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Summary 

Sampling from probability density functions (pdfs) has become more and more 
important in many areas of applied science, and has therefore been the subject 
of great attention. Many sampling procedures proposed allow for approximate or 
asymptotic sampling. On the other hand, very few methods allow for exact sam- 
piing. Direct sampling of standard pdfs is feasible, but sampling of much more 
complicated pdfs is often required. Rejection sampling allows to exactly sample 
from univariate pdfs, but has the huge drawback of needing a case-by-case calcu- 
lation of a comparison function that often reveals as a tremendous chore, whose 
results dramatically affect the efficiency of the sampling procedure. In this paper, 
we restrict ourselves to a pdf that is proportional to a product of standard distri- 
butions. From there, we show that an automated selection of both the comparison 
function and the upper bound is possible. Moreover, this choice is performed in 
order to optimize the sampling efficiency among a range of potential solutions. 
Finally, the method is illustrated on a few examples. 

Keywords: Rejection sampling, Exact sampling, Gibbs sampling, MCMC meth- 
ods 
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1 Introduction 

Sampling from probability density functions (pdfs) has become a crucial topic in 
many areas of applied science. There is a need for sampling whenever statistical 
methods are developed, may it be for approximate estimation or model diagnosis 
(Gelman et al. 1998). Numerous schemes have consequently been devised in or- 
der to sample from a given pdf, ranging from approximate sampling to asymptotic 
sampling to exact sampling. 

Approximate sampling provides samples that are only approximately related to 
the pdf that needs sampling. The most used is possibly importance sampling (Ru- 
anaidh and Fitzgerald 1996), that samples from an approximate pdf and gives a 
weight to every sample to compensate for the approximation. In this case, the relia- 
bility only depends on the relation between the pdf to sample and the approximation 
chosen. Unfortunately, the error between an approximate sample and one originat- 
ing from the true pdf can neither be estimated nor reduced by increased computa- 
tional power. Approximate sampling is therefore shun and its use restricted to cases 
where no other method applies. 

Asymptotic methods asymptotically produce samples from a given pdf. The most 
common such method is Markov Chain Monte Carlo (MCMC) and Gibbs sampling 
as a special case (Gelman et al. 1998). Both can be used to sample from many 
complicated pdfs encountered in statistics. However, they may take a long time to 
converge towards a true sample, and convergence diagnosis is still a topic of ongoing 
research. 

Finally, exact sampling includes methods that can provide samples that are ex- 
actly generated by the pdf under study. A large amount of literature can be found 
on generating exact samples from standard pdfs (Devroye 1986). Such methods are 
usually designed for a particular distribution (e.g. Gaussian, Poisson, Cauchy). In 
many cases, though, standard pdfs are not sufficient, and several efficient methods 
have been proposed to deal with this issue. In the last years, some papers have ap- 
peared on automatic (also called "black-box") methods (Devroye 1986). The meth- 
ods proposed can sample from a large family of pdfs as long as some information 
(e.g. mode of the pdf) is available. 

Rejection sampling is a conceptually very simple method to perform exact sam- 
pling from univariate pdfs (Press et al. 1992; Tanner 1994). It is a three-step scheme 
that consists of majoring the pdf of interest p(z) by the product of another pdf q (z ) -  
the comparison function-by a constant c-the rejection constant-: 

p(.) _< q(.), (1) 

then sampling from the comparison function q (z), and finally deciding whether the 
point sampled should be kept or rejected based on the acceptance ratio p(x)/cq (x). 
The closer the majoring function cq(z) is to the true pdf p(x), the more samples are 
accepted, and therefore the more efficient the algorithm is. The preliminary choice 
of the comparison function and of the upper bound defines the rejection rate, which, 
in turn, dramatically affects the sampling in terms of time needed to obtain a sample 
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of given size. The scientist willing to apply rejection sampling has first to undergo a 
long analysis before the sampling procedure can be applied. Therefore, construction 
plans have to be developed in order to speed up this first step. 

