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Examination of functional interactions through effective connectivity

requires the determination of three distinct levels of information: (1)

the regions involved in the process and forming the spatial support of

the network, (2) the presence or absence of interactions between each

pair of regions, and (3) the directionality of the existing interactions.

While many methods exist to select regions (Step 1), very little is

available to complete Step 2. The two main methods developed so far,

structural equation modeling (SEM) and dynamical causal modeling

(DCM), usually require precise prior information to be used, while

such information is sometimes lacking. Assuming that Step 1 was

successfully completed, we here propose a data-driven method to deal

with Step 2 and extract functional interactions from fMRI datasets

through partial correlations. Partial correlation is more closely related

to effective connectivity than marginal correlation and provides a

convenient graphical representation for functional interactions. As an

instance of brain interactivity investigation, we consider how simple

hand movements are processed by the bihemispheric cortical motor

network. In the proposed framework, Bayesian analysis makes it

possible to estimate and test the partial statistical dependencies between

regions without any prior model on the underlying functional

interactions. We demonstrate the interest of this approach on real data.
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Introduction

Blood oxygen level-dependent (BOLD) functional magnetic

resonance imaging (fMRI), which allows to dynamically follow

metabolic and hemodynamic consequences of brain activity (Chen

and Ogawa, 1999; Huettel et al., 2004), has deeply modified our

knowledge about the brain (Frackowiak et al., 2004). Since its

appearance, it has primarily been concerned with locating brain

processes in determinate regions, thus proposing a topography of

brain activity (Friston et al., 1994; Worsley and Friston, 1995).

However, this approach conveys a rather static idea of brain

processes. By contrast, it is now believed that processing of a

functional task by the brain can only be performed through

interaction of segregated regions within a complex network (Hebb,

1949; Tononi et al., 1998; Frackowiak et al., 2004; Sporns et al.,

2004). Consequently, various methods have been proposed in

fMRI data analysis to extract information of interaction from

datasets, most of which rely on either functional or effective

connectivity (for reviews and discussions, see, e.g., Stone and

Kötter, 2002; Horwitz, 2003; Lee et al., 2003).

Effective connectivity aims at examining the influence that

regions exert on each other (Friston et al., 1993a). Its investigation

requires three distinct levels of information: (1) the regions

involved in the process and forming the spatial support of the

network, (2) the presence or absence of interactions between each

pair of regions, and (3) the directionality of the existing

interactions. Step 1, though far from being trivial, has already

been examined in detail by the existing literature. As a result, many

methods are available to this end, including activation maps

(Huettel et al., 2004), as well as methods deriving from functional

connectivity, such as principal or independent component analysis

(Friston et al., 1993b; Arfanakis et al., 2000), or correlation maps

(Biswal et al., 1995, 1997; Xiong et al., 1999). In our study, we
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assume that this step has been successfully completed, providing

us with a set of regions and corresponding signals.

Step 2, on which we will henceforth concentrate, then focuses

on functional interactions per se. Structural equation modeling

(SEM) is the most widespread way to model effective connec-

tivity (Gonzalez-Lima and McIntosh, 1995; Bullmore et al.,

2000), even though dynamical causal modeling (DCM) has

recently been developed to the same goal (Friston et al., 2003;

Penny et al., 2004b). Both methods rely on the definition of a

model in the form of a directed graph prior to the analysis. The

graph links are usually thought of as anatomical connections that

are functionally relevant for the experiment under consideration.

In this setting, there is hence an anatomical connection

underlying each functional interaction. Unfortunately, several

drawbacks still hamper the use of SEM and DCM, most of

which originate from the difficulty to propose a prior model of

effective connectivity.

First, it is virtually impossible for current methods to perform

extensive model comparison. Indeed, the complexity of interactivity

analysis increases exponentially with the number of regions. For

instance, working with D regions in SEM brings up to 4D(D�1)/2

potential graphs. For a mereD = 6 regions, this amounts to 415� 109

graphs, which is already humongous and computationally out of

reach. The complexity of DCM is at least as high. Methods have

been developed to cope with this issue (Bullmore et al., 2000;

Mechelli et al., 2002; Penny et al., 2004a). Yet, they are only able to

perform model comparison within a limited subset of potential

models given a priori.

