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Abstract

Increasing emphasis has been recently put on large-scale network processing of brain functions. To explore these networks, many
approaches have been proposed in functional magnetic resonance imaging (fMRI). Their objective is to answer the following two ques-
tions: (1) what brain regions are involved in the functional process under investigation? and (2) how do these regions interact? We review
some of the key concepts and corresponding methods to cope with both issues.
� 2007 Published by Elsevier Ltd.
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1. Introduction

During the past decade, investigation of brain activity
has put increasing emphasis on the analysis of interactions
within large-scale networks of brain areas (Horwitz et al.,
1999; Varela et al., 2001). By defining neural assemblies
as distributed local networks transiently linked by large-
scale reciprocal dynamical connections, Varela et al.
(2001) make a clear distinction between local and large
scale. On the one hand, a local network is defined as a large
patch ([1 cm) of neural tissue that synchronizes its activ-
ity through local cytoarchitecture. This definition strongly
relates to that of Hebbian cell assemblies, i.e., groups of
entities (neurons) acting together in a coherent fashion
(Hebb, 1949). On the other hand, large-scale dynamic con-
nections are defined as interactions based on large fiber
pathways between regions that are located far apart from
one another (>1 cm). The dichotomy between local and
large-scale networks serves as a neural basis for the key
assumption that brain functional architecture abides by
two principles: functional segregation and functional inte-
0928-4257/$ - see front matter � 2007 Published by Elsevier Ltd.
doi:10.1016/j.jphysparis.2007.01.003

* Corresponding author. Address: CRIUGM, 4545 Chemin Queen-
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gration. While the segregation principle states that some
functional processes specifically engage well localized and
specialized brain regions, it is now believed that brain func-
tions are most likely to emerge through integration of
information flows across distributed regions (Tononi
et al., 1998a; Varela et al., 2001; Frackowiak et al., 2004;
Sporns et al., 2004). In this approach, it is not only a col-
lection of brain areas that is hypothesized to process func-
tional tasks, but rather a large-scale network, i.e., a set of
brain regions dynamically interacting with one another.

The concepts of segregation and integration quickly
became central in neuroimaging, which was able to sample
evoked responses over the entire brain at the same time
(Tononi et al., 1992; Friston et al., 1993a). Neuroimaging
encompasses various techniques that allow to dynamically
and noninvasively follow various markers of brain activity.
Functional magnetic resonance imaging (fMRI), on which
this paper will focus, is one of the major methods currently
used in research and clinical routine. Most fMRI acquisi-
tions rely on the so-called blood oxygen level dependent
(BOLD) contrast, which measures metabolic and hemody-
namic consequences of brain activity (Chen and Ogawa,
1999; Huettel et al., 2004). Recently, compelling experi-
mental evidence has been brought to support the fact that
BOLD signal roughly reflects the slow fluctuations of local
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field potentials (Logothetis et al., 2001), i.e., chiefly the
integrated synaptic activity over a few millimeters of neural
tissue. While many approaches have been proposed so far
to model neural activity (both at a cellular and a popula-
tion level), induced metabolic and vascular responses,
and the physical process leading to fMRI measurements
(Li et al., 2000; Attwell and Iadecola, 2002; Aubert and
Costalat, 2002; Shulman et al., 2004), there still is no unan-
imously accepted model connecting neuronal activation,
EEG/MEG signals and BOLD fMRI measurements (Hor-
witz, 2005).

On the basis of the information conveyed by the BOLD
signal regarding neuronal activity, it is increasingly
accepted that brain interactions can be captured by fMRI,
at least to a certain extent. This has resulted in a new inves-
tigation field that has drawn increasing interest during
recent years (see, e.g., Stone and Kötter, 2002; Horwitz,
2003; Lee et al., 2003a,b; Horwitz et al., 2005). Its objective
is to capture the dynamic, context-dependent processes
leading to the preferential involvement of some regions
over others (McIntosh and Gonzalez-Lima, 1994; Varela
et al., 2001; Frackowiak et al., 2004; Ramnani et al.,
2004; Sporns et al., 2004). Basically, investigation of func-
tional networks requires answering of the following two
questions: (1) what brain regions are involved in the func-
tional process under investigation? and (2) how do these
regions interact? The various methods that have been pro-
posed to tackle brain interactions can be classified accord-
ing to which of these two questions they address. In this
paper, we review some of the key concepts, methods, and
recent advances relative to both issues.

Answering Question 1 boils down to determining what
regions form the spatial support of the network investi-
gated. In the next section, we introduce the most common
techniques, which are based on either anatomical informa-
tion and/or activation maps. We also review other
approaches that do not rely on a comparison to a control
condition but attempt to identify salient large-scale net-
works in an exploratory way; such methods include con-
nectivity maps (Biswal et al., 1995) or independent
component analysis (McKeown et al., 1998). In this review,
we pay special attention to the mathematical approaches
utilized to characterize the existence of large-scale net-
works. We also focus on recent advances that aim to explic-
itly model and take into account the main acknowledged
features of large-scale neural networks as observed in
fMRI (Bellec et al., 2006).

