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Abstract

The theory of Gaussian graphical models is a powerful tool for independence analysis between continuous
variables. In this framework, various methods have been conceived to infer independence relations from data
samples. However, most of them result in stepwise, deterministic, descent algorithms that are inadequate
for solving this issue. More recent developments have focused on stochastic procedures, yet they all base
their research on strong a priori knowledge and are unable to perform model selection among the set of all
possible models. Moreover, convergence of the corresponding algorithms is slow, precluding applications
on a large scale. In this paper, we propose a novel Bayesian strategy to deal with structure learning. Relating
graphs to their supports, we convert the problem of model selection into that of parameter estimation. Use of
non-informative priors and asymptotic results yield a posterior probability for independence graph supports
in closed form. Gibbs sampling is then applied to approximate the full joint posterior density. We finally
give three examples of structure learning, one from synthetic data, and the two others from real data.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

As pointed out by Dawid [2], conditional independence is believed to be fundamental knowledge
in the process of statistical inference. In the theory of Gaussian graphical models [14,10], condi-
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tional independences between continuous variables are embedded in a formal framework whose
enormous advantage is its intuitive meaning. Conditional independence graphs are mathematical
objects that very efficiently encode conditional independence relations, providing a precise yet
vivid representation of the independence structure underlying the data. Variables are represented
by vertices, direct dependences (resp. independences) between two variables by edges (resp. ab-
sence of edges) and independence patterns by graphs. In this framework, estimating independence
relations from data samples reduces to inference about the independence graph underlying the
data.

A crucial topic in independence analysis from data samples is computation. Working with
realizations of D variables brings up D(D − 1)/2 edges and 2D(D−1)/2 potential independence
graphs. As a consequence, blunt exploration of all the lattice states quickly becomes untractable,
and trade-offs have to be found between exhaustive search of the parameter space and time cost.
Therefore, the choice of the inference algorithm has to be given a central role. A second key
point is how the inference about graphs is dealt with. Data give access to empirical interaction
coefficients, that are continuous, whereas inference must be carried out on graphs, that are discrete
models.

For Gaussian graphical models, various techniques have been developed to learn structure from
data. Most of them are variants of that proposed by Whittaker [14] and all share the disadvantages
of being stepwise, deterministic, descent algorithms, and hence are poorly adapted to solve this
issue. Only recently have new stochastic methods been introduced, mainly through Bayesian
analysis. In this framework, independence analysis of decomposable graphs has been widely
explored, e.g., [2] or [5]. There are still several practical drawbacks to it, though. Most methods
do not apply to non-decomposable graphs, which are hence a priori excluded from the analysis.
Furthermore, a conditional correlation structure must be defined a priori, together with the relative
weight given to this prior. Both choices have a rather important influence on the resulting graph
estimate, whereas translating prior information into value for the hyperparameters is far from being
obvious in most cases. Last but not least, the issue brought up by the exponentially increasing
number of potential models remains unsolved, since the methods proposed require prior selection
of a subset of graphs on which investigation will focus blindly, at the exclusion of all other
graphs.

To be practically efficient, a structure learning technique should take into account that the most
common case is when no (or very little) information is available and/or usable a priori. As such, it
should be able to perform robust analysis even in a state of prior ignorance. A Bayesian analysis
should hence integrate as little bias as possible into the analysis through prior information: this
is achieved by use of uninformative priors [1,4]. Second, an ideal structure learning technique
should also be able to consider and lead inference on the set of all 2D(D−1)/2 possible models
instead of restraining the research on a potentially incorrect subset. Incidentally, meeting these
two requirements would make the corresponding process operator-independent and, consequently,
enable automated analysis.

