pared to the other method. As a matter of fact, regions
where there should be no activation (such as the white
matter) had a much lower significance in Figure 5(i)
than in Figure 5(ii). Moreover, boundaries between
activated and not-activated regions appeared much
more clearly and sharply in Figure 5(i) than in Figure
5(ii). Potential activated regions can, therefore, be read
off the map with ease. Whether such activated regions
are indeed relevant is an issue that cannot be an-
swered here, but high discrimination power is clearly
a desired feature.

Regional stability

The activation map corresponding was thresholded to
1 � �0 � 1 � 10�11.5 (i.e., q0 � 11.5). From this map, sixFigure 3.
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clusters were selected as shown in Figure 5(iii). For each
cluster, Figure 6 represents the HRFs estimated in each
voxel of the regions, the corresponding marginals for �
as well as the most peaked HRF.

Two main conclusions emerge from there. First,
there is a clear idea of intracluster homogeneity. In-
deed, the shape of the HRF seemed to be roughly
constant within a region, “shape” meaning features of
the curve such as increase/decrease, maximum/min-
imum or time-to-peak. However, it is not clear if this
similarity is the consequence of physiological homo-
geneities, since parts of the resemblances may be due

to non-physiological, intrinsic correlation of the signal,
originating from the acquisition process or subject
movement. On the other hand, the intensity of the
response varied greatly in a given region, even though
only highly significant voxels were taken into account.
Second, HRFs did differ from region to region. They
even seemed to be characteristic of the region in-
volved. The differences concern the presence or ab-
sence of a post-stimulus undershoot, the presence or
absence of a plateau, the pre- and post-maximum
steepness, as well as the time-to-peak and the time-to-
onset.

Figure 4.
Simulated data: influence of the stimulus. a: Typical results of
simulations. Top row: simulated HRF (dotted line) and estimated
HRF plus standard deviation (solid line). Bottom row: marginal pdf
for �. b: For each noise variance �2 in {0.001, 0.005, 0.01, 0.05}: (i)
relative error of the noise estimator; (ii) estimated �. The mean
and the upper and lower 2.5% tails are represented, and the gray

area represents the behavior of 95% of the data simulated. c: For
each noise variance �2 in {0.001, 0.005, 0.01, 0.05}: (i) quadratic
error �1, (ii) variance score �2, and (iii) deviance significance �3.
The mean and the upper and lower 2.5% tails are represented, and
the gray area represents the behavior of 95% of the data simulated.
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DISCUSSION

The voxelwise HRF estimation technique that we
proposed makes use of basic but relevant a priori
information concerning the physiological process un-
derlying the response. It proved to be reliable and
robust regarding the actual noise level and structure,
as well as the stimulus sequence.

Prior information and bias

Simulations comparing models with and without
prior information clearly contradict common belief,
which expects that introduction of prior information
into analysis necessarily implies an increase of bias. In
our case, introduction of a prior actually improved
efficiency, variance, and bias at the same time. This is
of course true given that the prior knowledge intro-
duced into the model is respected. Estimation of
peaked HRFs with this model would certainly give
worse results.

Noise structure and estimation

The estimators introduced in this study were shown
to be essentially insensitive to the true noise structure.
This can be interpretated as follows. Two models were
set: one for the HRF, and one for the noise. The latter
was based on the sole hypothesis that the noise has
given (yet unknown) mean and variance, and the
Gaussian structure imposed itself as the least biased
under this hypothesis. From there, two situations can
happen. If the model for the HRF is sufficiently well
defined (i.e., the prior information and the data are
sufficient to lead correct inference), then the actual
noise structure is mostly irrelevant to the estimation.
In this case, introduction of more refined information
(e.g., temporal correlation) would only slightly im-
prove the estimation. On the other hand, if the model
for the HRF is badly specified, then any additional
information will greatly improve the results.

Noise level and smoothness

With decreasing SNR, �̂ tends to be set to increasing
values, giving more and more importance to the
smoothing prior. Slow changes on long scales are then
overfavored, and steep variations of the HRF seem to
be smoothed out or rounded off (e.g., between 1 and 3
sec and around the peak in the simulations). However,
the same simulations showed that our inference is still
meaningful, since the mean � standard deviation es-
timate stays accurate.Figure 4.
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Still with decreasing SNR, p(��y) becomes more
and more diffuse around its peak: the model re-
ceives less and less information about the real value
of � from the data. Nonetheless, the simulations
showed again that the MAP estimator for � still
makes sense for our purpose, since the resulting
HRF estimates remain accurate. In this case, though,

since the variance of � is not considered, it is possi-
ble that the variance of h becomes more and more
underestimated. This effect could possibly be taken
into account (e.g., as proposed by Kaas and Steffey
[1989]), at the cost of a more complicated and com-
putationally time-consuming model. Whether this
would significantly improve the inference is not

Figure 5.
Real data: activation maps. Activation maps from (i) the significance of the divergence test devised
in this paper and (ii) the significance test by linear regression on adaptive Gaussian functions. Both
maps have the same scale, between 0 (white) and 12 (black); (iii) anatomy and thresholded
activation map from (i) (q0 � 11.5).
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quite clear yet, considered the good behavior of the
estimators.

Convolution order

K was not estimated in our analysis but set to a
certain value (K � 20 or K � 10). How did the
choice of this parameter affect the analysis? Very little,
indeed, if the stimulus sequence is of period higher
than K or not periodic. In this case, setting K to a value
that ensures a small HRF value gives satisfactory re-
sults. On the other hand, when the stimulus sequence
is periodic, great care has to be taken. Giving K a value
higher than the stimulus period implies that the model
is not well determined. For this reason, ML estimators
cannot be calculated. As we showed, the prior intro-
duced regarding the smoothness of the HRF can some-
how make up for this undeterminacy, but there are
limits to this. In the simulation example we developed
earlier, setting K � 10 is about as far as we could go
without getting spurious effects.

CONCLUSION

This report provides an efficient and robust method
to estimate the HRF and perform activation detection
on the same dataset. The model integrates basic but
relevant temporal information about the underlying
physiological process of brain activation. Prior knowl-
edge has proven to improve the accuracy and the
robustness of the estimators. The actual structure of
the noise and its level were shown to have little influ-
ence on the performance of the estimation. Simula-
tions also showed that the estimators were robust to
the stimulus sequence.

Highly discriminant activation maps were pro-
duced from the real data analyzed, as well as a wide
variety of HRF shapes. The differences concerned the
presence or absence of a post-stimulus undershoot,
the presence or absence of a plateau, the pre- and
post-maximum steepness, as well as the time-to-peak
and the time-to-onset. Extra care has, therefore, to be
taken when a fixed HRF is chosen and activation
detection is performed, since no single function, what-
ever its characteristics, can account for activation
throughout all the brain.

Ongoing research includes the search for new prior
information and their translation in terms of con-
straints. It is also hypothesized that a more general
resolution framework (e.g., integration of several stim-
uli, several sessions) is possible and would greatly
improve the estimation.
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