The ratio-of-uniform method introduced by Kinderman and Monahan (1977) is 
one of such methods. This technique can be used to sample from a large variety of 
pdfs whose densities are proportional to some known functions. This is performed 
by sampling unifoimly from a n-dimensional region that lies under the plot of the 
given pdf. It has become a popular method to generate samples, since it results in 
an exact, fast and efficient algorithm. However, it seems to be difficult for most 
pdfs to obtain the necessary rectangle enclosing the region of acceptance for the 
multivariate extension of the ratio-of-uniform method (Leydold 1998). 

The Adaptive Rejection Sampling (ARS) method by Gilks and Wild (1992) usu- 
ally assists the routine use of MCMC sampling methods. This technique can be used 
to efficiently sample from any univariate distribution whose density function is log- 
concave. To automatically generate a majoring function, we only need to provide 
the pdf mode. ARS then proceeds by constructing an envelope function of the log 
of the pdf. However, log-concavity does not hold for all pdfs. Adaptive Rejection 
Metropolis Sampling (ARMS) deals with this case by performing a Metropolis step 
on each point accepted at an ARS rejection step. These algorithms can generate 
samples from a large family of pdfs as long as the mode of the pdf is available. 

Several approaches for the generation of samples from multivariate distributions 
also exist, such as the decomposition and rejection method by Dagpunar (1988). The 
majoring function suggested for the multivariate rejection step is the product of the 
marginal densities. However, this method still requires the choice of the rejection 
constant. 

Leydold and Hormann have recently developed an algorithm for log-concave 
multivariate distributions (Leydold 1998). This algorithm uses the idea of the trans- 
formed density rejection which is presented in Gilks and Wild (1992). Although 
this algorithm works, it is very slow, since the construction of the majoring function 
uses points on each side of the mode of the multivariate pdf which is decomposed 
in polyhedra (Leydold 1998). 

A recent algorithm, the so-called "Slice Sampling" method, has been proposed 
by Neal (2000) for multivariate pdfs. This method samples from a pdf by uniformly 
sampling from the region under the plot of the pdf, and then by looking only on the 
"horizontal slice" defined by the current vertical position. Again, the same problems 
arise as in ratio-of-uniform sampling, amplified by the effect of dimensionality. 

In this paper, we place ourselves in the particular case where the (possibly multi- 
variate and/or multimodal) pdf that needs sampling is proportional to the product of 
pdfs for which exact sampling procedures are available. We show that, in this par- 
ticular case, rejection sampling can be performed, with a very interesting feature: 
automated selection of both the comparison function and the upper bound can be 
achieved. Moreover, these choices can be done so that they maximize the probabil- 
ity of acceptance among a certain range of potential functions. We call this method 
Automated Rejection Sampling from Product of distributions (ARSP). 
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Applications of this model are numerous. They include Gibbs sampling, since 
it is often the case that the conditional pdf that needs sampling at every step has the 
form assumed in this article. More generally, MCMC methods are also concerned, 
if an approximate form of the pdf as a product of laws is available. Markov Random 
Fields (MRF) are also aimed at, since in many cases the conditional pdf can be 
formulated as a product of exponentials according to Clifford theorem (Winkler 
1995). Finally, in Bayesian analysis, the posterior pdf is proportional to the product 
of the likelihood by a prior according to Bayes' theorem. If one can independently 
sample from both pdfs, then the schemed proposed here can be applied and it is 
possible to sample from the posterior pdf. Furthermore, if the data are assumed to 
be independent samples from a distribution, the likelihood can be expressed as the 
product of several pdfs, and the method proposed here can again be applied. 

The outcome of this article is as follows: In Section 2, we set the model under 
study (Section 2.2) and propose a method to sample from it (Section 2.3), where 
both the comparison function and the rejection constant are automatically selected 
in order to maximize the acceptance rate. Section 3 then illustrates the features of 
the method with various simulations, regarding the number of distributions in the 
product and the dimensionality of the variate. 