Once the network regions have been determined, Ques-
tion 2 deals with quantitative measures of inter-regional
interactions. As emphasized by Horwitz (2003), brain inter-
actions have many definitions in the existing literature,
depending on the authors’ perspective. Nonetheless, most
approaches rely on either functional or effective connectiv-
ity for reviews and discussions, see, e.g., (Stone and Kötter,
2002; Horwitz, 2003; Lee et al., 2003b). The functional con-
nectivity between two voxels or regions is defined as the
temporal correlation between the voxel or region time
courses (Friston et al., 1993b). As for effective connectivity,
it rather considers the influence that regions exert on each
other (Friston et al., 1993a; McIntosh and Gonzalez-
Lima, 1994). Retracing the major differences between effec-
tive and functional connectivity, we review tentative
approaches to bridge the gap between both frameworks.

2. Identification of large-scale networks

As emphasized in the introduction, examination of func-
tional interactions within a distributed network can be
decomposed into two steps. Step 1 consists of defining
the underlying support of the network, i.e., the set of
regions that are involved in the brain function under scru-
tiny. Depending on the amount of information available,
various methods can be applied to this end.

2.1. From knowledge-based to exploratory methods

A first approach is to make use of relevant information
that has been gathered by previous experience or experi-
ments. Such information can be obtained either from ana-
tomical or functional considerations. Anatomically,
regions that are known to be part of a network can be seg-
mented according to structural features, e.g., in terms of
their cytoarchitecture, as is the case for Brodmann’s areas,
(e.g., McIntosh et al., 1996; Salvador et al., 2005). Func-
tionally, regions detected by conventional activation analy-
ses share a temporal pattern that is specifically modulated
by a task as compared to a control condition (Friston
et al., 1995). Such regions should be considered for inclu-
sion into the network (e.g., Büchel and Friston, 1997). This
approach can be restrictive because it requires explicit
modeling of the temporal activity with regard to both the
task and the control condition. Furthermore, it often only
extracts a restricted number of highly specific regions, while
neglecting regions that are part of the network but less
strongly related to the experimental protocol (Horwitz
et al., 1999; Gusnard and Raichle, 2001). There are also
conditions for which we have only little spatial or func-
tional prior information; such is the case for, e.g., data
gathered at rest (Biswal et al., 1995), or data of patients
in coma (Laureys et al., 2004).

Others methods exist to select the support of a functional
network. Pioneered by early works in PET imaging (Clark
et al., 1984; Metter et al., 1984; Horwitz et al., 1984), func-
tional connectivity makes it possible to explore which
regions strongly interact with a defined region during a
given condition without reference to a control condition.
Biswal et al. (1995) introduced functional connectivity maps
to explore the network of regions that were functionally
related to a seed region located in the primary motor cortex.
A functional connectivity map is a three-dimensional vol-
ume whose value at each voxel is the correlation between
the time series of this voxel and that of the seed region. A
suitable threshold, determined either empirically or statisti-
cally, is applied to the map in order to identify the network



G. Marrelec et al. / Journal of Physiology - Paris 100 (2006) 171–181 173
of brain regions functionally connected (in the sense of cor-
relation) to the seed. It was suggested that such a network
includes mostly regions possessing strong anatomical con-
nections to the seed, either directly or indirectly (Xiong
et al., 1999). This technique has been particularly influential
for the analysis of resting-state datasets, where subjects
were asked to refrain from overt activity. It has been applied
for a variety of seed regions, located in motor (Biswal et al.,
1995; Xiong et al., 1999), visual (Lowe et al., 1998), lan-
guage (Cordes et al., 2000) and cingulate (Greicius et al.,
2003) cortices, as well as sub-cortical regions (Stein et al.,
2000). By contrast, only few studies have investigated corre-
lation maps for subjects steadily performing a given task
(e.g., Lowe et al., 2000; Greicius et al., 2003). Networks
exhibited with this method tend to be much larger than
the set of activated regions (Xiong et al., 1999).

Although connectivity maps have proved to be a power-
ful tool, their exact relationship with functionally relevant
large-scale networks remains to be further investigated.
Connectivity map exploration heavily relies on the choice
of a seed region. Indeed, the use of regions of arbitrary
shape, even restricted to small areas declared activated by
fMRI activation analyses, can lead to spatially inhomoge-
neous regions (Baumgartner et al., 2000). It has further-
more been shown that two small and spatially close brain
regions can lead to very dissimilar functional connectivity
(e.g., Cordes et al., 2000; Gonçalves and Hall, 2003; Waites
et al., 2005). In McIntosh et al. (1996) and Friston et al.
(1997), psycho-physiological parameters are considered
when using a general linear model or a partial least-squares
model. Partial least-squares is a singular value decomposi-
tion of the cross-correlations between physiological
responses and behavior. Psycho-physiological interaction
analyses test for changes in the regression slope of activity,
at every voxel on a seed voxel, that are induced by an
experimental manipulation. Even if these techniques are
more flexible than the method of correlation with a target
area, they remain strongly dependent on the choice of the
target region(s) and/or the psychophysical parameter(s).