Accordingly, it lies on the expert’s hands to sift through the set

of possible graphs and provide only a few potentially relevant

models on which the method will focus. This process requires

information that usually comes from literature on brain anatomy. A

large amount of information is available from previous studies

regarding the underlying neuroanatomy of some networks. Such

evidence may come from lesion studies, electrophysiological

investigations in monkeys or imaging analyses. However, the

results of those experiments are usually incommensurate with one

another for various reasons. The relevance of each finding to a

different or more general group of subjects cannot always easily be

assessed. Information originating from monkey studies must be

used with care to constrain human structural connections. In what

measure patient case studies can be used for healthy subjects

remains an open issue; conversely, results on healthy subjects

cannot usually be applied to just any patient. Results from different

modalities suffer from different kinds of artifacts that make them

hard to compare. Last, and most importantly, only a very limited

amount of information is available for many other networks (e.g.,

language, executive control).

Further hypotheses have hence to be made, such as concen-

trating on anatomical connections that are assumed to be

functionally relevant to the task under investigation. As a matter

of fact, even though the brain is strongly interconnected, the

principle of segregation states that only a few regions should

participate to a given functional task (Tononi et al., 1998).

Consequently, it could be hypothesized that only few of the

anatomical connections are actually used during the processing of a

task, particularly if the given task is simple. Unfortunately, relating

anatomical connections to functional interactions remains an open

issue. A functional interaction requires, yet is not entailed by, the

presence of an anatomical connection. The cortical motor network

is a remarkable illustration of this fact. From a purely anatomical
perspective, this network is very likely to be fully connected,

preventing the use of SEM due to a lack of degrees of freedom.

Nonetheless, it still seems meaningful to study how regions of this

network interact when performing a simple hand movement.

These issues clearly show that existing methods of effective

connectivity require much prior information relative to the

structure of functional interactions. Since the goal of the study is

precisely to investigate this structure, that information is lacking in

most cases. One must then resort to information relative to

anatomical connectivity, which is often diffuse and cannot be

easily translated in terms of functional interactions.

Use of directed graphs as structural models finally raises

conceptual questions inherent to directed graphs, such as observa-

tional equivalence or identifiability (Pearl, 2001), which have not

fully been taken into account in fMRI data analysis yet. These

problems, which are critical for directed acyclic graphs, are even

more crucial for cyclic graphs, which are commonly used in

effective connectivity modeling, while many theoretical questions

remain unsolved (Spirtes, 1995; Pearl and Dechter, 1996; Neal,

2000). These points remain to be tackled before interpretation of

SEM and DCM analyses can be fully trusted.

For all these reasons, many situations occur where existing

model-based approaches of effective connectivity cannot be

applied. The issue to be faced is then the following: assuming

that we are provided with a network of brain regions and have no

other information of any kind relative to their functional

interactivity, how can the global interaction structure of the

network be inferred from fMRI data? In other words, is it possible

to propose data-driven measures of direct functional interactions?

Although computationally convenient, data-driven functional

connectivity (e.g., temporal correlation) cannot be used to this end,

for it is well known that it can emerge from various configurations

that are not related to direct interactions. Unlike effective

connectivity, functional connectivity hence does not ensure that

each functional interaction will be supported by an anatomical

connection. Indeed, we showed that one of the reasons why

functional connectivity was unable to extract information that

could be interpreted in terms of effective connectivity was that it

could not quantify interaction mediation (Marrelec et al., 2005a,b).

We introduced conditional correlation as a way to circumvent this

flaw and hypothesized that a mediated interaction should translate

into a zero conditional correlation.

On this premise, we here propose a novel procedure that extracts

partial correlation from the data. Partial correlation has the

interesting features of providing a convenient summary of condi-

tional independences (Whittaker, 1990) and, hence, of being more

closely related to effective connectivity than marginal correlation.