2 M e t h o d  

2.1 Notation 

In the following, x denotes a real number, ae a vector, and X a matrix. IR is the set 
of all real numbers. ' ' t ' '  is the regular matrix transposition. "---" relates two expres- 
sions that are set equal by definition, and "c~" two expressions that are proportional. 
. . . . .  defines a random variable..A/'(t~, E) stands for the Gaussian distribution of 
mean/~ and covariance matrix E and/3(r) for the discrete Bernoulli distribution 
with parameter r. ,V'(/~, E; x0) represents the value of the Gaussian function with 
parameters /z and E evaluated at point ~0. "x" ~ s  means that the random 
variable E is/:-distributed with parameter vector 0. 

2.2 T h e  i s s u e  

It is henceforth assumed that the pdf p(x)  that needs sampling is proportional to a 
product of standard pdfs f n ( x ) ,  1 < n < N: 

N 

= k ]-I 
n----1 

(2) 

By "standard" is meant that a sampling procedure is available and that there is an 
easy analytical or numerical access (e.g. through the sampling procedure) to various 
parameters (principally the mode, but also the mean and the variance if possible). 
The sampling problem consists of finding a series (x[ 1], x[2] , . . . ,  a~[J]) of vectors 
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that are exactly distributed according to p(x) .  This is achieved through rejection 
sampling. 

2.3 Rejection sampling 

In order to perform rejection sampling, a comparison function and the corresponding 
rejection constant are needed. Assuming that the model given in Equation (2) holds, 
it is possible to propose a whole family of functions that qualify as comparison 
functions. 

Theorem 1 Leta~  = 1-I,.~n sup.  [fro(x)], n = 1 , . . . ,  N, andA  = (A1,. . . ,  AN) t 
a vector whose components are positive and add up to 1. Then the following in- 
equality holds: 

p(.)  < (3) 

where 

N 1 N 
ex ---- k Z A,~oLn and qx(m) -=-- N Z Anonfn(m). 

n = l  Z n = l  )knOZn n = l  
(4) 

Proof: For every n, it is possible to major p(m) by kanfn(m), and therefore by a 
weighted average of these factors: 

N 

p(. )  __ k 
n----1 

where (Az, �9 �9 t is defined as in the theorem. Explicit consideration of the 
normalization factor in the majoring term directly leads to Equations (3) and (4). [] 

The function qx(m) being normalized, it can be considered as a pdf. Assuming 
further that sampling from this function is feasible, consideration of Equations (1) 
and (3) indicates that qx(m) can be considered as a comparison function and ca 
as the corresponding rejection constant for rejection sampling. In this case, the 
sampling procedure reads: 

1. sample m [~] according to ~ -~ qx(m); 

2. sample u[ ~] according to (~1~ = m [j]) ~ 13 (p(m[i])/cxqx(m[~])); 

3. if uLr = 1, then accept mLJ] as a valid sample; otherwise reject it. 

This process actually enables sampling from a wide variety of pdfs, differenced by 
their value of 3,. Since a choice is possible, it is therefore interesting to choose an 
"optimal" value. The loss function quantifying this interest is given by the proba- 
bility of acceptance (or, equivalently, one minus the probability of rejection): 
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Theorem 2 Consider the rejection scheme previously defined, with A fixed. The 
probability of acceptance at each step, defined by p(5" = 1), is then given by 

1 
p(~ = 1)---- --. (5) 

CA 

Proof: Using the marginalization formula, the probability of acceptance p(~ = i) 
reads 

p ( ~ =  1) = fp( = 11~=  ~ ) . p ( ~  = : e ) d a  

= / 
cxqx(:~) 

1 

CA 

since p(~) is normalized to 1. [] 

Once the loss function has been clearly defined, its maximization is straightfor- 
ward: 

Theorem 3 Let no E argmaxl<,~<N [sup~ fn (~)]. The probability of acceptance 
m B t , x  p(~ = 1) is then maximized for ,k --- A max so that Amax,~o -- 1 and Angno -- O. 

