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Abstract—Many measures have been proposed so far to extract
brain functional interactivity from functional magnetic resonance
imaging (fMRI) and magnetoencephalography/electroencephalog-
raphy (MEG/EEG) data sets. Unfortunately, none has been able to
provide a relevant, self-contained, and common definition of brain
interaction. In this paper, we propose a first step in this direction.
We first introduce a common terminology together with a cross-
modal definition of interaction. In this setting, we investigate the
commonalities shared by some measures of interaction proposed in
the literature. We show that temporal correlation, nonlinear cor-
relation, mutual information, generalized synchronization, phase
synchronization, coherence, and phase locking value (PLV) actu-
ally measure the same quantity (namely correlation) when one is
investigating linear interactions between independently and iden-
tically distributed Gaussian variables. We also demonstrate that
these data-driven measures can only partly account for the inter-
action patterns that can be expressed by the effective connectivity
of structural equation modeling (SEM) . To bridge this gap, we sug-
gest the use of conditional correlation, which is shown to be related
to mediated interaction.

Index Terms—Coherence, conditional correlation, effective con-
nectivity, functional brain imaging, functional brain interactivity,
functional connectivity, functional MRI, generalized synchro-
nization, mediated interaction, MEG/EEG, mutual information,
nonlinear correlation, phase locking value, phase synchronization,
temporal correlation.

I. INTRODUCTION

NEUROIMAGING includes different imaging methods
that enable to dynamically and noninvasively follow

various markers of brain activity, such as functional magnetic
resonance imaging (fMRI), electroencephalography (EEG),
and magnetoencephalography (MEG): three modalities on
which this paper will focus. The signals measured by fMRI,
MEG, or EEG originate from different consequences of brain
activity, even though the exact underlying process is still
under investigation [1]–[5]. Most fMRI acquisitions rely on
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the so-called blood oxygen level dependent (BOLD) contrast,
which measures metabolic and hemodynamic consequences of
brain activity [6], [7]. On the other hand, the signals obtained
in MEG/EEG are more closely related to the neuronal currents
[8], [9]. It is furthermore believed that fMRI and MEG/EEG
are sensitive to different characteristics of a local neuronal and
synaptic event: MEG/EEG is rather sensitive to post-synaptic
activity, while fMRI is also influenced by neuronal firing rates
[2], [3], [10].

Combined use of different modalities to investigate a given
behavioral or cognitive task will bring information of different
nature and is hence highly desired. Due to the intrinsic comple-
mentarity of fMRI and MEG/EEG data sets, combined and/or
simultaneous recordings are increasingly more often included
in experimental protocols [11], [12]. It is therefore highly rele-
vant to be able to perform combined analysis or at least be able
to compare results from separate analyses [13], [14].

To this end, connections must be found between MEG/EEG
and fMRI data sets and analyses. These connections can ei-
ther originate from a precise understanding of the physiolog-
ical causes that generated the signals measured by both modal-
ities or emerge at a more formal level. In the recent literature,
some studies have suggested that there exists a direct relation-
ship between neuronal activity and BOLD contrast [2], [15],
even though no quantitative relationship between BOLD mea-
surements and neural events was proposed. Nonetheless, despite
this lack of physiological connection, formal relationships have
successfully been developed between fMRI and MEG/EEG in
order to take advantage of both modalities and, eventually, allow
for data fusion.

A dynamic vision of brain processes has recently been
brought to neuroimaging data analysis. In this approach, it is
not only a collection of brain areas but, rather, a network of dis-
tributed and interacting regions that is hypothesized to process
the functional task under investigation. While the former
emphasizes the functional specialization of brain areas, the
latter, rather, focuses on the massively parallel nature of brain
networks: Function also emerges from the flow of information
between brain areas [16]–[18]. It is increasingly believed that
brain interactions can be captured by neuroimaging, resulting
in a new investigation field: functional brain connectivity. Its
objective is to capture the dynamic, context-dependent pro-
cesses leading to preferential recruitment of some networks
over others [16]–[19].

However, as stressed by [20], functional brain connectivity
has about as many meanings as there are authors in the litera-
ture. Indeed, different neuroimaging disciplines have focused on
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distinct metrics to assess interactivity, without providing a rele-
vant self-contained cross-modal definition of brain interactivity.