Furthermore, its use provides a convenient framework for graphical

representation. Methods using partial correlation have already been

proposed (e.g., McIntosh et al., 1996; Sun et al., 2004). In these

previous approaches, though, partial correlation was used to

eliminate the effect of the experimental design. In our approach,

its use is rather to subtract and remove mutual dependencies on

common influences from other brain areas. By conditioning the

dependencies between two areas on other areas, the ensuing

functional connectivity (i.e., partial correlation) reflects interactions

between the two areas in question. Therefore, the use of partial

correlation, allowing access to a quantity that is more closely related

to direct interaction, takes the analysis of functional connectivity

closer to the characterization of functional interactions in terms of

effective connectivity. It is data-driven in the sense that, unlike
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existing methods such as SEM and DCM, it does not require any

prior information regarding functional interactions to proceed. The

partial correlation approach is also unique in that it provides a first

insight into the effective connectivity of the network. As such, it is

not meant to replace SEM or DCM but may act as a preliminary step

and possibly allow for a more efficient use of those methods.

In this paper, we examine a simple instance of brain interactivity

investigation. More precisely, we concentrate on the bihemispheric

cortical motor network involved in simple hand movements. Much

is known about the regions involved in motor processing and their

anatomical connections, mostly through investigation in primates

and studies in patients (Kunzle, 1978; Leichnetz, 1986; Zigmond et

al., 1999; Gazzaniga, 2000). Within the hierarchical organization of

the motor system, the cortex stands as the highest level of motor

control. Cortical regions known to be involved in the motor network

include at least the two sensorimotor cortices, the two premotor

areas, and the two supplementary motor areas. The main cortical

inputs to the motor areas stem from the premotor and the

supplementary motor cortices. Cortico-cortical inputs are also

present, originating from the opposite hemisphere. Movement can

elicit complex brain processes that are still under investigation

(Kandel et al., 2000; Swinnen, 2002). How the available anatomical

information can be translated in terms of models of effective

connectivity therefore often remains unknown. Few structural

models have been proposed so far (Calautti and Baron, 2003;

Rogers et al., 2004), none of which is based on the six

aforementioned regions and considers the interactions between

hemispheres.

The objective of this article is therefore to investigate functional

brain interactivity within the aforementioned network during

simple hand movements. Since the regions defining the functional

network are already known, correlation analysis (and, hence,

functional connectivity) can only confirm that the regions selected

are indeed relevant for the analysis. As to effective connectivity, it

cannot be applied without the definition of a directed graph. Since

the anatomical information available regarding this network does

not put any constraint on the anatomical connectivity, no such

graph can be proposed without strong hypothesis. We hence

examine what kind of information can be extracted from the data

using a partial correlation analysis.

The outline of this paper is the following. In the next section,

we present the partial correlation model. A Bayesian scheme is

then proposed to infer the interaction structure from the data. The

following section is devoted to demonstrating the relevance of this

approach through the analysis of real data from simple hand

movements. Further issues are addressed in the discussion.
Partial correlations

Our objective is to investigate the functional interactions

occurring between the D = 6 following cortical regions: the two

supplementary motor areas, RSMA and LSMA (R standing for

‘‘Right’’, L for ‘‘Left’’), the two sensorimotor cortices, RSMC and

LSMC, and the two premotor cortices, RPMC and LPMC. This set

of regions is denoted by R, i.e.,

R ¼ RSMA;LSMA;RSMC;LSMC;RPMC;LPMCf g:

Let y = (yt)t = 1,. . .,T be the BOLD fMRI time courses of these

six regions. Each yt is further assumed to be a realization of a D-
dimensional Gaussian variable x = (xi)i = 1,. . .,D of mean m and

covariance matrix S. A measure of direct interaction strength

between regions is the partial correlation matrix (Whittaker, 1990;

Lauritzen, 1996). A partial correlation coefficient between two

regions i and j, denoted by Cij, is a particular case of a conditional

coefficient: it is the correlation between regions i and j conditioned

on the set of remaining regions, i.e.,

kij ¼ Corr xi;xjjxRn i;jf g
� �

: ð1Þ

There are hence D(D � 1)/2 = 15 partial correlation coefficients

that form the D-by-D partial correlation matrix / = (Cij). Each

partial correlation coefficient is a measure of the interaction

between the time courses of two regions once these signals have

been projected on the subspace orthogonal to the time courses of

all other regions. It hence only considers the ‘‘direct correlation’’

between both regions, i.e., the correlation that cannot be accounted

for by the influence of any other area in the network.