Proof: From Theorem 2, maximizing the probability of acceptance is equivalent 
to minimizing cA. Since the fn are pdfs, the a,~ are positive, and the following 
inequalities hold: 

A,~c~,~>A,~ min (a,~) l < n < N .  
-- l<rn<N 

Adding up all these inequalities leads to 

N N 

-- l<rn<N l<m<N 
n----] n=l 

since the An sum to 1. kminl<n<N(C~n) is therefore a lower bound for cA. Now 

define nl  6 argminl<n<N [an] and A (~ so that J(~ ) = 1 and A(~162 = 0. Then 
the previous inequalities are in fact equalities, k mini  <,~<N (a,~) is therefore the 

minimum of cA, obtained for A = A (~ But since an rereads as 

YIl<rn<N Sl lp .  fm (z) 

a "  --- sup~ A (x) ' 

minimization of c~,~ tantamounts to maximization of sup~ f,~ (~). Choice of nl  is 
therefore equivalent to the choice of  the no of the theorem, and the proof is com- 
plete. [] 
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Note that, though highly improbable, the maximum may not be unique, and it 
is still possible that two or more functions have the same maximum. Any such 
function will then do. 

The issue of sampling from qx(:e) can now be tackled very easily, since the 
choice of)~ = ,k max greatly simplifies the calculations: qx (:e) boils down to fno (:e) 
and cx to ka,~o. The modified rejection sampling scheme then rereads 

1. sample :eLi] according to ~ -~ fno(:e); 

2. sample ub] according to (g[~ = :eD]) ~ B(r[J]) with 

- = H 
.r Lsup= f,~(:e)J ' 

3. if u b l  = 1, then accept :eta] as a valid sample, otherwise reject it. 

Since the normalization constant k does not appear in the procedure, it has the nice 
consequence that the pdf p(a~) that we wish to sample from does not need to be 
normalized. 

Approx ima te  acceptance rate. I f  the pdfs involved in the defining product o f  
p(:e) are Gaussian with means #,~ and variances r n (or, equivalently, concentrations 

2 0.-2 v,~ = ,~ ), the resulting pdf p(:e) is also Gaussian with mean y and concentration 
v 2, such that 

N N 
E n = l  2 Vn #n and v 2 

(see Table 1). In this case, the acceptance rate calculates easily and is equal to 

N)] p ( ~ =  1 ) =  / v2n~ exp v 2 # 2 -  Z v2n#~ ' (6) 

Likewise, for multinormal densities with means ~,, and concentration matrices T , , ,  
this reads 

p ( {  = 1) = ITno I exp t t t 'T t t  - ~ t~ [ 'Tnt t  n . (7) 
N 

En----1 n : l  

In case the pdfs involved are not Gaussian but are unimodal, and if we have ac- 
cess to their means and variances, it is possible to use Equations (6) and (7) as a rule 
of thumb for the expected acceptance rate. Since a lower acceptance rate requires 
more drawings to attain a sample of given size, this criterion can in turn be directly 
related to the computational burden of the procedure for a given configuration. 

Note that choice of  a function f,~ different from the optimal fno as comparison 
function decreases the acceptance rate by a factor V,~o/v,~ (resp. x/ l " rno I/Fr,~ I). 
This indicates that the more different the variances are, the more efficient the optimal 
selection is. This point is further discussed in the simulations. 
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product resulting disffibution 
N 

N 

I-i s ( . . ,  r=l;.) 
n-----1 

,N ) ~,~=1 v~/t,~ 1 
N ' N ; Z  

n = l  n = l  

Table 1: Stability properties of Gaussian pdfs. 

3 Results from simulations 

The toy example given in Section 3.1 was developed along three directions to illus- 
trate the influence of various parameters on the sampling efficiency. 

Products of Gaussian pdfs were involved in the simulation process. Resulting 
from the stability properties of these functions (see Table 1), this enabled rigourous 
control of the sampling procedure, by direct comparison of the statistic summaries 
resulting from the sampling scheme with the corresponding values of the summaries 
directly calculated from the true Gaussian pdf. 

The programs used for the simulation were written in Matlab and processed on 
a SunSPARC Ultra 10 workstation. 