In this paper, we propose a new approach for Bayesian structure learning. We first make a
clear distinction concerning the mathematical object we wish to draw inference about: is it a
set of conditional correlation coefficients, or is it an independence graph? Until now, attention
was mostly directed towards partial correlations, and from there inference was drawn about
independence models. The notion of graph only appeared through the definition of a model
constraining the set of partial correlation coefficients. We explicitely introduce graphs as a discrete
variable rather than a model when related to its support. The issue of model selection then boils
down to parameter estimation, and the whole Bayesian machinery can be applied, leading to direct
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and effective inference on the set of all potential graphs concerning the independence structure
underlying the data.

A key issue in resolution of structure learning is integration of the constraint entailed by the
positive-definiteness of the covariance matrix. This constraint has very complex implications on
the set of partial correlations, on which inference is performed to gain insight into the independence
structure underlying the data. We propose a pragmatic approach, based on non-informative priors
and numerical calculation, that allows to take this relevant piece of information into account.

We finally show that, using this methodology, structure learning can efficiently be performed
using Gibbs sampling on the set of all models.

The outline of this paper is the following. In Section 2, we introduce the notational and theoret-
ical background of the paper. In Section 3, methods and tools are devised to draw inference about
graphs. Computational issues are discussed as well. In Section 4, the features of the method are
assessed using simulations. Finally, in Section 5, these new concepts are applied to two problems
from the literature, showing the advantages of our approach compared to previous methods.

2. General background

We first introduce some important notations and definitions that will be very useful in the
subsequent sections: partial correlation coefficients and independence graphs. We also recall two
fundamental lemmas of asymptotic convergence and finally set the Bayesian framework that will
justify our approximations.

2.1. Notations

Let x denote a real number, x a vector, X a matrix, and X a set. M+ stands for the set of all
symmetric matrices that are positive definite. For any matrix X, tr(X) stands for the trace of X.
For any finite set X, |X| is the cardinal of X.

We use the general notation G = (V, E) for an undirected graph, where V is the vertex set and
E the edge set. F stands for the edge set of the complete graph, i.e.,

F = {(i, j) : i, j ∈ V, i < j},
and Ē = F \ E for the set of edges that do not appear in G. Note that, for notational convenience,
we do not include elements of the form (i, i) in the edge sets.

We denote by M+
0 (G) the set of all matrices of M+, indexed by V × V, with element (i, j)

equal to zero whenever (i, j) �∈ E and i �= j .
�0(x) is the multidimensional delta function, such that �0(0) = 1 and �0(x) = 0 for all x �= 0.

For a set A, 1A(x) is the characteristic function of A, mapping every x ∈ A to 1, and every other
x to 0.

p(x|y) is the probability of x given y, E[x] the expectation of x, Var[x] its variance and
Cov[x1, x2] the covariance between x1 and x2. For three variables x1, x2 and x3, x1@x2|x3
means that x1 and x2 are independent given x3. N (µ, �; x0) represents the value of the Gaussian
density function with mean µ and covariance matrix � calculated for vector x0.

2.2. Partial correlation coefficients

Let V be a finite set with |V| = D and x a D-dimensional vector indexed by V. For i, j ∈
V, the conditional correlation coefficient between xi and xj given all other variables is
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given by

Corr[xi, xj |xV\{i,j}] = Cov[xi, xj |xV\{i,j}]√
Var[xi |xV\{i,j}]Var[xj |xV\{i,j}]

.

In the special case where x is multivariate Gaussian distributed with mean µ and covariance matrix
� = (�ij )—or, equivalently, concentration matrix � = (�ij ) = �−1—the conditional correlation
coefficients are independent of the values of the conditioning variables. They are identical to the
partial correlation coefficients of the partial correlation matrix � = (�ij ) that can be obtained
from � as [14]

�ij = fij (�) = − �ij√
�ii�jj

for i, j ∈ V, i �= j, (1)

and �ii = 1. Since � is symmetric and has unit diagonal, it can conveniently be represented by
a vector � indexed by F.