Other approaches for identifying large-scale patterns of
functional connectivity exist that do not rely on a seed
region and, hence, reduce the dependence of the analysis
on this parameter. Such methods include principal compo-
nents analysis (PCA) (Friston et al., 1993b), independent
components analysis (ICA) (McKeown et al., 1998) and
fuzzy clustering, e.g., k-means (Baumgartner et al., 1998).
They were initially developed in the general framework of
multivariate statistics and assume various models of the
fMRI data. While PCA and ICA suppose that fMRI data
are a linear mixing of a given number of temporal factors
with an associated factor-specific spatial distribution,
k-means assumes that brain voxels can be grouped into
clusters sharing similar activity patterns. Practical factor-
image decomposition or clustering of the PCA, ICA, or
k-means is achieved by optimizing the following mathemat-
ical criteria: maximal variance of the data after projection
in an uncorrelated spatial basis, independence of the spatial
distributions in a linear mixing, and intra-cluster homoge-
neity, respectively. These methods, and most notably inde-
pendent component analysis, have led to promising results,
e.g., performing blind identification of networks that had
already been exhibited with functional connectivity maps
and a well-defined seed region (Greicius et al., 2004). It is
nevertheless necessary to specify the number of factors or
clusters. Moreover, among all patterns identified using
such approaches, not all of them have a clear relationship
with brain neural activity (McKeown et al., 1998). Final
identification of the relevant factors or clusters is mainly
performed visually, even if some automatic procedures
have recently been proposed that apply in some particular
contexts (e.g., Greicius et al., 2004). The lack of a clear and
systematic relationship between the mathematical criteria
optimized by the aforementioned approaches and the neu-
roscientific concept of large-scale networks makes the cor-
responding results arduous to interpret from a general
perspective. These techniques were developed in a more
general context and for different purposes; the mathemati-
cal criteria optimized often cannot be expressed in terms of
large-scale functional connectivity. Furthermore, such
methods are completely independent of the relative locali-
zation of the selected regions with each other – a central
element for large-scale networks.

2.2. Large-scale networks and statistical modeling

Recent works have proposed to unambiguously embed
neuroscientific considerations into statistical models. For
example, Tononi et al. (1998b) used a measure of functional
integration derived from information theory to define the
concept of functional clusters; Goutte et al. (2001) clustered
brain voxels on the basis of the similarity of their hemody-
namic response. Concerning such features of neural assem-
blies as local and large-scale, what has been mentioned in
the previous section is compelling evidence in favor of the
fact that correlation may partly reflect neuronal interac-
tions. In this framework, synchrony of neuronal activity
within local networks imposes that each region of the net-
work should be homogeneous, i.e., composed of voxels
whose time series are highly correlated, e.g., according to
the Kendall coefficient of concordance (Zang et al., 2004).

The existence of large-scale interactions moreover
implies that each region in the network exhibits strong cor-
relation with other distant region(s) in the network. As
stressed by Lund (2001) and Cordes et al. (2002), a major
source of confound for large-scale functional connectivity
is thus the spurious spatial correlation induced by fMRI
noise (e.g., cardiac or respiratory fluctuations, local inter-
actions), which needs to be properly corrected and/or mod-
eled to achieve accurate identification of large-scale
networks. With this aim, Bellec et al. (2006) used a Gauss-
ian process with a stationary spatial correlation matrix
function of the sole distance between regions, or lag
(Cressie, 1993). Three parameters were involved in the
modeling and estimated from the data (see Fig. 1): a local
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Fig. 1. Rational-quadratic correlogram: the spurious correlations between
the time series of two regions are modeled as a parametric function of the
spatial distance (or lag) between the regions. Graphical interpretation of
the parameters q0, q1, and hc is shown in the figure (from Bellec et al.,
2006).
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correlation level q0, an asymptotic level q1 at large-scale,
and a critical distance hc characteristic of the transition
between local and large-scale. A pair of regions was then
said to be on a large scale if their distance was larger than
hc. The set of regions exhibiting an outlier correlation with
at least one distant region then composed the large-scale
network. With fMRI datasets acquired during simple
motor protocols, this approach performed blind identifica-
tion of networks both related to the task and subserving
spontaneous activity, such as the default-mode network
described at rest (Greicius et al., 2003); the networks dis-
covered shared many similarities with those extracted using
other exploratory approaches, such as ICA (Greicius et al.,
2004). Yet, unlike ICA, all regions involved in a salient
large-scale network could be identified at once, which typ-
ically represent tens or hundreds of regions for a region size
of approximately 1 cm2 of cortex. This unique behavior
allowed first time blind exploration of all functional brain
networks engaged in functional processing during an fMRI
acquisition. Unfortunately, apprehending very large net-
works is necessarily a complex and tedious task for which
existing tools are not well adapted. Consequently, routine
tasks, such as validating the results in the light of previous
anatomical/functional information or comparing them
between subjects, can quickly prove a challenge. A possible
remedy is to use additional data analyses to summarize the
rich interaction patterns, such as hierarchical clustering
(Goutte et al., 1999; Cordes et al., 2002), or multi-dimen-
sional scaling (Friston et al., 1996; Welchew et al., 2002;
Salvador et al., 2005).
Fig. 2. Example: structural model, e.g., for movement-related information
processing in the visual pathway, from (1) V1 to (2) V2 to (3) V5, and with
(4) the primary auditory region on Heschl’s gyrus. Measures of functional
interaction corresponding to the various interaction patterns graphically
represented (from Marrelec et al., 2005a).
3. Measuring functional interactions

