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Abstract

In functional magnetic resonance imaging (fMRI) data analysis, effective connectivity investigates the influence that brain regions exert

on one another. Structural equation modeling (SEM) has been the main approach to examine effective connectivity. In this paper, we propose

a method that, given a set of regions, performs partial correlation analysis. This method provides an approach to effective connectivity that is

data driven, in the sense that it does not require any prior information regarding the anatomical or functional connections. To demonstrate the

practical relevance of partial correlation analysis for effective connectivity investigation, we reanalyzed data previously published [Bullmore,

Horwitz, Honey, Brammer, Williams, Sharma, 2000. How good is good enough in path analysis of fMRI data? NeuroImage 11, 289–301].

Specifically, we show that partial correlation analysis can serve several purposes. In a pre-processing step, it can hint at which effective

connections are structuring the interactions and which have little influence on the pattern of connectivity. As a post-processing step, it can be

used both as a simple and visual way to check the validity of SEM optimization algorithms and to show which assumptions made by the

model are valid, and which ones should be further modified to better fit the data.

D 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Numerous studies have shown that the analysis of blood

oxygen level dependent (BOLD) signals obtained through

functional magnetic resonance imaging (fMRI) provides

accurate maps of where functional processes may be

instantiated in the brain [1,2]. More recently, some

researchers have also suggested that fMRI data contain

evidence of how the brain orchestrates the interactions

between regions to implement cognitive functions. A new

field has consequently emerged in fMRI data analysis,

whose goal is to investigate effective connectivity, i.e., the

influence that regions exert on one another [3–5].

To date, structural equation modeling (SEM) has been

the main approach to examine effective connectivity [6–9].
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Starting from a set of D regions, a structural model is

determined a priori between these regions, based on existing

anatomical and functional information regarding the net-

work under investigation. The model defines the time course

zi (t) of each region i, i=1,. . ., D, as a linear function of

other regions’ time courses,

zi tð Þ ¼
X
j p i

kijzj tð Þ þ �i tð Þ:

In this expression, each path coefficient kij quantifies the

strength that region j exerts on region i. Some coefficients

are constrained to 0, while others remain free to vary.

Setting a structural model is equivalent to defining a

directed graph, i.e., (i) identifying nodes, each of which

stands for a brain region; (ii) setting arrows between these

nodes, where an arrow jYi is present if the corresponding

coefficient kij is not constrained to 0; and (iii) determining

the intensity kij of each arrow jYi. Arrows of a graph are
aging 25 (2007) 1181–1189
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usually thought to represent anatomical connections that

may be functionally expressed during the task under

consideration. In this setting, there is thus an anatomical

connection underlying each functional interaction.

Most SEM techniques require prior completion of Steps

(i) and (ii) described above. They then estimate all

unconstrained path coefficients from the data. The present

study focuses on Step (ii), which remains a real challenge.

A common rule is to resort to known anatomical

information: consideration of existing structural pathways

makes it possible sometimes to narrow the set of potential

connections between regions. However, this procedure

does not usually suffice to provide a fully specified

structural model; the available information must then be

completed with further assumptions. Such hypotheses

usually originate from functional considerations, but no

rule exists as to how they should be incorporated into the

modeling or their bearing on the accuracy and robustness

of the method. Indeed, most studies assume that the model

resulting from Steps (i) and (ii) proposed for SEM analysis

is true and exclusively focus on estimating the path

coefficients. Very few methods confer any kind of

feedback relative to the validity of the various assumptions

introduced into the structural model during Step (ii). The

researcher is hence left with little clue with respect to

which of his or her structural/functional hypotheses are

supported by the data and the influence of these

hypotheses on the conclusiveness of the answers provided

to his or her questions by the data.

Recent developments have attempted to devise methods

to select the most appropriate structural model within a set

of models [9]. Such approaches must deal with very

complex issues. Most importantly, the complexity of

effective connectivity roughly increases exponentially with

the number of regions. Working with D regions in SEM can

bring a huge number of graphs — potentially up to

4D(D�1)/2. For a network of merely D=5 regions, this

amounts to searching a space of 4106106 potential graphs.