3.1 Example 1 

We chose the product p(x) oc fl (x) . A (x) with 

f l(x) = .A/'(0,1;x) 

A(m) = Af(1, 0.1; x) 

In this case, p(x) is known to be Gaussian distributed with mean # = 0.9091 and 
variance cr 2 = 0.0909 from Table 1. The full density function was infered from 
a 1,000-sample experiment. From Equation (6), 605 samples were expected to be 
accepted over the 1,000 proposed from the selected comparison function. The run 
considered took 337 ms to process, and 589 samples were kept. The estimated mean 

was fi = 0.9195 (1.15% relative error) and estimated variance a2 = 0.0945 (3.96% 
relative error). The estimated pdf is given in Figure 1, showing very good fit with 
the true pdf. 

3.2 Example 2 

An important factor is the relative variance of the distributions compared to their 
relative mean, termed here as "overlapping". In order to test this parameter, we 
generalized the previous simulation by allowing the variances of both pdfs to vary. 
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Figure 1: Example 1. Comparison between real pdf (solid line), kernel estimate 
from a Gaussian kernel of variance 0.01 (dashed line) and histogram. 

0.01 
0.10 
1.00 

0.01 
0.0 (0) 
9.9 (10) 

607.6 (607) 

0.10 
10.3 (10) 
57.9 (58) 

602.0 (605) 

1.00 
606.9 (607) 
606.2 (605) 
550.3 (551) 

Table 2: Example 2. Average number of accepted samples over the 1,000 proposed, 
among 100 repetitions. The expected numbers are given in parentheses. 

More precisely, we chose the product p(x) (x f l  (x). f2 (x) with 

f l (x )  = 
y2(x) = , ' ( 1 ,  x) 

where ~r~ and ~r 2 vary in {0.01, 0.1, 1}. 100 runs of rejection sampling were per- 
formed, each one including 1,000 samples. Average efficiencies and expected num- 
bers of acceptance are compared in Table 2. As hypothesized, overlapping has a 
dramatic influence on the acceptance rate. This example also clearly shows that 
the more different the pdf variances are, the more efficient the algorithm is. Fi- 
nally, the effect of pdf selection appears clearly. When the two pdfs have different 
variances, choosing the wrong pdf as a comparison function dramatically decreases 
the acceptance rate, dividing it by a factor of ~/]-0, resp. ~ = 10 according 
to Equation (6). Hence the importance of selecting the optimal function and the 
corresponding optimal upper bound. 
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Figure 2: Example 3. Comparison between real pdf (solid line), kernel estimate 
with a Gaussian kernel of variance 0.01 (dashed line) and histogram. 

3.3 Example 3 

In order to increase the number of functions in the product, we defined p ( x )  cx 

f z ( x )  . f 2 ( x )  . f3(x) with 

fl( ) = H ( o ,  1, 

= 

= 

Note that the product of the first two functions corresponds to the one studied 
earlier in Section 3.1, and is a rather favorable case as far as the acceptance rate is 
concerned, as shown in Section 3.2. 

According to Table 1, the resulting pdf is normal distributed with mean # = 
1.0769 and variance ~r 2 = 0.0769. Out of the 1,000 proposals, about 203 are ex- 
pected to be accepted. This corresponds to one-third of the number of acceptances 
with only the first two pdfs. 

The sampling considered took 525 ms, and 202 samples were kept. From there, 
the mean was estimated to ~ = 1.0658 (-1.03% relative error) and the variance to 

~r 2 = 0.0688 (-10.53% relative error). Even though the acceptance rate is relatively 
low, the estimated distribution is fairly good, as shown in Figure 2. 
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3.4 Example 4 

For �9 E ~2, we chose the product p(ae) ~x f l  (:e). f2(:e) with 

((10) ( 0 1  1 0.1p2"~ ) 
A ( ~ )  = X ' 0 p2 0 . 1 j ' =  ' 

No correlation (Pl = p2 = 0). In this case, the marginals of these densities 
are exactly the functions defined in Example 1. In this 2-dimensional case, from 
Table 1, p(:e) is known to be Gaussian distributed with mean /~ and covariance 
matrix ~B, such that 

(00o0 ) (00 00 0) 
t~ = and ~ = 0.0909 " 

565 samples (compared to an expected number of 577) were kept out of the 1,000 
performed from the selected comparison function in 743 ms. The estimated mean 

and covariance matrix ~ were calculated to 

f0.9120"~ (0.0848 0.0018"~ 
= \0 .0050)  and )2 = \0.0018 0.0953J 

This corresponds to a relative error of 0.64% on the mean and of 7.05% on the 
variance 1 . 