Set Y = (Y ij) = S�1 the inverse covariance matrix of x, also

called concentration, or precision, matrix. Given Y, the partial

correlation coefficients can readily be calculated through the

following relationship (Whittaker, 1990):

kij ¼ �
Y ijffiffiffiffiffiffiffiffiffiffiffi
Y iiY jj

p ð2Þ

for two distinct regions i and j, and Cii = 1.
Bayesian inference

This model being set, it is now necessary to infer the true partial

correlation matrix underlying the group data. If we knew exactly

the model parameters m and S, the exact partial correlation

coefficients would be unambiguously determined by Eq. (2).

However, since the true values of m and S are unknown and only

partly accessible through the data, so is the value of /, which must

hence be inferred.

Model

Since we want to draw inference at a group level, we have to

take both intra- and intersubject variability into account. This can

readily be performed in a Bayesian framework by introduction of a

hierarchical model, where S0 stands for the group covariance

structure and Ss for that of each subject s, s = 1,. . ., S.
Using standard Bayesian theory, it can first be shown that the

likelihood function of a covariance matrixSs for a given dataset ys
is proportional to an inverseWishart distribution with T-D-2 degrees

of freedom and scale matrix Ss ¼~~~T
t ¼ 1 ys;t � ys;t

� �
ys;t � ys;t
� �t

,

proportional to the sample covariance matrix of subject s (see

Appendix A for a proof of this assertion):

ysjSs ¨ Inv�Wishart T � D� 2;S�1
� �

:

For the sake of convenience, we assume that the covariance

matrix of each subject s originates from an inverse Wishart

distribution with scale matrix S0 and r0 degrees of freedom:

SsjS0;m0 ¨ Inv�Wishart m0;S�10

� �
:

While the use of a conjugate prior for the Ss’s greatly simplifies

calculations, the proposed model can still efficiently capture the
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intersubject variability through the tuning of parameter m0 (Gelman

et al., 1998).

Numerical sampling

Our objective is to obtain Pr(/0jy), the posterior distribution

for the group partial correlation matrix /0 = (/0,ij), given the data.

In the aforementioned model, this quantity cannot be calculated in

close form. Nonetheless, we can resort to the following sampling

scheme.

We first run Gibbs sampling on the model to propose a

numerical approximation of Pr(S0j y) (Ruanaidh and Fitzgerald,

1996; Gelman et al., 1998) and successively sample each

variable given the set of remaining variables. To allow for burn-

in effect, we discard the first half of the samples and only keep

the second half for consideration, that we note (S0
[l]), l = 1,. . .,

L (e.g., L = 5000/2).

Given a sample (S0
[l]) of group covariance matrices, it is then

possible to use Eq. (2) to obtain an approximation of the sought

distribution. For sample l, calculate Y 0
[l] = (S0

[l])�1 and then /0
[l]

from Y 0
[l] using Eq. (2). The marginal distribution of a given

partial correlation can be approximated by the frequency

histogram obtained from the sample. Likewise, all statistics and

estimators can be approximated by their sample counterparts. For

instance

E k0;ijjy
ih
,Mij ¼

1

L
~
L

l¼1
k l½ �

0;ij ð3Þ

Var k0;ijjy
ih
, Vij ¼

1

L
~
L

l¼1
k l½ �

0;ij �Mij

�� 2

; ð4Þ

where ‘‘E’’ and ‘‘Var’’ respectively stand for the posterior

expectation and variance. Having the mean and variance of the

posterior distribution makes it possible to use Laplace (i.e.,

normal) approximation to Pr(P0,ijjy):

Pr k0;ijjy
��
, N Mij;Vij;k0;ij

��
;

where N (m, v; x) is the normal distribution with mean m and

variance v calculated at point x. Significance tests can also be

approximated the same way. For instance, testing against the

hypothesis C0,ij = 0 can be associated to the following

significance: Pr(C0,ij > 0) if Mij > 0 or Pr(C0,ij < 0) if Mij < 0.

These quantities can be approximated by

Pr k0;ij > 0
��
,

1

L
# k l½ �

0;ij > 0
on

and

Pr k0;ij < 0
��
,

1

L
# k l½ �

0;ij < 0
on
;

respectively, where ‘‘#’’ stands for the cardinal of a set. Comparing

a given correlation coefficient C0,ij between two conditions, e.g.,

right-hand movement and left-hand movement, can be achieved

by testing against the hypothesis Cleft hand,0,ij = Cright hand,0,ij in a

similar fashion.