2.3. Conditional independence graphs

Consider a graph G = (E, V). A graphical model on G is defined as the set of all probabil-
ity distributions that satisfy the Markov conditions specified by G. When the distributions are
multivariate normal, we speak of a Gaussian graphical model. In this case, every missing edge
(i, j) �∈ E (i.e., every relation of conditional independence xi@xj |xV\{i,j}) is equivalent to setting
the corresponding partial correlation �ij or, equivalently, the concentration coefficient �ij to zero.
In other words, the concentration matrix is constrained to lie in M+

0 (G). The reader could refer
to [14] or [10] for more details.

2.4. Asymptotic result

We need the following result, that is a translation in terms of density function of the asymptotic
property of the partial correlation coefficients, as shown in [12,11] in a much more general setting.

Define first the parameter change �
h�→ (�, �) with � = f (�), � = g(�), and

⎧⎨
⎩

�ij = fij (�) = − �ij√
�ii�jj

,

�i = gi(�) = �ii ,

where we set � = (�i ). This parameter change is a one-to-one mapping. Also define

�(M, A; �, �) d� d� = l(M, D) · |�|(M−D−1)/2 exp

[
−M

2
tr(A−1�)

]
d� (2)

the distribution that corresponds to an (unconstrained) inverse Wishart distribution with M degrees
of freedom and scale matrix A = (aij ) [4, Appendix A] after reparameterization � �→ (�, �).
Then, Roverato and Whittaker [12] and Roverato [11] showed that

�(�) =
∫

1h(M+)(�, �) · �(M, A; �, �) d� (3)
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asymptotically converges towards a Gaussian distribution with mean p, where p is the sample
vector of partial correlations, indexed by F, and covariance matrix cW, where we set c = 1/M

and W = (wij,kl) indexed by F × F, so that

wij,kl =
⎛
⎜⎝

− 1
2a

−3/2
ii aij a

−1/2
jj

a
−1/2
ii a

−1/2
jj

− 1
2a

−1/2
ii aij a

−3/2
jj

⎞
⎟⎠

t ⎛
⎝ 2a2

ik 2aikail 2a2
il

2aikajk aikajl + ailajk 2ailajl

2a2
jk 2ajkajl 2a2

j l

⎞
⎠

×
⎛
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− 1
2a

−3/2
kk akla

−1/2
ll

a
−1/2
kk a

−1/2
ll

− 1
2a

−1/2
kk akla

−3/2
ll

⎞
⎟⎠ . (4)

3. Structure learning

Let (yn)n=1,...,N be N independent realizations of a N (µ, �)-distributed D-dimensional vari-
able. Assume further that there exists a graph G underlying the data, i.e., � ∈ M+

0 (G). In this
section, the graph structure is unknown. Our objective is to calculate the posterior probability
density function (pdf) of a potential graph structure and provide a numerical sampling scheme to
approximate it.

Instead of making inference about a graph from estimated values of the partial correlations, we
directly treat the graph as a mathematical object on which Bayesian analysis can be conducted.
A convenient way to deal with graphs is to relate them to their supports. For a given conditional
independence graph G = (V, E), the support �, indexed by F, of the graph is defined as �ij = 1
if (i, j) ∈ E, �ij = 0 otherwise. The graph support associated to a Gaussian graphical model can
therefore be considered as a discrete latent variable or a state variable that is characteristic of the
model.

3.1. Estimation of the graph support

Application of Bayes’ theorem yields:

p(�|y) ∝ p(�) · p(y|�). (5)

The prior p(�) can be chosen as desired to match the a priori information at hand. As to the
likelihood p(y|�), it can be expanded through the marginalization and the chain rules:

p(y|�) =
∫

p(�, �|�) · p(y|�, �, �) d� d�. (6)

3.2. Likelihood

According to Roverato [11], the likelihood p(y|�, �) reads

p(y|�, �) ∝ |�|N/2 exp

[
−N

2
tr(�S)

]
,
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where S is proportional to the sample covariance matrix,

S =
N∑

n=1

(yn − y)(yn − y)t,

and y is the sampling mean:

y = 1

N

N∑
n=1

yn.