Once the network regions have been selected, functional
connectivity appears as a simple way to measure interac-
tions within the resulting large-scale network. Yet, a signif-
icant functional connectivity between two regions can have
various exogenous origins: a common response to the same
external stimulation, a common input, or an indirect inter-
action mediated by a third region (Xiong et al., 1999;
Marrelec et al., 2005a). When simply assessing the presence
or absence of functional interactions regardless of their
nature (direct, indirect, or stimulus-locked), functional
connectivity might prove sufficient; as evidenced in the pre-
vious section, many methods indeed rely on it to extract the
large-scale network. However, the full understanding of the
network interaction structure requires to further disambig-
uate the origin of the observed functional connectivity and
to determine patterns of effective connectivity, i.e., the
effect that regions exert on one another (Friston et al.,
1993a). Unfortunately, while functional connectivity is
data-driven, major methods implemented to investigate
effective connectivity are model-based, hindering their use.

In this perspective, we first review the major approaches
developed to examine effective connectivity. We then report
some first steps toward measures of connectivity that, like
functional connectivity, are data-driven and moreover
share some key aspects of effective connectivity that func-
tional connectivity fails to apprehend.

3.1. Effective connectivity, SEM, and DCM

Structural equation modeling (SEM) is the most wide-
spread way to model effective connectivity (McIntosh and
Gonzalez-Lima, 1994; Gonzalez-Lima and McIntosh,
1995; Bullmore et al., 2000). Starting from a set of D

regions, a model is set a priori, expressing the time course
yd (t) of each region as a linear function of the time courses
of other regions:

ydðtÞ ¼
X

e6¼d

kd;eyeðtÞ;

some coefficients kd,e being constrained to 0, the others
being free to vary. kd,e quantifies the strength that region
e exerts on region d, whence the name of effective connec-
tivity. The free parameters kd,e can be translated in a graph-
ical model as arrows joining node d to node e (see Fig. 2).
The graph links are usually thought of as anatomical con-
nections that are functionally relevant for the experiment
under consideration. The model of effective connectivity,
fully determined by the kd,e, is associated with a unique
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matrix of inter-regional covariances. This parametric ma-
trix can be compared to the one observed empirically in
the data; by minimizing the discrepancy between both,
one can then estimate the model coefficients (Cudeck
et al., 1993; Bullmore et al., 2000). Performing this same
step for two different experimental settings, it is possible
to analyze the influence of the protocol modification on
kd,e and, consequently, on the actions exerted by region e

on region d. To release the constraint of linear relationships
between variables, the same framework has been expanded
in order to investigate how a factor (regional activation or
experimental parameter) modulates the influence of an-
other factor on a regional response (Büchel and Friston,
1997; Friston et al., 1997).

The major drawback of SEM is that it is strongly model-
based. Apart from the fact that SEM usually assumes lin-
ear interactions between regions and does not account for
the dynamic aspect of hemodynamic responses, it moreover
requires the setting of an a priori model, that will — and
can — difficultly be challenged. SEM cannot be used in
cases where no information of functional interactions is
available. Neither can it deal with cases where the number
of constraints imposed on the connections is low, since one
needs a very sparse connectivity structure to make the effec-
tive connectivity parameters estimable. This places strong
constraints on the structural equation models that can be
used. An emerging literature trying to cope with these
issues has recently emerged (Bullmore et al., 2000; Mechelli
et al., 2002). These methods are useful when some informa-
tion is available, such as a small set of potential structural
models or partial information relative to the connectivity.
They remain not well adapted for complex and/or explor-
atory analyses. Another technical point that, to our knowl-
edge, has never been reported in the fMRI literature, is the
commonplace use of the correlation matrix instead of the
covariance matrix for SEM analysis. This change is largely
justified by the very nature of BOLD signal, which can only
be interpretated in terms of percentage of increase or
decrease compared to a baseline. Still, from a theoretical
perspective, using either the correlation or the covariance
matrix defines two different inference processes that can
potentially lead to different results (Cudeck, 1989). The
bearing of this issue on fMRI data analysis remains to be
further investigated.