Precursors working on invasive neurophysiological animal
studies have provided convincing evidence that neural synchro-
nization represents an important code for brain information
processing [21]–[23]. Synchrony and asynchrony between
two spatially remote neuronal spike trains are interpreted
with regard to the so-called “binding problem” [24], which is
still in debate, as the necessary brain mechanisms, providing
a coherent sensorial/emotional experience integration [16].
Working at the spatial scale of neuronal populations (
cells), similar studies were conducted with MEG/EEG data.
Suffering from the lack of reliable inverse approaches allowing
us to infer the neural activity sources, MEG/EEG phase syn-
chrony analyses were mostly considered as they appeared
at sensors [25], [26]. Still, a few works have been achieved
in measuring temporal coherence between two dipoles or
recording sites in a specific frequency band and in a given
time window [27]–[29]. Phase locking value (PLV) has been
introduced as a way to avoid spurious variability induced by
signal nonstationarity [30], [31] and the nonlinear correlation
coefficient to account for nonlinear interactions [32], [33].
Mutual information has recently been applied in an attempt to
extract nonlinear interactions between non-Gaussian variables
[34]–[37]. Tools originating from the study of dynamic systems
have also been introduced into the MEG/EEG community, such
as generalized synchronization [38], [39] (for a comprehensive
review of this notion, see [40]) or mutual dimension [41],
[42]. Last, measures have been applied in an attempt to infer
causality, such as Granger causality [43], [44].

Proposed by [45] and [46] for fMRI and positron emission to-
mography (PET) data analysis, effective connectivity considers
the influence that regions exert on each other. Its implementa-
tion heavily relies on structural equation modeling (SEM) [47],
[48]. Starting from a set of regions, a model is set a priori
that expresses the time course of each region as a linear
function of other region time courses, ,
some coefficients being constrained to 0, and the others
being estimated to best fit the data. quantifies the strength
that region exerts on region , hence the name of effective
connectivity. By estimating these coefficients for two different
experimental settings, it is possible to analyze the influence of
the protocol modification on and, therefore, on the actions
exerted by region on region . Dynamical causal modeling
(DCM) is a more recent model for effective connectivity that
aims at taking nonlinearities and temporal correlation into ac-
count through a neuronal model of interaction and a hemody-
namic model [49],[50].

Functional connectivity was proposed by [51] for fMRI.
Functional connectivity between two voxels or regions is de-
fined as the temporal correlation between their time courses. It
has proven to be a useful tool to explore the spatial extent of a
functional network, given one of its regions when no obvious
a priori interactivity model is available [52]–[54]. Mutual
information has also been applied to fMRI [55]–[57].

In spite of the wide variety of quantities just mentioned, the is-
sues faced in fMRI and MEG/EEG functional interactivity data
analyses boil down to the same question, namely, to extract rel-

evant information from the data relative to the interactions be-
tween brain areas. Consequently, it is logical to expect that the
various tools developed so far to answer this question, which
have been declined according to different imaging modalities,
share conceptual commonalities. Unfortunately, very little liter-
ature exists on the topic [37], [58], and common definitions and
metrics to assess interactivity in neuroimaging data analysis re-
main to be proposed.

On the one hand, if the interaction strengths can be determined
througheffectiveconnectivity, thepresenceorabsenceofaninter-
actioncannotbeassessed;workingwitheffectiveconnectivity re-
quires the setting of an a priori model that will—and can—hardly
bechallenged.Despiteactiveongoingresearch toallowformodel
comparison [48], [59], these methods remain not well adapted for
complex and/or exploratory analysis. This constraint renders ef-
fectiveconnectivitypractically inefficient inmanycasessince the
structuralnetworkunderlyingagiventaskisusuallyunknown,and
its investigation is the goal of the experiment.

On the other hand, although correlational connectivity is
computationally convenient and capable of revealing certain
aspects of connectivity, it embraces neither the generality of
functional interactivity nor the wide variety of interaction
patterns that could be expected. Indeed, if a zero correlation
can be interpreted as an absence of interaction, nothing can be
said about a nonzero correlation, which could either be implied
by direct interactions between the corresponding regions or by
influence of a common input. This theoretical fact has already
been noticed from a more practical point of view in fMRI data
analysis [54]. As to mutual information, increasing it sensibility
is achieved at the cost of an exponential increase of the number
of bins used to classify the data and, hence, by a concomitant
dramatic decrease of the estimation accuracy.

Finally, even though there exist many differences between
fMRI and MEG/EEG, reviews of functional brain interactivity
investigation by neuroimaging should include both MEG/EEG
and fMRI studies. By contrast, most reviews concentrate on
fMRI (e.g., [20], [60], [61]). This discrimination can partly be
explained by the apparent dissemblance of interactivity mea-
sures in MEG/EEG and fMRI.

Proving that a proposed cross-modal system could account
for all the measures detailed earlier would provide a compelling
argument toward its recognition in neuroimaging data analysis.
Conversely, if such a common framework exists, it seems sound
to expect that it should heavily rely on features shared by quan-
tities already proposed. Hence, it is hoped that examination of
the relationships between interactivity measures defined so far
will provide a first step toward a common setting for functional
brain interactivity investigation and, hence, benefit both sepa-
rate fMRI and MEG/EEG data analysis, as well as supply new
tools for common analyses.

In this paper, we demonstrate that under very simple assump-
tions, the most commonly used measures of functional connec-
tivity (temporal correlation, nonlinear correlation, mutual infor-
mation, generalized synchronization, phase synchrony, coher-
ence, and PLV) are all functions of correlation. Correlation is
a measure of functional connectivity when linear relationships
are sought between temporally independent and identically dis-
tributed (i.i.d.) Gaussian variables; the above-mentioned mea-
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sures generalize it when one or more of these hypotheses do not
hold.