Consequently, algorithms that perform model comparison

have to resort to deterministic, local and stepwise proce-

dures to search the space of models. In contrast, directed

graphs are very complex structures with global constraints

that cannot be determined locally. For instance, whether a

graph is acyclic cannot be determined by observation of one

arrow at a time but requires consideration of the whole

graph. Whether an boptimizedQ structural model obtained

through SEM is indeed optimal (and not merely a local

extremum) remains an open issue. So is the question of how

probable other potential graphs are. Given a structural

assumption (e.g., stating that region a has an effect onto

region b), it would be of interest to be able to determine how

much evidence from the data supports it regardless of the

rest of the model. Bullmore et al. [9] proposed a method to

provide a structural model that bbest fitsQ the data (according
to some criterion) as the result of a blind search, as well as

assessing whether a given structural model, selected on
anatomical and functional considerations prior to data

analysis, could be discarded as being significantly different

from this bbest-fitQ model. The algorithm calculated a global

measure of discrepancy between the best-fit model and the

theoretically proposed graph, providing some kind of

feedback with regard to the relevance of the set of

assumptions used to construct the theoretically preferred

model. However, the validity of local structural patterns of

effective connectivity cannot be assessed separately. Pro-

viding such a local assessment would prove to be a

convenient tool to improve a theoretical model in the face

of the actual data: Which connections of the proposed

structural model should be kept? Which ones should be

removed? To our knowledge, no approach yet allows for

such a detailed feedback.

Here, we propose a method for solving this SEM

problem by using partial correlation. Upon examination of

a network of D regions, partial correlation is considered as

the conditional correlation between any two regions with

respect to the set of D�2 remaining regions. We propose to

apply partial correlation analysis to remove mutual depen-

dencies or common influences from other brain areas.

Partial correlation has already been used in fMRI data

analysis to investigate functional connectivity [10–12]. Such

a measure provides a convenient summary of conditional

independencies and has striking graphical properties [13]

that make it relatively easy to compare to structural models.

Also, in Marrelec et al. [14], theoretical considerations led

us to hypothesize that partial correlation might be a relevant

measure of effective connectivity. In this paper, we go one

step further in this direction and provide a direct comparison

of partial correlation and SEM analyses. Specifically, we

advocate that partial correlation analysis can be used for two

purposes: (i) to make educated guesses regarding potential

structural connections that should be included into, or could

be removed from, a structural model prior to an SEM

analysis; and (ii) once an SEM model has been selected, to

provide convincing feedback concerning the validity of the

local hypotheses used to construct the model, as well as the

robustness of the SEM algorithm. In order to illustrate the

main features of partial correlation analysis, we resort to a

dataset on which SEM analysis has already been performed

and published [9]. This dataset, which investigates semantic

decision and subvocal rehearsal, was examined with regard

to effective connectivity and is thought to be a good

benchmark on which to assess the validity of the method

proposed here.

The outline of this paper is as follows: in the next

section, we introduce the dataset and the structural model

used. Section 3 demonstrates that it is possible to infer the

partial correlation matrix from the data and shows the

bearing of this matrix on setting the structural model.

Finally, Section 4 shows that partial correlation analysis can

also be applied as a post-processing analysis to check the

robustness of SEM algorithms and to make local compar-

isons between the information incorporated into the
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structural model and the structure actually contained in the

data. Further issues are raised in the discussion.
2. Study presentation

2.1. General background

The starting point for the present study originated from

the study of Bullmore et al. [9] in which group fMRI data of

a task requiring semantic decision and subvocal rehearsal

were analyzed using classical activation detection methods.

Here, we only introduce details that are relevant for our

purpose. Further topics, including issues raised by the group

analysis, are developed in the discussion.