Another framework for effective connectivity analysis,
dynamical causal modeling (DCM) has recently been devel-
oped as a generalization of both convolution models and
SEM (Friston, 2003; Penny et al., 2004b). DCM also relies
on the definition of a structural model in the form of a
directed graph prior to the analysis. The model then
assumes a dynamic neuronal model of interacting brain
regions, whereby neuronal activity in a given brain region
causes changes in neuronal activity in other regions accord-
ing to the graphical model. This neuronal model is then
supplemented with a forward model of how neuronal activ-
ity generates a measured BOLD response through the bal-
loon model (Friston, 2003). Last, a Bayesian inference
scheme is devised to infer the model parameters from the
data. It is suspected that DCM might be less sensitive than
SEM to the number of degrees of freedom (i.e., the sparsity
of the connectivity matrix), even though this remains to be
formally proved. More generally, DCM is quite recent and
has only led to few studies so far (Mechelli et al., 2003b;
Ethofer et al., 2006; Lee et al., 2006). Further research is
thus still required to better ascertain its main strengths
and weaknesses.

By construction, the mathematical framework of DCM
takes nonlinearities and temporal correlations into
account. It also quantifies the interaction strength that
one brain region exerts on another brain region at the neu-
ronal level, whereas SEM remains at the level of the
observed BOLD signal. Unlike SEM, DCM also models
the effect of experimental, external, and/or modulatory
inputs on network dynamics. A critical feature of the pro-
posed forward balloon model is the relationship between
blood flow changes and oxygen metabolism changes during
activation. The given forward model might only be well
adapted to the steady state condition (Aubert and Costalat,
2002). Further issues regarding identifiability and estima-
bility of this complex model have yet to be coped with.
Since DCM takes dynamics and modulations into account
in the model and some part of the uncertainty in the infer-
ence, this framework is even more complex than SEM. As a
consequence, DCM is computationally limited by the num-
ber of regions that can be included in the analysis (maxi-
mum of eight according to Penny et al. (2004b); three in
Mechelli et al. (2003a), Penny et al. (2004b), and Ethofer
et al. (2006); three and five in Lee et al. (2006)). To cope
with the thorny issue of model selection, Penny et al.
(2004a) proposed an extension of the DCM framework
to perform model comparison within a set of graphs given
a priori. How this approach can be generalized to allow for
blind model selection from the whole set of structural mod-
els (i.e., with no structural model required a priori) remains
a central, yet complex, issue.

A feature that is noteworthy about SEM and DCM is
that they both try to simultaneously handle two different
concepts in one step: direct interactions and causality. On
the other hand, data-driven measures have so far concen-
trated on the exploration of either direct interactions or
causal relationships.

3.2. Data-driven measures of direct interaction

As correlation was defined, it is possible to define condi-
tional covariance and correlation (Anderson, 1958). The
conditional correlation corr½yi; yjjyR� between regions i

and j with respect to a set R of regions measures the resid-
ual correlation between the time courses of regions i and j

once the (linear) effect of regions in R has been removed. It
hence only considers the correlation between i and j that
cannot be accounted for by the (linear) influence of any
area in R. Each structural model entails a unique pattern
in terms of conditional correlation, which is closely related
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to path coefficients (e.g., McIntosh and Gonzalez-Lima,
1994; Bullmore et al., 2000; Marrelec et al., 2005a,b). Marr-
elec et al. (2005a) demonstrated that, unlike (marginal) cor-
relation, conditional correlation could successfully retrieve
information of mediation from a structural model. Conse-
quently, they hypothesized that, by conditioning the depen-
dencies between two areas on other areas, the ensuing
conditional correlation should be more closely related to
direct interaction. Specifically, if functional interactions
between regions i and j are mediated by a set R of regions,
then corr½yi; yjjyR�, the conditional correlation between
regions i and j given R, is zero. Conversely, if some inter-
actions between the same two regions is not mediated by
regions in R, then a natural measure of how much interac-
tion is not mediated by this set of regions is given by
corr½yi; yjjyR� (see Fig. 2). This theoretical assumption
remains to be confirmed on synthetic as well as real data.
In order to do so, several issues need to be solved. Starting
from N regions, N(N � 1) Æ2N�2/2 conditional correlation
coefficients could potentially be calculated, many of which
probably redundant with one another. Without a structural
model to guide the investigation, calculation of this whole
set remains lengthy, not to say untractable, and interpreta-
tion tedious. Marrelec et al. (2006) proposed to circumvent
this issue using partial correlation (i.e., correlation between
two regions conditioned on the set of remaining regions).
Marrelec et al. (in press) provided a first study comparing
this novel technique with SEM. However, more research
is still required to clarify the link between both approaches.
Furthermore, conditional correlation, like marginal corre-
lation, also seems unable to provide relevant information
regarding causality.