The same procedure can incidentally also be used to generate an

approximation of the posterior distribution of the marginal

correlation coefficients, Pr(R0,ij|y).
Real data

Imaging

The MR protocol was carried out with a General Electric

1.5 T Sigma system. Functional MRI using BOLD contrast was

performed. The protocol included (1) two runs comprising 42

T2*-weighted functional volumes each, each volume covering

the whole frontal lobes (TR/TE/flip angle: 3000 ms/60 ms/90-,
20 contiguous slices per volume, 5 mm slice thickness, in-plane

pixel size: 3.75 mm � 3.75 mm); and (2) one axial inversion

recovery three-dimensional T1-weighted image for anatomical

localization.

Seven healthy right-handed male volunteers were scanned after

giving informed consent set by the local ethic committee. The

experimental design protocol consisted of two different blocked-

trial tasks: self-paced flexion/extension of the fingers of the right or

left hand, depending on the session. Before the experiment started,

all subjects practiced each movement to keep amplitude, acceler-

ation, and strength constant. The paradigm was block-designed,

alternating rest (R) and activation (A), and consisted of seven

epochs of 18 s each for either activation or rest (total duration of

each run: 2 min 06 s in this order: R-A-R-A-R-A-R). Rest

consisted of lying eyes closed in the magnet. The task instructions

were auditory-cued using a digital audio tape and presented using

standard headphones customized for fMRI experiments and

inserted in a noise-protecting helmet that provided isolation from

scanner noise. Direct observation of the tasks was performed by an

investigator during the fMRI acquisitions.

Preprocessing

Preprocessing was performed in MATLAB\1 with SPM99

software2. The first six images of each run were discarded for

signal stabilization. For each subject, images were corrected for

rigid subject motion with the first volume of each run used as a

reference and transformed stereotactically to common spatial

coordinates using the standard template of the Montreal Neuro-

logical Institute (MNI). The resulting images were smoothed with a

Gaussian isotropic spatial filter (FWHM = 5 � 5 � 5 mm).

Region and signal selection

The six regions composing the network (RSMA, LSMA,

RSMC, LSMC, RPMC, and LPMC) were manually drawn by an

expert onto normalized T1-weighted anatomical images without

reference to the activation patterns, using a standard sulcal atlas

(Talairach and Tournoux, 1988; Naidich et al., 2001). Coregistra-

tion across anatomical and functional images and across subjects

was assessed on anatomical landmarks located in the vicinity of the

ROIs such as interhemispheric fissure, ‘‘hand knob’’, and the

crossing between precentral and frontal superior sulci. We also

used standardized ROIs to avoid an effect of ROIs volume across

subjects.

The signal characteristic of each region was then selected as the

spatial average of the time course of all voxels within the region.

This signal was then translated and scaled to be of mean 0 and
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variance 1. We finally obtained seven times twelve time courses of

36 times samples each.

Results

We first estimated the correlation and the partial correlation

matrices corresponding to the right- and left-hand movements,

respectively. This was performed by use of the sampling scheme

detailed earlier. We used the samples to obtain approximations of

the mean and standard deviation for both Pij and Rij. We plotted

these results in Fig. 1. For an easier visualization, the average

interaction structure has also been represented in graphical form in

Fig. 2.

Using the same sampling scheme, it was also possible to

determine which marginal and partial correlations were signifi-

cantly different from zero for a given hand movement. The data

confirmed that all marginal correlations were strongly positive and
Fig. 1. Estimated marginal (top) and partial (bottom) correlations

corresponding to a right-hand (triangle right) or a left-hand (triangle left)

movement. A star indicates a significant difference in the level of

correlation between a right- and a left-hand movement ( P < 0.05).
significantly different from 0 (P < 0.025). This confirms the fact

that the six regions considered are indeed part of a same network

and relevant for the analysis. On the other hand, the significance of

partial correlations varied depending on the coefficient considered.

Thresholding to a level P = 0.025 led to the same structure for left-

and right-hand movements, depicted in Fig. 3. Almost all

intrahemispheric partial correlations remain (five out of six), while

none of the non-homologous interhemispheric partial correlations

significantly differed from 0.