Equivalently, consideration of a normal distribution for p(y|�, µ, �) leads to the same result [4].
The likelihood p(y|�, �, �) is exactly the same function, written as a function of (�, �), i.e.,

p(y|�, �, �) ∝ |h−1(�, �)|N/2 exp

[
−N

2
tr(h−1(�, �)S)

]
.

But, from Eq. (2), the right-hand side can be expressed as a � function with parameters M =
N + D + 1 and A = S−1, leading to

p(y|�, �, �) ∝ �(N + D + 1, U; �, �), (7)

where we set U = S−1.

3.3. Prior pdf

Working with a parametrization (�, �), instead of �, naturally separates the component whose
dimension is influenced by the graph, �, from the one that is not, �. Indeed, while changing from
a graph to another one does not change the dimensionality of �, yet it may drastically modify
that of �. Using the conditioning chain, we can write:

p(�, �|�) = p(�|�) · p(�|�, �). (8)

3.3.1. Prior for �

As we put it earlier, the most relevant prior information is the dimensionality of �. For this
reason, we again apply the chain rule to p(�|�), leading to

p(�|�) = p(�Ē|�) · p(�E|�, �Ē),

where E is the edge set and �E stands for (�ij )(i,j)∈E. Knowing G imposes a strong constraint on
�Ē, since this vector must be zero, i.e.,

p(�Ē|�) = �(�Ē).

Having no further information relative to �E, except that � ∈ f (M+), one must set p(�E|�, �Ē)

to a uniform density function:

p(�E|�, �Ē) = 1

V (G)
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for �E so that � ∈ f (M+), and zero otherwise. In this equation, V (G) stands for the volume
of f (M+). Note that, having �Ē = 0, any vector � = (�Ē, �E) in f (M+) will also belong to
f (M+

0 (G)). Finally

p(�|�) = 1

V (G)
· �(�Ē). (9)

3.3.2. Prior for �

As to �, we only know that, given G and �, (�, �) must lie in h(M+). Having no further
information relative to �, we set it to a uniform prior, i.e.,

p(�|�, �) ∝ 1h(M+)(�, �). (10)

3.3.3. Prior for (�, �)

Plugging Eqs. (9) and (10) into Eq. (8), the prior probability reads

p(�, �|�) ∝ 1

V (G)
· �(�Ē) · 1h(M+)(�, �). (11)

3.4. Posterior pdf

Bringing together Eqs. (7) and (11) into Eq. (6) leads to

p(y|�) ∝
∫ [

1

V (G)
· �(�Ē) · 1h(M+)(�, �)

]
· [

� (N, S; �, �)
]

d� d�

= 1

V (G)

∫
�(�Ē) · 1h(M+)(�, �) · �(N, S; �, �) d� d�

= 1

V (G)

∫
�(�Ē)

[∫
1h(M+)(�, �) · �(N, S; �, �) d�

]
d�

= 1

V (G)

∫
�(�Ē) · �(�) d�.

Applying the result of Section 2.4, �(�) asymptotically converges toward N (p, cW), with c =
M−1 and where W is calculated as a function of U. The integral then rereads:

p(y|�) a∝ 1

V (G)

∫
�(�Ē) · N (p, cW) d�

= N (pĒ, cWĒĒ; 0)

V (G)
,

where
a∝ stands for “asymptotically proportional to”. The asymptotic posterior pdf for G is finally

given by putting this last result into Eq. (5):

p(�|y) a∝ p(�) · N (pĒ, cWĒĒ; 0)

V (G)
, (12)

with c = N−1.
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3.5. Computational issues

Once that the posterior probability p(�|y) has been calculated in closed form, some points
remain to be tackled for an efficient use. V (G) must be calculated (Section 3.5.1); the posterior
pdf must be approximated (Section 3.5.2); and last, estimates must be defined (Section 3.5.3).