Based on the activation maps generated and previous

anatomical knowledge, the following D=5 left hemispheric

cortical regions of interest were selected: the ventral

extrastriate cortex (VEC), the prefrontal cortex (PFC), the

supplementary motor area (SMA), the inferior frontal gyrus

(IFG) and the inferior parietal lobule (IPL). Thus, the

anatomical network considered is the following:

R ¼ VEC; PFC; SMA; IFG; IPLf g:

Each region was then associated to a time course for a

total of five time courses of length T=96 time samples. The

sample correlation matrix corresponding to these time

courses, given in Bullmore et al. [9], is reported in

Table 1. The time courses were a group average over the

subjects and the correlation matrix corresponds to the

correlations of the averaged time series.

2.2. SEM analysis

Bullmore et al. [9] first proposed a plausible structural

model based on anatomical and functional considerations;

the only structural connection for which they could find no

evidence in the literature was the VEC–SMA connection.

Because removing only two arrows (VECYSMA and

SMAYVEC) resulted in a number of path coefficients that

were too high and prevented SEM analysis, further

hypotheses were introduced. All the subsequent decisions

to remove or keep other links were based on purely

functional assumptions. The resulting model, henceforth

referred to as the btheoretically preferred modelQ (or btpQ), is
represented in Fig. 1, left. With the use of SEM, the six path

coefficients of this model (k15, k21, k32, k43, k51 and k54)
were then estimated (see Table 2).
Table 1

Sample correlation matrix of the real data set examined in Ref. [9]

(1) VEC (2) PFC (3) SMA (4) IFG (5) IPL

(1) VEC 1

(2) PFC 0.661 1

(3) SMA 0.525 0.660 1

(4) IFG 0.486 0.507 0.437 1

(5) IPL 0.731 0.630 0.558 0.517 1
A procedure implemented in the LISREL proprietary

software package1 was then run. Using the sole correlation

matrix given in Table 1, it calculated a best-fit model from

the data, henceforth referred to as such (or bbf Q). The

algorithm both proposed a structural model and fitted its

path coefficients. The resulting model, schematized in Fig. 1,

right, shared some structural similarities with the theoreti-

cally preferred model, such as the VECYPFC, PFCYSMA

and IFGYIPL pathways. By contrast, other features also

differed. Some connections that were present in the

theoretically preferred model were not selected in the best-

fit model, such as VECYIPL and SMAYIFG, while

connections that were absent in the theoretically preferred

model appeared in the best-fit model, such as PFCYIFG

and SMAYIPL. Accordingly, the best-fit model also had

six path parameters: l15, l21, l32, l42, l53 and l54 were

then estimated (see Table 2).

The theoretically preferred and the best-fit models

differed both structurally (different set of arrows) and

numerically (different path coefficients for arrows that are

common to both models). While the former was based

on, and incorporated, cognitive evidence, the latter was

purely data driven. Consequently, its relation with, as

well as its interpretation in the light of, existing cognitive

knowledge was not so obvious. As a result, a method

was proposed to assess whether the theoretically preferred

model really differed from the best-fit model. Despite the

fact that both models were different, Bullmore et al. [9]

eventually concluded that the data did not contain enough

evidence to enable one to discard the theoretically

preferred model as being significantly different from the

best-fit model.
3. Pre-SEM analysis

To demonstrate how partial correlation analysis can

provide cogent information for SEM, we now return to

one step before SEM analysis is performed. Specifically, we

assume that only Step (i) of the analysis, i.e., region

selection, has successfully been completed, leading to the

set of D=5 aforementioned regions. We propose a data-

driven pre-processing step, based on partial correlations,

that extracts cogent evidence regarding the structure

underlying the data based upon the correlation matrix of

Table 1.

3.1. Partial correlation

Let z=(z t)t =1,. . .,T be the BOLD fMRI time courses of the

five regions in R, with each zt further assumed to be a

realization of a five-dimensional Gaussian variable

y=( yi)i =1,. . .,D of (population) mean M and covariance

matrix �. Partial correlation between two regions i and j,
1 http://www.ssicentral.com/lisrel/.

http://www.ssicentral.com/lisrel/
http://www.ssicentral.com/lisrel/


Fig. 1. Theoretically preferred (left) and best-fit (right) models (from Ref. [9]).