It was also possible to test for significant changes from a left to

a right-hand movement. The results, summarized in Figs. 2 and 4,

clearly indicate that, when changing from a right to a left-hand

movement, the RPMC-RSMC partial correlation significantly

increased (P = 0.05), while the LPMC-LSMC partial correlation

decreased. Conversely, when changing from a left to a right-hand

movement, the RPMC-RSMC partial correlation significantly

decreased, while the LPMC-LSMC increased (same threshold).

The same pattern was observed with marginal correlation only with

a slightly less conservative threshold.
Discussion

We introduced partial correlation analysis as a way to measure

the statistical dependencies between two regions after removing the

confounding effects of all other regions, hence providing data-

driven measures that are closer to effective connectivity than

marginal correlation. Given a set of regions and their corres-

ponding time courses, we developed a Bayesian scheme that

allowed to infer the underlying interaction structure from fMRI

data. The proposed numerical sampling scheme allowed to

approximate the posterior distributions of both the group marginal

and partial correlation coefficients, Pr(R0,ijjy) and Pr(P0,ijjy).
As expected, the time series of the six cortical regions selected –

the two sensorimotor cortices (RSMC and LSMC), the two

supplementary motor areas (RSMA and LSMA), and the two

premotor areas (RPMC and LPMC) – were strongly correlated,

confirming that all six regions did indeed interact, even during

simple hand movements. Left motor areas do not usually appear on

right-handed healthy subjects’ activation maps during right-handed

movements. Nevertheless, movements of the non-dominant hand

have consistently been reported to induce a much more bilateral

activation pattern (Kobayashi et al., 2003; Verstynen et al., 2005).

Similarly, participation of these regions for left-hand movements to

the recovery of motor skills has amply been documented in stroke

patients (Calautti and Baron, 2003; Rossini et al., 2003;Ward, 2005)

or patients with a tumor or undergoing surgery (Duffau, 2000;

Duffau and Capelle, 2001a,b; Krainik et al., 2004), or with multiple

sclerosis (Rocca et al., 2005). More recently, studies of functional

connectivity, particularly on healthy subjects in resting state (Biswal

et al., 1995; Lowe et al., 1998; Xiong et al., 1999) have confirmed

that these regions of the motor network are strongly correlated to one

another.

The most striking result of the partial correlation analysis is the

seemingly central role of the premotor cortices and, to a slightly

lesser extent, the supplementary motor areas. Particularly notice-

able is the switch induced by a change in hand: the dependency

between SMC and PMC contralateral to the hand movement is

significantly higher than that of the other hemisphere. These

results, that have been obtained by examination of functional

interactions within the cortical motor network, are nonetheless in



Fig. 2. Estimated mean marginal (top) and partial (bottom) correlations for left and right-hand movements. Positive values between regions are represented by

solid links, while negative values are represented by dashed links. The interaction strength is coded according to the color bar.
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agreement with the literature on activation of this network.

Globally, the results emphasized the central role of the premotor

cortex in simple hand movements.

The results also show a preponderance of intrahemispheric and

homologous connections, at the expense of non-homologous

interhemispheric connections. For instance, strong interhemispher-

ic dependencies between homologous premotor and supplementary

areas were observed. This effect has not been observed between

sensorimotor cortices and is hence unlikely to be a general,
Fig. 3. Partial correlations that are significantly different from zero during

left-hand, or, equivalently, right-hand movement ( P < 0.025).
spurious effect from the data. Dependencies between both SMCs

remain at a low level, hinting that their connections could be

mediated by premotor and secondary motor areas.

Note that partial correlations, by construction, should be more

robust than marginal correlation to effects that could affect the
Fig. 4. Partial correlations that significantly change from (a) a right-to a left-

hand movement, or (b) a left to a right-hand movement ( P < 0.05).

Correlations that significantly increase are represented in solid lines; those

that significantly decrease are represented with dashed lines.
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brain over a large scale and hence influence the time course of

several brain areas. As a matter of fact, if such an effect is present

in the time courses of several regions, then the conditioning

property of partial correlation will project the data on a space that is

orthogonal to this global, spurious effect, hence removing it, at

least partly, from the time series considered. To what extent this

property is true with fMRI data, and whether it could allow to

produce results that are not affected by, for instance, motion

artifacts or stimulus-induced signal, remains to be investigated.