3.3. Data-driven measures of causality

In fact, exploratory investigation of causal relationships
has proven at least as challenging as detection of direct
interactions. Causality appears to be naturally embedded
in SEM and DCM in the form of arrow directions. Invert-
ing the direction of an arrow inverts the flow of informa-
tion and, hence, causality. In other words, the search of
causality in structural models is tantamount to setting
arrow directions. In a more general setting, i.e., unre-
stricted to structural models, the question to address
becomes far less obvious, though. It could nonetheless be
argued that determining whether a given region i has a cau-
sal influence on another region j could be performed by
assessing whether changes in region i affect region j.
Despite some related research in electrophysiology, electro-
encephalography (EEG), and magnetoencephalography
(MEG) (Baccala and Sameshima, 2001; Kamiński et al.,
2001; Chávez et al., 2003), very few methods have been
proposed in fMRI, with the notable exception of Goebel
et al. (2003) and Roebroeck et al. (2005), using Granger
causality. Granger’s concept of causality (Granger, 1969)
has been proposed in the context of linear regression mod-
els and received a great deal of attention. We say that a first
time course causes another one if incorporating past values
of the first time course improves the prediction of the cur-
rent value of the second one (Geweke, 1982). Thus, tempo-
ral precedence is used to identify the direction of causality
from the data. In Goebel et al. (2003), Granger causality
was formalized and tested using vector autoregressive
(VAR) models that capture the joint temporal dynamics
of two time series. Recently, using VAR models, Roe-
broeck et al. (2005) have introduced Granger causality
maps to explore the directed network of regions that are
causally related to a seed region. If this exploratory
approach is confirmed to have the capacity to infer changes
of information flow between brain regions, it could prove
an interesting addition to existing models of effective con-
nectivity. To this aim, the causal nature of Granger causal-
ity (in the sense of SEM or DCM) must be confirmed. One
should furthermore keep in mind that causation and direct
interaction are two different concepts. Using direct transfer
function (DTF) as a measure of Granger causality,
Kamiński et al. (2001) indeed demonstrated that a nonzero
DTF value did not necessarily imply direct causal influence
between two regions: the effect could as well be mediated
by another region or group of regions. Furthermore, the
very issue of whether fMRI signals actually do convey cau-
sal information remains open. For instance, the intrinsic
regional variability of the hemodynamic response and
other acquisition artifacts imply that the hemodynamic
response latency should be used with great care as a mea-
sure of temporal precedence (Friston et al., 1998; Miezin
et al., 2000).

4. Discussion and perspectives

In this article, we reviewed some of the major concepts
and tools used to explore functional networks according
to the following two questions: (1) what brain regions are
involved in the functional process under investigation?
and (2) how do these regions interact? This artificial dichot-
omy emphasizes the practical division between procedures
that are able to exhibit large-scale networks from measures
quantifying functional interactions. However, both ques-
tions appear to be tightly linked and should, hence, not
be regarded as independent. Many methods designed to
identify large-scale networks in the brain indeed make
use of a measure of interaction, e.g., functional connectiv-
ity (Biswal et al., 1995) or Granger causality (Roebroeck
et al., 2005). On the other hand, to correctly measure direct
interactions and causality within a network, it is manda-
tory to first include all regions potentially engaged in the
network and able to mediate interactions. From a practical
perspective, though, it is possible, and even common prac-
tice, to first use data-driven measures of connectivity before
refining the analysis by application of model-based meth-
ods such as SEM (McIntosh et al., 1998; Huettel et al.,
2004).

As many measures of connectivity involve at some point
the correlation of fMRI time series, a major confounding
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factor is spatially structured noise (Cordes et al., 2002).
Major factors contributing to this correlation include par-
tial volume effect, nonwhite measurement noise, pre-pro-
cessing steps (such as slice-timing correction or spatial
filtering), as well as physiology-induced fluctuations, such
as respiratory and cardiac fluctuations (Dagli et al., 1999;
Cordes et al., 2001; Windischberger et al., 2002) and
motion-related artifacts (Cordes et al., 2002; Gavrilescu
et al., 2004); see Woolrich et al. (2004) for fuller description
of these factors. For a decade or so, the fact that measures
such as functional connectivity could be mere reflections of
structured noise could not be ruled out (Lund, 2001). Stud-
ies using dedicated fMRI acquisitions with short TR,
allowing to correctly suppress physiological fluctuations,
have showed that such factors do not suffice to explain
the observed functional connectivity (Lowe et al., 1998;
Cordes et al., 2001). Moreover, the spatial structure of
functional connectivity maps are relevant in the face of cur-
rent anatomical and functional knowledge of the brain
architecture (De Luca et al., 2006). Together, these results
are compelling evidence that functional connectivity is, at
least partly, related to neuronal activity. Still, measures
of connectivity can possibly be affected by fMRI noise.
As such, it is important to develop and apply strategies
to remove, or at least reduce, such spurious effects for rou-
tine fMRI acquisitions (e.g., Thomas et al., 2002; Perlbarg
et al., 2007) in this context.