Using this result, we then examine what the gap between func-
tional and effective connectivity consists of through SEM and a
verysimplestructuralmodel.SEMonlymodelsthelinearrelation-
ships that exist between i.i.d. Gaussian variables. Since all mea-
suresoffunctionalconnectivityboildowntocorrelationinthisset-
ting, we investigate to what extent correlation fails to account for
SEM’s effective connectivity. Other measures of functional con-
nectivity,howevercomplex theymightbe,will essentiallybehave
in thesamemannerascorrelationandwill,hence,notperformany
better in representing SEM’s effective connectivity.

The outline of this paper is the following. In Section II, we
propose a short terminology that allows for cross-modal investi-
gation of functional brain interactivity and provides an example
on which the analogies will be demonstrated. In Section III,
we derive the theoretical relationships that exist between the
most commonly used data-driven measures of functional inter-
activity and correlation. Section IV shows how certain connec-
tivity patterns of effective connectivity can be translated in terms
of correlation, whereas some patterns cannot be discriminated.
To remedy this defect, we introduce conditional correlation and
show that it is strongly related to mediated interaction. We then
detail how most interaction patterns can be discriminated in this
setting. Further issues are tackled in the discussion.

II. GENERAL BACKGROUND AND TERMINOLOGY

We hereby propose a general terminology that makes it pos-
sible to describe fMRI and MEG/EEG analyses from a more
theoretical, yet common framework.

A. Brain Units and Functional Processes

As a consequence of the intrinsic difference between MEG,
EEG, and fMRI, the spatial and temporal resolution vary greatly
between these modalities.

In fMRI, typical regions are composed of voxels or regions
selected according to anatomical and/or functional criteria.
Due to the rather important size of the voxels and the limited
precision of the detector, brain localization of functional re-
gions cannot usually go under a few millimeters. In EEG or
MEG, the signal measured is much more local, originating from
neuron columns. However, due to complexity of the inverse
problem, many analyses remain at the level of recording sites in
EEG/MEG. To account for all these cases, the functional extents
considered (regions, neuron columns, or recording sites) will
henceforth be known as brain units. A brain unit can be thought
of as the amount of brain tissue giving rise to the activity
recorded in a single time series. It is the information-theoretical
pendant of “elemental tissue volume” put forward by [10].

Each unit is then associated with a functional process, or phe-
nomenon, that characterizes it. In fMRI, it can be thought of
as the BOLD contrast measured at a particular time sample. In
MEG/EEG, it could be the intensity of the electromagnetic field
related to the brain unit considered, recorded on the scalp, or
reconstructed on the cortex. In a dynamical system approach, it
could also be taken as vectors reconstructed from the measured
signals into the embedding phase space.

Definition and selection of brain units and related functional
processes are a crucial step in functional interactivity analysis,
and the literature is very rich on this topic. The effects of these
choices on the framework proposed here are further examined
in the discussion.

B. Defining Functional Brain Interactivity

Analysis of functional brain connectivity can now be tackled.
Transposing what has previously been proposed in an other area
[62] in terms of information theory, we propose that functional
brain interactivity be defined as all potential or real information
exchanges between brain units.

In a given context, information exchanges that are observed
within a distributed network are real. On the other hand, if one
considers all possible contexts and, hence, all potential interac-
tions that could take place, potential information exchanges then
become relevant. For instance, a simple hand movement per-
formed by a healthy subject is processed by the standard motor
network (real exchanges). Considering brain plasticity, as poten-
tially induced on this same subject by, e.g., motor skill learning,
stroke, or surgery, implies various possible network reorgani-
zations; assessing how a simple hand movement would be pro-
cessed in such conditions necessitates the handling of potential
exchanges.

Of course, this definition varies greatly, depending on the
spatial and temporal scales at which we examine brain activity
and what we consider as functional units and as information
exchange. For instance, transient synchronies between neuron
populations, which are observable in MEG/EEG and interpreted
as an evidence of functional interactivity, do not necessarily
imply a change of functional interactivity as measured from
fMRI time courses. On the contrary, a strong correlational con-
nectivity between two brain regions in fMRI may appear much
less coherent at a neuronal scale. However, this approach pos-
sesses two interesting features: generality and flexibility. Be-
cause it is general, it releases us from any constraint related to
a particular imaging method—that would otherwise influence
us toward the choice of a quantity that is operational, yet not
necessarily general or really relevant. On the other hand, this
definition can be equally well applied to fMRI and MEG/EEG.
The difference lies in the definition of information exchange.
Further investigation will cast some light on this issue, which
will be recalled in the discussion.