Of course, there still remains the possibility that a dependency

detected by partial correlation as significant was actually induced

by the effect of a brain area that has not been considered in the

analysis. For instance, basal ganglia and the cerebellum are

notoriously known, among others, to participate in the motor

network, particularly for motor skill learning (Kandel et al., 2000;

Doyon et al., 2003). Since these regions have not been considered

for this investigation, nothing can be said regarding their influence

on the cortical motor network under investigation in this paper.

This uncertainty is strongly related to that of the effect of latent

variables in graphical models (Whittaker, 1990) and remains an

open theoretical issue, that even structural equation modeling has

to face. What can be said, however, in the case of partial

correlations, is that a significant dependency between two areas

translates an interaction that is not mediated by any region that has

been included in the analysis. On the other hand, a non-significant

dependency would rather hint a lack of direct interaction for, if

there were no significant dependency between two areas, there

would be no reason to expect any dependency when other areas

would be added to the analysis.

Partial correlation analysis allows for a graphical represen-

tation of the interaction structure. The connection between these

graphs and SEM models remains to be investigated from a

practical perspective. Providing such a connection would make

it possible to use the data to provide insight into potential

structural models underlying the functional network under

investigation. The method expounded here should actually be

envisioned in a broader procedure for investigation of functional

brain interactivity. Indeed, it performs a preliminary, exploratory

analysis of interactivity that could conveniently be taken into

account when devising a structural model for effective

connectivity investigation. Its use would be particularly relevant

in cases where model-driven approaches are problematic due to

a lack of experimentally designed manipulations, e.g., studies on

sleep or hallucinations. Here, SEM or DCM cannot be easily

applied because the inputs necessary to drive the system are

unknown. For instance, DCM, as it has commonly been applied,

cannot be meaningfully performed without an initial statistical

parametric map (SPM), since it ‘‘reexplains’’ how the local

effects in an SPM result from the connectivity between the

regions and its modulation.

One major gap that remains to be bridged for partial correlation

to provide data-driven investigation of structural models is related

to Step 3. i.e., interaction directionality. Interestingly, determining

direct functional interactions and setting their direction are two

separate issues. In fMRI data analysis, both concepts appear jointly

as required prior information in SEM and DCM, giving the

impression that both issues are strongly tied. But we advocate that

they can be investigated separately—at least to a certain extent. For

instance, Granger causality, as applied in Chávez et al. (2003) in

electroencephalography (EEG) to extract causal relationships,

cannot decide whether such effects are direct or mediated. Partial
correlation does not provide direct information regarding the

direction of an effective connectivity. Nonetheless, a given structure

of effective connectivity implies a particular temporal behavior that

can be characterized to some extent in terms of partial correlation

(Whittaker, 1990). We hence believe that the partial correlation

approach could eventually been used to retrieve some information

of directionality. It would be unable to fully extract the flow of

information without any prior information, e.g., in systems such as

‘‘AYBYC’’. It should nonetheless infer from the data that areas A

and C do not directly interact. Hence, what would result from:

our method would be a (undirected) pathway instead of a flow:

‘‘A–B–C’’, instead of ‘‘AYBYC’’. This pattern of connectivity

would rule out ‘‘AYB@C’’ without being able to discriminate bet-

ween ‘‘AYBYC’’, ‘‘A@B@C’’, and ‘‘A@BYC’’ (Pearl, 2001).

As is the case for SEM, the method proposed here can only

calculate one partial correlation structure per run and then compare

run structures to one another. When conditions are intertwined, like

it is the case for event-related designs, it cannot be applied as

easily. For epoch-related designs, a way to circumvent the problem

is to separate ‘‘on’’ and ‘‘off’’ blocks and compare the partial

correlations calculated for both cases.

The relationship between psycho-physiological interaction

(PPI) as proposed by Friston et al. (1997) and partial correlation

analysis also remains to be clarified. The goal of PPI is to investi-

gate how a factor (regional activation or experimental factor)

modulates the influence of another factor on a regional response.

As such, we can see two major differences. The first one is that

PPI explicitly takes the paradigm into account, while it is implicit

for partial correlation. The other one is that PPI analysis requires a

very precise hypothesis to be tested regarding a set of factors. This

is hence clearly a model-based method, while our method is data

driven.