A key tool to assess the validity of large-scale network
exploration in fMRI is knowledge of the underlying ana-
tomical connections. Thanks to recent progress in MR
imaging, anatomical connectivities can now be inferred
from the anisotropic diffusion of water in white matter
as measured by diffusion tensor imaging (DTI) (Basser
et al., 2002). Using DTI, fiber pathways joining two
regions can be tracked, producing results mostly in accor-
dance with general anatomical knowledge (Wakana et al.,
2004). Combination of DTI and fMRI will prove essential
to discover to what extent the brain functional organiza-
tion as investigated with fMRI reflects structural features
of the brain and, hence, to better assess the relevance of
fMRI to examine the relationship between functional
and anatomical large-scale networks. Koch et al. (2002)
compared anatomical and functional connectivity in
healthy subject and found no simple relationship between
these connectivities. Regions that were directly linked by
fiber tracts exhibited higher functional connectivity; yet,
the converse did not seem to hold. This result is of little
surprise considered the nonspecific feature of correlation.
As emphasized in Section 3.2, functional connectivity is
not able to differentiate between direct interactions (that
are supported by anatomical connections) and indirect
interactions (that are not). As stressed by the authors
(Koch et al., 2002), the correlations between pairs of
regions could be mediated by indirect anatomical connec-
tions and in this case the BOLD signal may be correlated,
although no connecting fiber is present in the anatomical
network. In spite of this limitation, the prospect of using
DTI to specify the underlying structural anatomical
model to inform functional connectivity analyses is a
promising direction of research. As a recent example
(Lehéricy et al., 2005) demonstrated that motor represen-
tations shift from the associative to the sensorimotor ter-
ritories of the striato-pallidal complex during the explicit
learning of motor sequences, suggesting that motor skills
are stored in the sensorimotor territory of the basal gan-
glia. Using DTI, the authors found (Lehéricy et al., 2004)
that the sensorimotor territories of both the caudate
nucleus and the putamen were connected to the sensori-
motor cortex as well as premotor areas. Using DTI in a
more extensive manner would definitely help to better
understand the structural basis of large-scale networks
(Ramnani et al., 2004). For instance, information origi-
nating from tractography could be used to constrain
structural models. However, two issues must be tackled
to this aim: the relevance of DTI and related tractography
algorithms with regard to structural anatomy, and
whether effective connectivity estimates indeed have ana-
tomical correlates.

Another cogent source of validation for methods intro-
duced in this review is the use of synthetic data. On the
one hand, generative models rely on the theory of dynam-
ical systems to simulate neuronal dynamics (Friston and
Price, 2001a,b; David and Friston, 2003). They are
strongly related to dynamical causal models and are hence
already implicitely involved in effective connectivity inves-
tigation with DCM (Friston, 2003). Large-scale neural
networks, on the other hand, have been introduced as a
way to propose biologically plausible models of brain pro-
cessing that can, to some extent, mimic its behavior at
various temporal and spatial scales, depending on the
model (Horwitz, 2004). Models for visual (Tagamets
and Horwitz, 1998; Deco et al., 2004) and auditory (Hus-
ain et al., 2004) processing have been proposed so far.
Such models were used to assess the relevance of both
functional and effective connectivity (Horwitz et al.,
1999, 2005; Lee et al., 2006). The great advantage of sim-
ulated data is that their complexity can be controlled. In
synthetic neuronal models, and unlike what typically
occurs in real brain acquisitions, various confounds (drift;
habituation; movement; susceptibility, cardiac, and respi-
ratory artifacts) can be either discarded as being irrelevant
or specifically modeled to test the limits of the method
under evaluation. Most importantly, the structure under-
lying data generation can be fully specified; what is
expected can then be compared with what the method is
able to retrieve from the simulated data. Crucially, the
outcome of such evaluation will be all the more relevant
for the investigation of brain interactions that the models
used to produce the data are realistic.