C. Common Example and Objective

Our objective is an attempt to understand how information
exchange can be expressed in neuroimaging or, rather, to find the
necessary conditions that make information exchange a well-
defined concept. To exemplify our approach, we consider the
three following brain units in the visual pathway: 1) V1, 2) V2,
and 3) V5. We add a fourth unit (HG), which is the primary
auditory region on Heschl’s gyrus, for a model composed of a
total of regions. We also assume that we are given four
processes , , each process corresponding to a
brain unit.

We restrict our attention to the wide variety of problems that
can be considered in a probabilistic framework. Probability



3506 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 53, NO. 9, SEPTEMBER 2005

theory is a consistent, general, and very convenient framework
that allows to take uncertainty into account. Whether in the form
of probability density functions or statistics, most problems of
functional neuroimaging data analysis are embedded in a prob-
abilistic framework. For this reason, we can assume, without
much restriction, that it is possible to associate each state of

with a probability distribution .
Given the increasing literature on functional interactivity in

both fMRI and MEG/EEG, there are clear indicators that the
concepts proposed so far can indeed extract a certain part of in-
teractivity. Information exchange must, therefore, at least partly
be expressible in such terms. Therefore, our first objective is to
find what these definitions have in common. Note that the actual
existence of similarities have already been hinted upon in [37]
for MEG/EEG. Using simulations performed with a neural mass
model [63], striking resemblances were found between various
measures of connectivity.

A first obvious way to classify and relate the tools for in-
teractivity analysis is by their mathematical content. For in-
stance, correlation between two functional units in fMRI and
MEG/EEG is defined by the same mathematical notion, namely,
the correlation between the two unit time courses. Effective con-
nectivity, whether in fMRI or MEG/EEG, strongly relies on
the a priori definition of directed graphical models and linear
relationships.

A further, more subtle classification can be performed by
considering the relative weight of the prior model and the
data for each method. On the one hand, effective connectivity
provides an a priori model relating the time course of the
different regions. The model is defined based on previous
knowledge of the anatomical and functional circuitry underlying
the functional task under investigation. On the other hand,
correlation, mutual information, and coherence all clearly define
interaction between two regions from the data. For instance,
almost no prior knowledge relative to structural interactions
in the motor network is required to calculate correlation maps
with a seed region in M1. This distinction will structure
our exploration: We will first relate all data-driven measures
introduced to correlation and then inspect the connections
between model-based and data-driven concepts under very
simple hypotheses.

III. RELATING DATA-DRIVEN MEASURES TO EACH OTHER

In this section, we show that, despite very distinctive defini-
tions, temporal correlation, nonlinear correlation, mutual infor-
mation, generalized synchronization, phase synchrony, coher-
ence, and PLV indeed essentially measure the same quantity as
correlation. In order to do so, we model as being

( large) i.i.d. realizations of a multivariate Gaussian variable
with mean and covariance matrix . For

convenience, we set and . Our objec-
tive is then to relate all measures mentioned to and only.

A. Temporal Correlation

The sample mean and variance of are defined by

and

respectively. As to the sample covariance between and
, it reads

Last, the temporal correlation between and is given
by

It can be shown that this quantity converges to for large
sample size [64], i.e.,

B. Nonlinear Correlation Coefficient

The nonlinear correlation is a function of the minimum
residual variance after parametric regression (e.g., [32], [33]).
Given a function of parameter and a time shift , one
first determines the parameter so that the regression model

best fits the data by calculation of

(1)

One then derives the following quantity:

Var

Var
(2)

The nonlinear correlation coefficient is then given by

(3)

Assuming linearity of the regression function in mean-shifted
coordinates, i.e.,

and (4)

we obtain (see Appendix A for details)

(5)

In this case, the nonlinear correlation coefficient is nothing but
the squared correlation coefficient; it is represented in Fig. 1(a).

C. Mutual Information

The mutual information between two regions and is de-
fined as [65]

MI (6)

where is the entropy associated to , i.e.,

(7)
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(a)

(b)

(c)

(c)

Fig. 1. Functional relationship between correlation � and (a) nonlinear
correlation h , (b) mutual information MI , (c) generalized synchronization
MFNN , and (d) phase difference  when investigating linear relationships
between i.i.d. multidimensional Gaussian variables.

Under our hypotheses, the expression for the mutual informa-
tion between two regions is simplified as

MI (8)

(see Appendix B for a sketch of proof), and mutual information
is a function of correlation, as represented in Fig. 1(b).

D. Generalized Synchronization

Generalized synchronization between two signals and
emerges when the notions of neighboring, distance, and

ordering are similar (or, at least, comparable) for and
[38], [40]. To test for generalized synchronization, we use the
mutual false neighbors (MFNN) parameter [38], although other
measures could be applied to the same goal [39], [40]. For each

, we denote by its nearest neighbor, i.e.,

The MFNN parameter between and is then defined
as

MFNN

Although the closed-form distribution of MFNN is not obvious,
it is possible to use numerical simulations instead. More pre-
cisely, we draw samples according to

, with

(9)

calculate the corresponding MFNN for each , and then av-
erage across to obtain a sample mean standard error of
the MFNN. This procedure was then repeated with increasing
values of . The results are summarized in Fig. 1(c).