G. Marrelec et al. / Magnetic Resonance Imaging 25 (2007) 1181–11891184
denoted by Cij, is here defined as the correlation between

these two regions conditioned on the set R qfi; jg of

remaining regions, i.e., [13]

jij ¼ Corr½yi; yjjyR qfi; jg�; ð1Þ

The D(D�1)/2 partial correlation coefficients form the

D-by-D partial correlation matrix /=(Cij), which can be

readily calculated from the concentration, or precision,

matrix ��1=�=( x ij) as [13]

jij ¼ �
x ijffiffiffiffiffiffiffiffiffiffiffiffiffi
x iidx jj

p ð2Þ

for two distinct regions i and j, and Cii=1.

Estimating / from the data can be readily performed

using a numeric sampling scheme (Appendix A; see also

Ref. [15] or [12]). The sample obtained can then be used to

approximate estimates of the partial correlation coefficients.

The values of these coefficients can also be tested against

the null hypothesis (H0) that Cij= 0, the sampling scheme

then giving approximations of the coefficient significance
Table 2

Estimated path coefficients for the theoretically preferred (top) and the best-

fit (bottom) models (from Ref. [9])

(1) VEC (2) PFC (3) SMA (4) IFG (5) IPL

k
(1) VEC 0 0 0 0 0.80

(2) PFC 0.59 0 0 0 0

(3) SMA 0 0.60 0 0 0

(4) IFG 0 0 0.31 0 0

(5) IPL �0.16 0 0 0.52 0

l
(1) VEC 0 0 0 0 0.61

(2) PFC 0.50 0 0 0 0

(3) SMA 0 0.58 0 0 0

(4) IFG 0 0.43 0 0 0

(5) IPL 0 0 0.27 0.58 0
levels (see Appendix A). Classically defining the marginal

correlation matrix as 6=(Vij) with

Vij ¼
Aijffiffiffiffiffiffiffiffiffiffiffiffiffi
AiidAjj

p ; ð3Þ

the posterior distribution of this matrix, Pr(6|z), can

incidentally also be approximated with the same procedure.

Note that the sampling scheme proposed in Appendix A

requires the sample covariance matrix, whereas Bullmore et

al. [9] only refer to the sample correlation matrix (repro-

duced here in Table 1). However, this fact has no effect on

our analysis, since we are not so much interested in the

covariance matrix as in the marginal and partial correlation

matrices, i.e., matrices that are normalized. On this account,

working with the sample covariance matrix or with the

sample correlation matrix leads to the same result.

3.2. Results

We used the sampling scheme of Appendix A to compare

each marginal and partial correlation coefficient to 0 and to

test whether they significantly differed from 0. More

specifically, we tested each coefficient Vij of 6 against

the null hypothesis (H0) Vij=0, and similarly with Cij. The

significance levels for the marginal correlation coefficients

were all smaller than 0.001; the significance levels

corresponding to the partial correlation coefficients,

denoted aij, are shown in Table 3. In Fig. 2, we represented

the corresponding log-significance levels, �log(aij), in the

form of a graph.
Table 3

Inference

(1) VEC (2) PFC (3) SMA (4) IFG

(1) VEC

(2) PFC 0.002

(3) SMA 0.409 b0.001

(4) IFG 0.188 0.055 0.192

(5) IPL b0.001 0.100 0.045 0.033

Significance levels aij associated with the partial correlation matrix jjj
given the data z.