Rejection sampling with f l  as comparison function would decrease the effi- 
ciency of the procedure by a factor of 10, hinting that the advantage of optimal 
selection increases with increasing dimension. 

G e n e r a l  case .  We also allowed Pl and P2 to vary, to show the influence of cor- 
relations on the sampling procedure. Whatever the correlation values, f2 was used 
as the comparison function. The results are summarized in Table 3. For a given P2, 
it appars that the acceptance rate increases with decreasing Ipl[. Another feature is 
that, when Pl is positive, the algorithm behaves slightly better with a negative P2, 
and vice versa, and the bigger IP2 I, the bigger the asymmetry. 

3.5 Example 5 

We finally tested the behavior of ARSP on a problem where non-normal distribu- 
tions were involved. The following example has also the advantage of showing 
that, as advocated in the introduction, the form of the distribution assumed in Equa- 
tion (2) is ubiquitous in Bayesian analysis. 

lrespectively defined as ~ and 11~-~112 [l~lh 11:~112 
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Pl / p2 
-0.8 
-0.4 

0 
0.4 
0.8 

2 
530.6 
575.7 
534.0 
325.0 

-0.4 
284.2 
529.1 
576.5 
530.5 
316.6 

0 
302.7 
532.4 
577.8 
534.2 
303.2 

0.4 
316.0 
531.4 
577.1 
531.5 
284.6 

0.8 
327.7 
531.7 
577.6 
526.1 
255.3 

Table 3: Example 3. Average number of accepted samples over the 1,000 proposed, 
among 100 repetitions. 

For this, we simulated a vector y of N = 10 i.i.d, samples generated by a 
normal distribution with 0 mean and unknown variance ~r 2 that had to be inferred 
in a Bayesian framework. We further assumed that we bad about ~r 2 a vague prior, 
namely that ~r 2 was around 1 with a rather large uncertainty. This information was 
in turn translated into a Gamma pdf: 

p( 2) = r(4, 4; 

Relating the posterior pdf with the likelihood and the prior pdf through Bayes' the- 
orem then led to 

p( 21u) p(ul  2) 

= r(4,4;o-2).x~2(~-;&). 

The mode of the Gamma pdf was 0.896 (reached for ~r 2 = 0.75), which was smaller 
than the maximum of the scaled inverse-chi-square, which was 1.204 (for ~r 2 = 
0.580) with our dataset. Rejection sampling was hence performed with the scale 
inverse-x 2 pdf as comparison function. Out of the 1,000 samples drawn from this 
pdf, Equation (6) predicted that 808 samples would be kept, and 739 actually were. 
The results, shown in Figure 3, exhibit very good fit of the approximation. 

4 D i s c u s s i o n  

With increasing use of Markov Chain Monte Carlo methods, faster, simpler and 
more efficient methods for generating exact multidimensional random samples are 
required. In this paper we have proposed and illustrated a new method, called Auto- 
mated Rejection Sampling from Product of distributions. ARSP is applicable to all 
problems for which the distribution has the form of a product of standard pdfs. Prod- 
ucts of distributions are ubiquitous in Bayesian analysis, and ARSP has therefore a 
wide range of application. 