In this case, generalized synchronization is, hence, an in-
creasing function of the correlation. Note that since we had i.i.d.
samples, the values taken by had to be very close to 1 to show
this effect.

E. Phase Synchronization

There exist many ways to define phase synchronization [40].
For the sake of simplicity, we will model each brain unit as
undergoing a perfect oscillation at frequency and phase
[58]:

(10)

In this model, the phase difference between two regions is then,
by definition, equal to

(11)

Calculating the covariance matrix related to the temporal model
defined in (10) and equating it to that of leads to a matrix
with variances

(12)

and covariances1

if
otherwise

(13)

or, equivalently, correlations of

if
otherwise

(14)

1This result differs from [58] by a factor 1/2.
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(see Appendix C for a proof of this assertion). In words, cor-
relation is equal to the cosine of the phase difference; for two
signals of identical frequency, a zero correlation is equivalent to
a zero phase difference, i.e., a phase quadrature. For ,
this relationship also reads

(15)

and is illustrated in Fig. 1(d).
If the phase difference has probability distribution , the

correlation between two signals of the same frequency will vary
from epoch to epoch, according to distribution so that

(16)

The mean phase difference will, hence, be given by

(17)

which is, again, a function of only.

F. Coherence and PLV

Our goal is now to estimate the consistency of the phase lock
over epochs. Coherence is usually used to answer this ques-
tion [27]. To this end, we switch from time to frequency repre-
sentation of the processes and assume that the signals have the
following spectral representations:

(18)

e.g., obtained by the Fourier transform. The coherence is then
given by [27]

(19)

Assuming that (i.e., that does not depend on ),
this expression simplifies into

(20)

where we set ; in this particular case, the co-
herence boils down to the PLV [30], [31]. If all are i.i.d dis-
tributed according to , then when the number of epochs

is large

(21)

TABLE I
SUMMARY OF RELATIONSHIPS BETWEEN VARIOUS MEASURES OF

FUNCTIONAL CONNECTIVITY AND CORRELATION

cf. Appendix D. This is again a function of only and, hence,
of , according to (15).

G. Summary

Through the previous examples, we showed that temporal
correlation, nonlinear correlation, mutual information, general-
ized synchronization, and phase synchrony are all expressions
of correlation; their expressions have been gathered in qTable I.
Coherence and PLV are, rather, measures of the uncertainty on
the correlation but are still functions of .

These quantities have been introduced to account for nonlin-
earities, non-Gaussian distributions, and temporal dependence;
however, in the case of linear interactions in i.i.d. multivariate
Gaussian variables, they all measure the same quantity or func-
tion thereof.

IV. RELATING MODEL-BASED TO DATA-DRIVEN DEFINITIONS

To complete the investigation, we now try to relate effective
to correlational connectivity.

A. Identifying the Gap Between Effective and Correlational
Connectivity

The term “effective connectivity” has so far only been given
to model-based methods for connectivity investigations, such as
SEM or DCM. In this section, we delve into the potential in-
teraction structures that can be generated by such models. Our
purpose is to pinpoint what patterns cannot be rendered by func-
tional connectivity; knowing this, what can be done to palliate
this lack?

To this end, we consider SEM, which is the simplest way to
model effective connectivity; it can be used when one is seeking
linear relationships between i.i.d. Gaussian variables. In this set-
ting, we demonstrated earlier that the information carried by all
measures of functional connectivity introduced in this paper boil
down to correlation; without loss of generality, we can, hence,
concentrate our attention on comparing SEM with correlation.

1) Structural Modeling: We propose the following, ficti-
tious, structural model on the four brain units and processes
defined earlier:

a

b

c

d

For instance, this could possibly be a structural model for move-
ment-related information transfer in the visual pathway, from
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Fig. 2. Structural model.

V1 to V2 to V5, during purely visual stimuli. The resulting
model is represented in Fig. 2.

Different patterns of connectivity emerge from this model.
For instance, it seems obvious that regions 1 and 4 do not in-
teract. On the other hand, regions 1 and 2 do interact, as do re-
gions 1 and 3. On a closer look, the last two examples can be
further differentiated as follows: While regions 1 and 2 directly
interact (since there exists a direct relationship between these
two regions, represented by an arrow), regions 1 and 3 only in-
directly interact, as indicated by the absence of arrows between
the two regions.