3.5.1. Estimation of V (G)

The parameter V (G) in Eq. (12) does not have any closed form. We here propose a numerical
scheme to approximate it. Since all off-diagonal elements of a partial correlation matrix lie in
[−1, 1], an upper bound for V (G) is 2D(D−1). Hence, if we define VD = 2D(D−1)/2, we can esti-
mate the fraction k(G) = V (G)/VD by use of a rejection sampling scheme. Drawing L (typically
10,000) samples of �E’s uniformly in the hypercube [−1, 1]|E|, k(G) can be approximated by

k(G) ≈ 1

L

L∑
l=1

1f (M+)(�
[l]).

Furthermore, it can be shown (cf. Appendix A) that � belongs to f (M+) if and only if 2I − �
is in M+, which relates this set to the so-called elliptope [6,9,7] and provides a straightforward
test for � ∈ f (M+).

Note that V (G) is an a priori parameter and, as such, does not depend on the data. These
values could therefore be calculated independently, once and for all. However, we would have to
calculate and store 2D(D−1)/2 such volumes, which would quickly prove to be infeasible for large
D. We rather take advantage of the sampling scheme developed (see next section), that essentially
concentrates on the most probable graphs: Each time the probability of a graph is required for the
first time in Gibbs sampling, we calculate the corresponding volume and then store it in case the
probability of the same graph is required again.

3.5.2. Sampling issues
Even though the joint posterior pdf given by Eq. (12) does not belong to any known pdf family,

stochastic simulation can be utilized to approximate it by implementing a Gibbs sampler [13].
More precisely, we follow the scheme proposed in [4]:

• obtain 100 graphs by the following sampling scheme: every edge of each graph is sampled
independently, with a probability 1/2 to be present.

• from these 100 graphs, sample 10 graphs using importance resampling; these graphs are taken
as seeds for the Gibbs sampler;

• starting with each seed, for each iteration n, alternately sample each edge support �[n]
ij according

to the conditional posterior pdf p(�ij |y, �F\(i,j)) obtained from Bayes’ theorem:

p(�ij |y, �F\(i,j)) = p(�ij , �F\(i,j)|y)
p(�F\(i,j)|y)

∝ p(�ij , �F\(i,j)|y),
which is given by Eq. (12).

Gelman et al. [4] showed that the convergence can be tracked by comparing the within- and
between-variances of the samples and that the joint posterior pdf can then be approximated by
the frequency histogram resulting from the second half of the samples.
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3.5.3. Estimates
Since a joint posterior pdf of many variables is hard to interpret, two estimators are proposed

here as “summaries”.
The Maximum a posteriori graph (MAP graph) is defined as

�MAP = argmax� [p(�|y)].

It is obtained by a global and objective criterion, and is independent of any threshold.
Another estimate is the mean graph, E[�]. Though not a graph, this estimate allows more

flexibility in the interpretation, since its values can vary between 0 and 1. Besides, its components
are equal to the marginal posterior pdfs and have an important value as such.

4. Simulations

This section assesses the features of the structure learning relative to the asymptotic results
assumed, and the ability to work on the whole set of possible independence graphs. The programs
were developed with Matlab 6.0® (The MathWorks, Inc.) and run on a Sun SPARC Ultra 10
workstation. In the following, a uniform prior will be assumed for graph supports.

4.1. Data

To assess structure learning, we simulated 100 samples from a 4-dimensional variable with the
following concentration matrix and corresponding partial correlation matrix:

� =

⎛
⎜⎜⎝

1 −0.4 0 −0.4
−0.4 1 −0.4 0

0 −0.4 1 −0.4
−0.4 0 −0.4 1

⎞
⎟⎟⎠ , i.e., � =

⎛
⎜⎜⎝

1 0.4 0 0.4
0.4 1 0.4 0
0 0.4 1 0.4

0.4 0 0.4 1

⎞
⎟⎟⎠ .

The corresponding graph, shown in Fig. 1(a), is the simplest example of a non-decomp-
osable graph and, as such, very few methods would be able to estimate it correctly from the
data.