The striking advantage of our method is that it avoids the biggest difficulty asso- 
ciated with the conventional black-box algorithm by automatically identifying the 
majorating pdf and calculating the optimal acceptance rate, given by maximization 
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Figure 3: Example 5. Comparison between real pdf (solid line), kernel estimate 
with a Gaussian kernel of variance 0.01 (dashed line) and histogram. 

of the probability of acceptance. The only practical limitation of this method re- 
sides in the computational power one has at his or her disposal, and consequently 
the time required to draw a sample of given size. The examples developed suggest 
that this efficiency greatly varies with regard to the number of functions involved 
in the product as well as the intrinsic properties of these functions. However, case- 
by-case estimation of the computational burden can be approximatively performed 
through the rule of thumb given by Equations (6) and (7). Finally, ARSP seems 
to be suited to design universal algorithms for a very large class of pdfs. In this 
context, some requirements are needed to improve the method. 

Product reduction. To derive a universal algorithm from ARSR the very first step 
consists of simplifying the product of distributions, so as to keep as few terms as 
possible in the product (e.g. using Table 1). As a consequence, this will mecanically 
increase the acceptance rate. 

Efficiency and pdfs. The form of the pdfs involved has a deep impact on the 
efficiency of the procedure. For instance, Cauchy distributions revealed practically 
intractable in our simulations for a product of more than five such functions, since 
the number of samples to draw from the comparison density to get 100 samples 
accepted was greater than 107 and overflew the memory. This is a consequence of 
the fact that Cauchy distributions have wide tails. A sample originating from one 
Cauchy pdf is therefore very likely to have a low probability for the other pdfs, 
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leading to a vanishing acceptance ratio. 

Efficiency and information coherence. Efficiency is usually linked with the qual- 
ity of the approximation pdf. In our case, this directly relates to the coherence of 
the information brought by the different pdfs of the product relative to each other. 
This idea of shared information can be fully understood in the light of simulation 
example 5, where one pdf is a likelihood function, and the other a prior pdf. The 
more the prior and the likelihood locate the parameter precisely and accordingly, the 
better the procedure will perform. On the other hand, if both pdfs involved in the 
product defining p(~) separately estimate the variable ~e very precisely but disagree- 
ingly (i. e. if they are peaked around very different values), the acceptance rate will 
be very low. In this respect, the case presented in example 1 with ~ = ~ = 0.01 
is pathologically extreme, and we believe that this situation does not occur often in 
real-life problems. 

In one dimension, when the expected acceptance ratio is really low, it might 
be more convenient to resort to other methods, such as ARS. However, all other 
methods require extra information that we do not assume to be available here and 
that cannot easily be inferred from the information at hand, such as the mode of the 
product. It is therefore not obvious that the time needed by a competitive algorithm 
to extract this information will counterbalance the time required for a few thousand 
more tries in ARSP. 

In higher dimension, ARSP is, to our knowledge, the only method that allows 
for automated multi-dimensional sampling, and its performances are again closely 
related to the informational coherence between densities of the product. In case it is 
applied to achieve a step of Gibbs sampling, a disagreement between pdfs is most 
likely to appear at the beginning, during the burn-out period, when the current state 
is still highly dependent of the randomly chosen seed. Choice of another seed would 
then eliminate the problem and allow for efficient sampling. 

We finally advocate that this weakness of the procedure can also be considered 
as an interesting feature in Bayesian model evaluation. Indeed, a very low accep- 
tance rate is typical of a strong disagreement between information originating from 
different parts of the model, somehow revealing a hidden inconsistency. Models 
leading to very poor acceptance rates should be examinated with great care, since 
the pathological behavior of ARSP could as well be the computational translation 
of a pathological or contradictory model. 

5 Conclusion 

We have proposed an efficient rejection method for automated generation of exact 
multidimensional random samples. The striking feature of our method is that it 
avoids some difficulties associated with conventional algorithms by automatically 
identifying the majoring pdf and calculating the optimal acceptance rate given by 
maximization of the probability of acceptance. The only requirement is that the 
sampled pdf be proportional to a product of standard distributions. The utility of 



315 

the ARSP method was illustrated with various simulations, regarding the number of 
distributions in the product and the dimensionality of the variate. Further research 
includes assessment of its practical benefits, and especially compared to other auto- 
mated sampling procedures. 
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