2) Probabilistic Modeling: The noise , with

(22)

is now assumed to be composed of i.i.d. realizations of a mul-
tivariate Gaussian variable . For the sake of simplicity, and
without loss of generality, we assume that has a unit covari-
ance matrix. In matrix form, the relationships (a)–(d) read

(23)

where is a function of . A usual resolution scheme to
solve for is to represent the structural equations in matrix
form as

(24)

where is the identity matrix. can then be estimated as
the vector maximizing a log-likelihood function. However, since
our objective is not estimation, our approach varies from there
on. Rather, we try to calculate what distribution follows.
Since we know the probability distribution of , this can be
achieved by expressing as a linear function of ac-
cording to the structural model, leading to

(25)

The expression of is detailed in Appendix E.
From a property of Gaussian distributions [64], and since is
Gaussian distributed, it follows that is also com-
posed of i.i.d. realizations of a multivariate Gaussian vari-
able with mean and covariance matrix (see Ap-
pendix E for its exact expression).

3) Correlation: The structural model being set, we propose
to calculate the correlation between regions 1 and 4, as well as
between regions 1 and 2 and regions 1 and 3. Correlation can
easily be obtained by normalization of the covariance matrix :

Corr (26)

Corr (27)

Corr (28)

In words, a lack of interaction for the structural model between
regions 1 and 4 can be characterized by a zero correlation be-
tween these two regions. On the other hand, an interaction for
the structural model between regions 1 and 2 and regions 1 and
3 implies a nonzero correlation between these two regions. Yet,
correlation is not able to discriminate between the intrinsic dif-
ference of interaction between both region pairs.

B. Conditional Correlation and Mediated Interaction

Functional connectivity can translate certain patterns of ef-
fective connectivity but fail to discriminate between others. So
far, we have, hence, been able to interpret a lack of interac-
tion, i.e., a zero correlation coefficient. If this coefficient is not
equal to zero, we obtain a correlation whose interpretation re-
mains problematic, but can we go further? We can consider two
cases: Either both regions directly interact—as regions 1 and 2
do—, or this interaction is indirect, i.e., it is mediated by other
regions—as interactivity between regions 1 and 3 is mediated
by region 2. Correlation, however, cannot differentiate between
these two cases, as we saw earlier.

As (marginal) correlation was defined, it is possible to de-
fine conditional covariance and correlation [64]. For instance,
Cov is the conditional covariance of regions 1 and 2,
given region 3. Normalizing this conditional covariance leads to
the conditional correlation Corr . Going back to our
example, we obtain the following conditional correlations (see
Appendix F for detailed calculations):

Corr (29)

Corr (30)

Conditional correlation is hence able to tell the direct 1–2 inter-
action apart from the indirect 1–3 interaction. In the first case,
it assigns a nonzero correlation between regions 1 and 2 when
conditioned on region 3; in the second case, the correlation be-
tween regions 1 and 3 is zero when conditioned on region 2,
hinting that, given region 2, regions 1 and 3 behave indepen-
dently and, hence, presumably do not exchange information.

C. Summary

In this section, we showed that some patterns of interaction
present in the model of effective connectivity could be discrim-
inated by a zero/nonzero marginal correlation. Yet, the com-
plexity of connectivity could not be apprehended by marginal
correlation. To remedy this flaw, we resorted to conditional cor-
relation and mediated interaction. All calculations of correlation
performed have been summarized in Table II.

Corr is zero, and regions 1 and 4 indeed do not in-
teract. Correlation can therefore be interpreted as a quantity that
is representative of how much (global) interactivity there exists
between two regions. Similarly

Corr (31)

the conditional correlation of regions 1 and 3 given region 2, is
zero if all interactions between regions 1 and 3 are mediated by
region 2. Consequently, Corr comes up as a natural
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TABLE II
SUMMARY OF THE INTERACTION PATTERNS EXAMINED AND CORRESPONDING

VALUES OF INTERACTION MEASURES

measure of how much interaction between regions 1 and 3 is not
mediated by region 2.

We, hence, demonstrated that if all interactions between two
regions and are mediated by a third region or set of regions

, then we have

Corr (32)

where stands for . If some interaction between re-
gions and is not mediated by regions in , then a natural
measure of how much interaction is not mediated by this set of
regions is given by Corr . This quantity can easily
be derived from by first calculating the conditional covari-
ance matrix

Var (33)

Normalizing this 2-by-2 conditional covariance matrix then di-
rectly yields the desired conditional correlation coefficient.

V. DISCUSSION

Despite their distinctive characteristics and the lack of es-
tablished model linking both modalities, there exist formal
connections between MEG/EEG and fMRI data analysis since
both share common models and tools. For instance, the General
Linear Model (GLM) is ubiquitous in both fMRI activation
detection procedures [66], [67] and MEG/EEG resolution of
the inverse problem [9], [68], [69], in spite of the fact that the
GLM does not have the same role in fMRI and EEG inverse
problems. It is hoped that the analysis led in the present paper
for functional interactivity will help build another strong formal
link between fMRI and MEG/EEG.