Fig. 2. Inference. Significance graphs associated with the marginal (left) and partial (right) correlation matrices. The scale is logarithmic, e.g., a =0.01=10�2 is
associated to a log-significance of 2. Maximum (red) is 3 and above; minimum (blue) is �log10(0.5)60.301.
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Examination of the results clearly illustrates the inade-

quacy of marginal correlation as a way to quantify effective

connectivity: all marginal correlations significantly differ

from 0. This is in part due to the transitive property of

correlation; a correlation between two variables can be

induced, e.g., by a common input. This is confirmed by our

example. A fully connected model does not make much

sense for the data considered. Any relevant measure of

effective connectivity should therefore have at least one or

several values that do not significantly differ from 0. For

instance, since no evidence of an anatomical connection

between VEC and SMAwas found, no effective connectivity

is expected between the two regions. In contrast, all marginal

correlation coefficients (Fig. 2, left) significantly differ from

0 (P=.001). In particular, the data still exhibit a marginal

correlation between VEC and SMA, V13, that is significant.

By contrast, the graph of partial correlation log-signifi-

cances is much more informative (see Table 3). Three links

significantly differ from 0 at a significance level of P=.01:

VEC–IPL, PFC–SMA and VEC–PFC. Two links are under

or around the P=.05 threshold limit: IFG–IPL, SMA–IPL

and PFC–IFG. Finally, four partial correlation coefficients

are above the limit: PFC–IPL, VEC–IFG, SMA–IFG and

VEC–SMA. Interestingly, the partial correlation associated

with the only absent anatomical connection that was

previously reported, VEC–SMA, C13, does not significantly

differ from 0 (Pb.05). Indeed, it is the coefficient with the

lowest significance level.

Second, the structure of significant and nonsignificant

partial correlations can be compared to the information

introduced into the theoretically preferred model. The three

most significant partial correlation coefficients, VEC–IPL,

VEC–PFC, and PFC–SMA, are represented in the form of

directed paths (VEC X IPL, VEC X PFC and PFCYSMA,

respectively). Among the significant links (P6.05), one is

represented in the structural model (IFGYIPL), two are not

(PFC–IFG and SMA–IPL). The VEC–SMA, VEC–IFG and
PFC–IPL connections, which have low partial correlations

(C13, C14 and C25, respectively), have consistently not

been kept in the structural model. One nonsignificant link

has been represented in the structural model (SMAYIFG).

Both resemblances and dissimilarities will be further

interpreted later.
4. Post-SEM analysis

In this section, we assume that all SEM analyses

described in Ref. [9] and summarized in Section 2 have

been conducted. Partial correlation analysis can now serve

two goals. The results previously found can be further

interpreted in the light of the new structural models. These

models can also be used to generate surrogate data where the

expected partial correlation structure can be compared to the

real dataset to test for the validity of the estimated models.

4.1. Partial correlation vs. SEM inference

The results of the pre-processing step, detailed in Section

3.2, can also be compared a posteriori to the results of the

SEM analysis. Indeed, there exists a striking resemblance

between the graphs of partial correlation log-significance

and the SEM analyses as presented in Ref. [9]. When both

the theoretically preferred and the best-fit models agreed,

good agreement was found with partial correlations as well: a

lack of connection VEC–SMA, strong connections IPL–

VEC, VEC–PFC, and PFC–SMA. On the other hand, when

both structural models disagreed (e.g., regarding how

information flows from PFC to IPL), partial correlation

analysis showed that both models introduced different

structural connections (e.g., SMAYIFG for the theoretically

preferred model; PFCYIFG and SMAYIPL for the best-fit

model) that were associated with rather low partial correla-

tion values and, hence, did not strongly structure the data.

The inadequacy of using marginal correlation can be

further exemplified as follows. The correlation between PFC



Table 4

Surrogate data

(1) VEC (2) PFC (3) SMA (4) IFG

tp

(1) VEC

(2) PFC b0.001

(3) SMA 0.497 b0.001

(4) IFG 0.270 0.492 0.0056

(5) IPL b0.001 0.498 0.497 b0.001

bf

(1) VEC

(2) PFC b0.001

(3) SMA 0.499 b0.001

(4) IFG 0.498 b0.001 0.249

(5) IPL b0.001 0.499 0.0151 0.0119

Levels of significance a ij associated to the sample partial correlation matrix

for the theoretically preferred (top) and best-fit (bottom) models.
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and IPL was quite high (0.630F0.063). Yet, in both the

theoretically preferred and the best-fit structural models, this

functional connection can be explained by indirect effective

connections: through PFCYSMAYIFGYIPL in the theo-

retically preferred model; through PFCYSMAYIPL and

PFCYIFGYIPL in the best-fit model. Consistently, the

corresponding partial correlation was lower (0.100F0.135)
Fig. 3. Surrogate data. Graphs representing the sample marginal, R, and partial, P

(bottom) models.
and not significantly different from 0 (P=.05), confirming

the unlikeliness of an effective PFC–IPL connection.