4.2. Structure learning

Two points of interest were assessed here: the pertinence of the asymptotic posterior and the
accuracy of the sampling scheme detailed in Section 3.5.2. First, the probability of each of the 64
possible graphs was calculated using Eq. (12). The results are given in Fig. 1(b). The most probable
graph was the true underlying structure, with a probability well above any other graph. The two
second-more probable graphs were very similar to the MAP, still reinforcing the validity of the
estimate. When the amount of data increased, further simulations (not shown here) showed that
the probability of the true graph was observed to increase and tend to 1. Concerning the numerical
approximation, the Gibbs sampler converged after only 200 steps on the proposed dataset. The
sample MAP estimate recovered the true independence graph, and the mean estimate given by the
sampler also approximated the mean of the posterior pdf very accurately, as shown in Fig. 1(c).
Finally, comparison of sample and exact joint pdfs exhibited no visible difference in Fig. 1(b).
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Fig. 1. Structure learning: (a) Independence graph. (b) Asymptotic posterior pdf for all possible structures calculated for
each graph. x-coordinate is defined by binary-to-decimal conversion of (�12, �13, �14, �23, �24, �34). For instance, the
true graph (�12 = 1, �13 = 0, �14 = 1, �23 = 1, �24 = 0, �34 = 1) has an x-coordinate of bin2dec(101101) = 45. (c)
For each edge i − j : proportion of graphs with �ij = 1 after convergence of Gibbs sampling (white bar); (E[�|y])ij from
direct calculation (gray bar); sample MAP graph (black bar).
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5. Real data

In this section, we developed two examples from the literature: “Frets’ Heads” and the HIV
Study example.

5.1. “Frets’ Heads”

“Frets’ Heads” [14] is an easy to understand, yet computationally hard problem. Frets reported
measurements of the head length and head breadth of the first and second adult son in a sample
of N = 25 families. The corresponding partial correlation matrix is reported in Table 1. This
example is of great interest, in the sense that it allows to stress the various problems arising
in model selection, and especially the importance of the optimization method used. Whittaker
[14] showed that the minimal graph differed depending on the method used: selection based
on the edge exclusion deviances, backward elimination with deviance difference stopping rule,
backward elimination with overall deviance stopping rule, or two-step procedure. Giudici and
Green [5] proposed a treatment for the set of decomposable graphs.

Structure learning was performed. The algorithm converged in less than 1500 steps, and the
corresponding results are summarized in Figs. 2 and 3. There was no difference between ap-
proximated (from Gibbs sampling) and exact probabilities. The MAP estimate found here is in
accordance with Whittaker [14], with a probability of 0.2176, but other graphs were also found
to have a non-negligible probability.

5.2. HIV study data

This data set was used in [11] to exemplify the use of the Gaussian approximation for the partial
correlation matrix. It originates from a study investigating early diagnosis of HIV infection in
children from HIV positive mothers. The variables are related to various measures on blood and
its components: x1 and x2 immunoglobin G and A, respectively; x4 the platelet count; x3, x5
lymphocyte B and T4, respectively; and x6 the T4/T8 lymphocyte ratio. The observed partial
correlation matrix is given in Table 2. The model assumed in [11] is given in Fig. 4(a). The results
of the structure learning are summarized in Figs. 4(b), 4(c), and 5.

From both the posterior marginal probabilities and the most probables graphs, there is over-
whelming support in favor the presence of links 1–2, 1–5, 1–6, 2–5, 3–5, 3–6, and 5–6. In contrast,
links 2–4 and 3–4 have low probability. Interestingly, while using the model pictured in Fig. 4(a),
Roverato [11] acknowledged that the correlations corresponding to x4 had strong probability
around zero and hypothesized that the model was overparametrized. Our study nicely supports
this conjecture.