The lack of an established physiological model linking
MEG/EEG and fMRI prevents them from providing a common
definition of information exchange. Nonetheless, if one accepts
that such a concept exists, the connection can be made at a
formal level once again. We first provided a theoretical frame-
work, defining brain units and brain processes. We also defined
functional brain interactivity as all real or potential information
exchanges between brain units. We then showed that, under the
assumption of linear relationships between i.i.d. multivariate
Gaussian variables, all measures of functional connectivity
introduced in this paper—temporal correlation, nonlinear
correlation, mutual information, generalized synchronization,
phase synchrony, coherence, and PLV—indeed extract the same
information from the data, namely correlation, or a function
thereof. These measures are generalizations of correlation that
have been introduced in order to compensate for the lack of

one or several of the above-mentioned assumptions. Indeed,
being able to precisely state the assumptions underlying each
measure of connectivity is of importance for functional brain
interactivity investigation and should be examined thoroughly.

To investigate further the gap that remains between models of
effective connectivity and measures of functional connectivity,
we considered a very simple structural model in the framework
of SEM. SEM specifically requires the above-mentioned as-
sumptions to be valid; all measures of functional connectivity,
hence, boil down to correlation. Starting from there, we showed
that some patterns of effective connectivity could be character-
ized by correlation, whereras others could not. A close inspec-
tion showed that correlation was not able to differentiate direct
from mediated interactions. To remedy this flaw, we introduced
conditional correlation that proved capable of making such a
difference.

Indeed, the necessity of conditioning is omnipresent in
Bayesian inference theory [70], [71], where only conditional
probabilities have a meaning. An assertion can be true or false,
depending on the context; two statements can be correlated
or not conditional on the background assumptions. Introduc-
tion of mediated interaction and conditional correlation is the
acknowledgment of this reality.

This takes us back to the definition of functional brain interac-
tivity that we set in Section II-B and the measures of functional
connectivity between two units and examined in this paper.
Note that all of them are only defined in terms of and , i.e.,
they all share the abstract functional form

(34)

Consequently, they calculate the connectivity between units
and independently of the remaining units, which could

be associated to other processes or even modified or changed
without changing . On the contrary, modifying a
structural model anywhere has an influence on the strength
of all links and, hence, on effective connectivity. We, hence,
strongly suspect that all functions that have the form of (34)
can only partially account for effective connectivity, however
complex and able of handling nonlinearities, non-Gaussianity,
or temporal correlation they might be. On the other hand,
connectivity measures of the form

(35)

are more likely to give a fair representation of effective connec-
tivity. From this perspective, it would be of interest to investigate
further what measures are of the form of (35). Temporally con-
ditioned correlation has already been defined, both in fMRI [56]
and in MEG/EEG [72]; conditioning on the stimulus has already
been examined in fMRI [73]. To our knowledge, very few mea-
sures of interactivity between two regions try to condition on a
third region or set of regions. Only partial coherence [73], [74]
and directed transfer functions [43] were applied to this goal. In
addition, phase synchronization was utilized in a multidimen-
sional context [75]. How they could relate to our framework re-
mains a topic to be further examined.

A major issue is to be able to infer the true marginal or
conditional correlation structure from neuroimaging data.
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Working with theoretical measures and models exempted us
from coping with this question; yet it should be addressed
to be able to analyze real data. There already exists methods
to estimate correlation coefficients, through mappings and
asymptotic results (e.g., Fisher test) or bootstrap methods;
how such methods should be generalized to conditional cor-
relation remains an open issue. The interdependence between
estimates should also be considered, i.e., how the inferences
made on qualitatively different conditional correlations (e.g.,
Corr and Corr ) influence each other.

This being said, it is crucial to stress that the given definition
of functional brain interactivity is only meaningful in a given
context, i.e., with well-defined brain units. This seems like a
perfunctory remark, but it implies that there is no such thing as
absolute direct or mediated interaction; both notions, again, only
make sense in a given context, with given brain units. Mutual in-
formation, for instance, measures information exchanges when
only two units are considered; for three or more units, condi-
tional measures should be introduced.

Oddly enough, it is actually a lack of information that always
seems easier to translate. A zero marginal correlation translates
a lack of interaction, but nothing can be said relative to a nonzero
correlation. A zero conditional correlation indicates a mediated
interaction, whereas a nonzero coefficient only requires more
investigation. We believe that this originates from our inability
to precisely and uniquely define what is meant by information
exchange. Note that there also remain other aspects that should
be considered when dealing with zero correlation in MEG/EEG,
such as the influence of volume conduction and the influence of
active reference electrodes.

As we pointed out in Section II-A, the choice of the basic
entities whose relationships are examined is of importance, and
changes of what is thought to be a legitimate brain region may, in
some cases, have dramatic influence on the functional analysis.
[10] provides a discussion of the potential influence of this factor
on MEG/EEG or a BOLD fMRI signal.