Despite the fact that partial correlation coefficient extraction

can blindly exhibit some patterns of effective connectivity, it still

relies on prior anatomical and functional background. For instance,

there exists various ways to a priori select the set of regions on

which partial correlation analysis, as well as other methods (e.g.,

SEM and DCM), will take place, e.g., according to group-based or

subject-specific anatomical and/or functional criteria. The effects

of the selection method onto these methods remain unclear.

Another question is what the signal that ‘‘represents’’ the region

should be: the time course of the most significantly activated voxel

in the region or the spatial mean of time courses over the whole

region (Gavrilescu et al., 2004)? Once this has been addressed, it

remains to decide on which part connectivity analysis should be

performed: the raw signal, or the filtered signal? If filtered, what

components should be kept? It is not yet obvious, what part of the

signal carries the connectivity information (Arfanakis et al., 2000;

Cordes et al., 2000). Nonetheless, these issues are not distinctive of

the method expounded here, since they must be considered in SEM

or DCM analysis as well. On the other hand, partial correlation

provides a way to circumvent the issue of prior selection of a

structural model, that SEM or DCM has to face.
Conclusion

In this paper, we proposed to use partial correlations as data-

driven measures of functional dependencies that are more closely

related to effective connectivity than marginal correlations. In this

framework, we measured the interaction strengths between six
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cortical regions of the motor network. Once the regions and the

corresponding time courses were selected, the Bayesian scheme

developed allowed for a fully data-driven procedure that led

investigation of dependencies closer to effective connectivity. This

technique provided relevant insight into the functional relation-

ships between regions of the motor network and, particularly,

confirmed the central role of the premotor cortices during simple-

hand movements. Further research includes investigating proce-

dures to integrate this new kind of information to construct

structural models for effective connectivity.
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Appendix A. Likelihood function of S

Pr(y|m, S), the likelihood of S and m, reads:

Pr y j m;Sð Þ ¼ kk
T

t ¼ 1

Pr yt jm;Sð Þ

”jSjT=2exp � 1

2

XT
t¼1

yt � mð ÞtS�1 yt � mð Þ
#"
:

Each term of the sum in the exponential can be expanded as

yt � mð ÞtS�1 yt � mð Þ ¼ mtS�1m� 2mtS�1yt þ yttS
�1yt:

The sum hence rereads

XT
t ¼ 1

yt � mð ÞtS�1 yt � mð Þ ¼ TmtS�1m� 2mtS�1
XT
t ¼ 1

yt

#"
þ
XT
t ¼ 1

yttS
�1yt;

or, setting m̂ = T�1St = 1
T yt,

XT
t ¼ 1

yt � mð ÞtS�1 yt � mð Þ ¼ T m� m̂mð ÞtS�1 m� m̂mð Þ þ
XT
t ¼ 1

yttS
�1yt � T m̂mtS�1m̂m

¼ T m� m̂mð ÞtS�1 m� m̂mð Þ þ
XT
t ¼ 1

yt � m̂mð ÞtS�1 yt � m̂mð Þ:

Setting S ¼ ST
t ¼ 1 yt � m̂mð Þ yt � m̂mð Þt, the sum in the right-hand side of the above equation rereads tr(SS�1), where tr(.) denotes the trace

operator. The likelihood hence reads

Pr yjl;Sð Þ” jSj�T=2 exp
	
� 1

2



T m� m̂mð ÞtS�1 m� m̂mð Þ þ tr SS�1

� ���
:

To obtain the likelihood as a function of R only, one has to integrate over m as follows:

Pr yjSð Þ ¼
Z

Pr y;mjSð Þdm

¼
Z

Pr yjm;Sð Þ I Pr mjSð Þdm:

Assuming no dependence a priori between m and S, Pr(mjS) is classically simplified as Pr(m) and set to a uniform, non-informative

distribution. Integration with respect to m finally yields the desired likelihood:

Pr yjSð Þ”jSj�
T�1
2 exp � 1

2
tr SSð Þ�1

�	
;

which is an inverse Wishart distribution with T –D –2 degrees of freedom and scale matrix U = S�1 (Gelman et al., 1998, Appendix A).
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