Table 1
Frets’ Heads example

x1 1
x2 0.4252 1
x3 0.2225 0.1319 1
x4 0.1523 0.2247 0.6256 1

x1 x2 x3 x4
Partial correlation matrix.
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Fig. 2. “Frets’ Heads” example: (a) Comparison of (E[�|y])ij from the real posterior pdf (white bar) and estimated from
Gibbs sampling (black bar). (b) MAP estimators for the independence graph.

6. Discussion

The new developments proposed in this paper enabled us to consider independence graphs
as mathematical objects of their own and draw inference about them in a very robust, yet flexi-
ble way. The Bayesian approach has the dramatic advantage that uncertainty can very easily be
embedded in the analysis and in the programming. No prior information is needed about po-
tential graphs, since structure learning is performed on the whole set of models. On the other
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0.2176 0.1256 0.0792 0.0696

0.0660 0.0552 0.0540 0.0532

Fig. 3. “Frets’ Heads” example. Eight most probable graphs, with corresponding probabilities.

Table 2
HIV Study example

x1 1
x2 0.483 1
x3 0.220 0.057 1
x4 −0.040 −0.133 0.149 1
x5 0.253 −0.124 0.523 0.179 1
x6 −0.276 −0.314 −0.183 0.064 0.213 1

x1 x2 x3 x4 x5 x6
Partial correlation matrix.

hand, prior information concerning structural relationships, such as independence, can easily be
incorporated.

The algorithm introduced has the advantage of performing a stochastic and global search. Its
speed could be improved if, instead of calculating V (G) through a rejection sampling scheme, a
closed form were available for the constraint volume. Different graphs can have the same constraint
set, and hence the same associated volume, depending on their structural properties. A first step
in this direction could be done by application of results developed in [8]. Other more effective
sampling schemes could also be developed, that concentrate on a set smaller than the hypercube.
For such bounding sets, see for instance [7]. Another possibility would be to replace V (G) by a
crude approximation, e.g., 2|E|, into Eq. (12) to perform the Gibbs sampling, and then recalculate
the posterior probability of all graphs that have been obtained with the sampling according to the
true asymptotic form. Using 2|E| instead of V (G) and throwing away some constraint also allows
to obtain a crude approximation of p(�ij |y):

p(�ij = 1|y) ≈
1
2

1
2 + N (pij , cwij,ij ; 0)

.

This approximation could, in turn, be used to sample the first 100 graphs, instead of a—certainly
too diffuse—probability of 1/2. This would speed up the number of iterations required for the
algorithm to converge.
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Fig. 4. HIV Study example: (a) Model assumed. (b) Convergence monitoring. (c) Marginal probabilities.
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Fig. 5. HIV Study example. Eight most probable graphs, with corresponding probabilities.

7. Conclusion

In this paper, we proposed that independence graphs be treated as mathematical objects by
considering their supports. From there, the issue of model selection became one of parameter
estimation that could easily be handled in a Bayesian framework. Applying asymptotic results, we
were able to derive closed forms for the joint posterior probability of a graph to be the independence
structure underlying a data set. We also showed how this approach could be implemented for a
full statistical analysis on the space of all possible models.

Further research includes optimization and development of this technique for mass analysis,
in order to retrieve independence structure from systems having a huge amount of variables and
data.
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Appendix A. Proof of the results for f (M+)

If (2I − �) ∈ M+, then � = 2I − � is a positive definite concentration matrix whose
associated partial correlation matrix is �, and thus � ∈ f (M+). Conversely, if � ∈ f (M+),
then there exists a concentration matrix � so, that � = f (�). Let � be the corresponding matrix
and � = (�ij ) = 2I − �. For any D-dimensional vector x = (xi) �= 0, the following holds:

∑
i,j

�ij xixj =
∑
i,j

�ij√
�ii�jj

xixj =
∑
i,j

�ij

(
xi√
�ii

) (
xj√
�jj

)
> 0,

since � is positive definite. � is hence also positive definite, and (2I − �) ∈ M+.
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