The analysis also strongly depends on the choice of the quan-
tity that is associated with each region and how it should be
estimated. This debate is still vivid in fMRI data analysis. Re-
gions are mostly selected from the activation map, but correla-
tion maps tend to gain increasingly more influence [76]. Another
question is what the signal that “represents” the region should
be: the time course of the most significantly activated voxel in
the region or the spatial mean of time courses over the whole re-
gion [77]? Once this has been addressed, we must still decide on
which part connectivity analysis should be performed: the raw
signal or the filtered signal? If filtered, what components should
be kept? It is not yet obvious which part of the signal carries
the connectivity information [78]–[80]. Generative models, that
have recently been applied to the field of neuroimaging [81],
[82], might prove to be an elegant way to solve this issue in
both MEG/EEG and fMRI. Nonetheless, regardless of the final
decision as to what should be analyzed, the proposed framework
remains valid.

A last point that we did not mention in this paper is the re-
search of causal relationships. This is a challenging issue, and it
would be of interest to see if and how it would fit in this frame-
work. Note, however, that, as there were direct and indirect in-

teractions between variables, there might be direct and indirect
causal influences. For instance, Granger causality, as applied in
[44], is of the form of (34) and is, hence, unlikely to translate to
a direct causal effect.

VI. CONCLUSION

The first step of our investigation consisted of setting a
common terminology for functional brain connectivity, and
we proposed to consider brain units and brain processes.
Functional brain interactivity was then defined as all potential
or real information exchanges between brain units. We distin-
guished model-based effective connectivity from data-driven
measures of functional connectivity. We then showed that tem-
poral correlation, nonlinear correlation, mutual information,
generalized synchronization, phase difference, coherence, and
PLV all measure the same quantity, namely, correlation, under
the premise that we are seeking linear relationships between
i.i.d. multivariate Gaussian variables. Using SEM under such
assumptions, we demonstrated that these quantities are insuffi-
cient to account for the variety of interaction patterns that can
appear in models of effective connectivity and compensated
for this weakness by introducing conditional correlation, which
was shown to be strongly related to mediated interaction. Within
this setting, most patterns of connectivity can be expressed.

Further investigation includes a closer consideration of the
hypotheses required for each measure of interactivity to be
valid. Finding a framework that can account for the totality of
them should provide a good direction for another step toward a
common framework for joint fMRI and MEG/EEG functional
brain connectivity exploration. Generalizing the measure of
conditional correlation to cases where the assumptions of
linearity, Gaussianity, and independence do not hold would
provide powerful tools to perform exploratory analysis of
effective connectivity.

APPENDIX A
NONLINEAR CORRELATION COEFFICIENT

We first perform the regression, through minimization of the
mean square error

This expression can be decomposed into

The second and third expectations can be further expanded as

and

respectively. By definition, we then have
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As far as is concerned, it is
equal to

if
otherwise.

Bringing all results together yields

if
otherwise.

When , the minimum is attained for , and
the expected square mean is

For , we set and complete the quadratic
form in , leading to

This loss function is minimum for and . In this case,
we have

Since Var , we finally obtain that

if
otherwise

for a nonlinear correlation coefficient of

APPENDIX B
MUTUAL INFORMATION

The entropy of a Gaussian variable is equal to [83]

As far as the mutual information is concerned, it yields

MI
Cov

where Cov is the 2-by-2 covariance matrix of .
Since Cov is equal to

the expression for mutual information can be simplified to yield

MI

APPENDIX C
CORRELATION BETWEEN TWO SHIFTED COSINES

As in many problems of Bayesian analysis where the prob-
ability density function does not belong to any known density
function, we can resort to numerical sampling to approximate its
various moments. For instance, assuming that we have drawn

samples , approximation of the mean can be per-

formed by the sample mean, i.e.,

It now remains to sample according to the right probability dis-
tribution. However, this is straightforward, since we equate the
moments of with that of ; calculation of for

, hence provides us with such a sample. With
small enough, we can approximate the sum by an integral,

leading to

This integral tends toward 0 as the number of samples in-
creases, regardless of . Hence

and the mean of the process is zero. As to the variance, it can be
expanded as

Var

since the mean of is zero. The right-hand side can again be
approximated by its sample counterpart, which reads, when
is small enough

Expanding as , we are led to

that tends to when increases, yielding that

Expanding the covariance as we did for the variance yields

Cov

Here again, the right-hand side can be approximated by its
sample counterpart and, hence, by an integral
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Applying the formula

we obtain for

The first integral can readily be calculated as

As far as the second integral is concerned, two cases have to be
considered. If , it is equal to

that tends to 0 when . If , then it is equal to

which is independent of the sampling quality. Bringing both in-
tegrals together yields

when . Dividing the covariance by the square root of
the product of the variances, the correlation finally yields

Corr
if
if .

APPENDIX D
COHERENCE AND PLV

Define as

According to the law of large numbers, converges toward
when the number of epochs is large, with

Consequently, tends toward , which is equal to

when is large.

APPENDIX E
EXPRESSION OF MATRICES AND

Matrix is equal to

Inverting this matrix yields

Setting , direct calculation shows that

APPENDIX F
EXPRESSION OF THE CONDITIONAL

CORRELATION COEFFICIENTS

Appropriate use of (33) leads to

Var

and

Var

By normalization, we directly obtain

Corr

Corr
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