A strongly connected issue is the search for a better inter-
pretation of BOLD signal, i.e., the relationships between
neuronal firing rates and neuronal activity with hemody-
namic and metabolism. Despite extensive developments in
brain functional imaging techniques, the physiological and
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biochemical mechanisms involved in neural activity remain
difficult to quantify. Several models have been developed to
examine the relationships between synaptic activity (both
excitatory and inhibitory), brain metabolic changes, vascu-
lar responses, and hemodynamic signals in cortical regions
allowing one to relate results obtained at a systems-level
with those obtained at the neural ensemble level (Aertsen
et al., 1994; Arbib et al., 1995; Horwitz et al., 2000). Aertsen
et al. (1994) used detailed simulations of interacting neuro-
nal populations with Hodgkin Huxley-like dynamics to
explore the relationship between synchronization and mean
synaptic activity. Neural mass models afford a straightfor-
ward approach to model the activity of populations of
neurons. These models are used to understand some macro-
scopic properties of MEG/EEG signals (Wendling et al.,
2000; David and Friston, 2003). Several mathematical
models link physiological processes and brain functional
imaging data including oxygen exchanges between blood
vessels and brain tissue (Buxton and Frank, 1997; Gjedde,
1997; Mintun et al., 2001), energy metabolism (Gruetter
et al., 2001) and hemodynamic processes (Buxton and
Frank, 1997; Friston et al., 2000; Aubert and Costalat,
2002). We anticipate that integration of the underlying pro-
cesses will be a key step to better understand information
flow.

Other methods than fMRI are used extensively as well
to examine brain processes, including MEG and EEG.
The signals measured by fMRI, MEG, or EEG stem from
different features of brain activity, even though the exact
underlying process is still under investigation (Li et al.,
2000; Logothetis et al., 2001; Aubert and Costalat, 2002).
Compared to BOLD fMRI, the signals obtained in
MEG/EEG are more closely related to the neuronal cur-
rents (Hämäläinen et al., 1993). While fMRI signal would
increase with neuronal firing rates, MEG/EEG is rather
sensitive to post-synaptic activity (Nunez and Silberstein,
2000). Nonetheless, MEG/EEG have also proved useful
to investigate brain networks. The (a)synchrony between
two spatially remote neuronal spike trains can be inter-
preted with respect to the so-called ‘‘binding problem’’
(Treisman, 1996), still in debate, as the necessary brain
mechanisms providing a coherent sensorial/emotional
experience integration (Varela et al., 2001). Different tools
have been proposed in MEG/EEG for connectivity analy-
sis including temporal correlation, nonlinear correlation,
mutual information, generalized synchronization, phase
difference, coherence, and phase locking value. Despite
very distinctive definitions of all these indices of functional
interactions, they essentially measure the same quantity,
namely correlation, under the premise that we are seeking
linear relationships between i.i.d. multivariate Gaussian
variables (Marrelec et al., 2005a). Such a finding provides
a first step toward a common conceptual framework for
joint fMRI and MEG/EEG functional brain connectivity
exploration. This is all the more important that an increas-
ing number of protocols include combined or even simulta-
neous fMRI and MEG/EEG acquisitions.
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Mélanie Pélégrini-Issac for proofreading the last version
of this manuscript. G. Marrelec is supported partly by
the Foundation Fyssen (Paris, France) and partly by the
Bourse des Gouverneurs (Montreal, Canada).
References

Aertsen, A., Erb, M., Palm, G., 1994. Dynamics of functional coupling in
the cerebral cortex: an attempt at a model-based interpretation.
Physica D 75, 103–128.

Anderson, T.W., 1958. An introduction to multivariate statistical analysis.
Wiley Publications in Statistics. John Wiley and Sons, New York.

Arbib, M.A., Bischoff, A., Fagg, A.H., Grafton, S.T., 1995. Synthetic
PET: analyzing large-scale properties of neural networks. Human
Brain Mapping 2, 225–233.

Attwell, D., Iadecola, C., 2002. The neural basis of functional brain
imaging signals. Trends in Neurosciences 25, 621–625.

Aubert, A., Costalat, R., 2002. A model of the coupling between brain
electrical activity, metabolism, and hemodynamics: application to the
interpretation of functional neuroimaging. NeuroImage 17, 1162–
1181.

Baccala, L.A., Sameshima, K., 2001. Partial directed coherence: a new
concept in neural structure determination. Biological Cybernetics 84,
463–474.

Basser, P.J., Mattiello, J., Le Bihan, D., 2002. Estimation of the effective
self-diffusion tensor from the NMR spin echo. Journal of Magnetic
Resonance 103, 247–254.

Baumgartner, R., Windischberger, C., Moser, E., 1998. Quantification in
functional magnetic resonance imaging: fuzzy clustering vs. correlation
analysis. Magnetic Resonance Imaging 16, 115–125.

Baumgartner, R., Somorjai, R., Summers, R., Richter, W., Ryner, L.,
2000. Correlator beware: correlation has limited selectivity for fMRI
data analysis. NeuroImage 12, 240–243.

Bellec, P., Perlbarg, V., Jbabdi, S., Pélégrini-Issac, M., Anton, J.-L.,
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