4.2. Surrogate data

Once an SEM analysis has been completed, an important

objective is to assess the validity of the resulting effective

connectivities. Indeed, since most algorithms used are

deterministic, local and stepwise procedures, many potential

factors might have biased the analysis. It would conse-

quently be of interest to provide a simple method that could

test whether the SEM obtained after a complex processing

procedure is indeed relevant to the data under investigation.

To this end, we propose the following procedure. Since

SEM analysis has been fully completed, the structural

models have been fully determined and it is possible to

calculate the corresponding covariance matrices, �tp and

�bf in our case. Given a structural model and its

coefficients, the distribution of a sample covariance matrix

can hence easily be calculated and simulated using

a sampling scheme similar to that used for the in-

ference process (see Appendix B). The distribution of

the sample marginal and partial correlation matrices, R and

P, respectively, can also be approximated. For both

the theoretically preferred and the best-fit models, the
, correlation coefficients for the theoretically preferred (top) and the best-fit
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significances of the partial correlations are given in Table 4

(all marginal correlation coefficients are significantly

different from 0). The log-significance graphs have also

been represented in Fig. 3 for both R and P.

As in Section 3, the significance of the sample marginal

correlation coefficients does not convey much information,

as they all significantly differ from 0. The structure of partial

correlation log-significances, on the other hand, strikingly

resembles that of the structural model that was used to

generate them. As a matter of fact, each partial correlation

structure, as represented in Fig. 3, matches the skeleton of

the corresponding structural model, obtained by trans-

forming the arrows into unoriented edges: VEC–PFC,

VEC–IPL, PFC–SMA, SMA–IFG and IFG–IPL for the

theoretically preferred model; VEC–PFC, VEC–IPL, PFC–

SMA, SMA–IPL, PFC–IFG and IFG–IPL for the best-fit

model. This remarkable feature, which was hinted at in

Marrelec et al. [14] from a theoretical perspective, is here

demonstrated on simulated data. Note that the significance

of effective connections taken into account in each of the

two graphs (e.g., PFCYSMA for the theoretically preferred

model) largely differs from the significance of effective

connections that were not modeled (e.g., between PFC and

IFG in the theoretically preferred model). For each

simulation setting (i.e., each structural graph), a P=.05

significance threshold unambiguously retrieved the skeleton

of the structural graph. Varying the threshold from 0.25 to

about 0.015 did not change the results.
5. Discussion and perspectives

In this paper, we proposed a method that, given a set of

regions, performs a partial correlation analysis. This method

provides a way to approach effective connectivity that is

data driven, in the sense that it does not require any prior

information regarding the anatomical or functional con-

nections. The results reveal that partial correlation analysis

can serve several purposes. In a pre-processing step for a

subsequent SEM analysis, inferring the partial correlation

structure from the data can give insight into the effective

connections that are structuring the interactions (these can

consequently be incorporated into the SEM) and those that

have little influence onto the pattern of connectivity

(allowing us to remove them and gain degrees of freedom).

As a post-processing step, generation of synthetic data using

the path coefficient estimates obtained by any SEM

optimization algorithm provides a simple visual way to

check the validity of the algorithm used; it also shows which

assumptions made by the SEM model are valid and those

that should be modified to better fit the data.

The relationships between SEM and conditional corre-

lation have been the topic of much research and involve

graph theoretic concepts like morality and d-separation

[13,16,17]. Theoretical considerations led us to hypothesize

that partial and, more generally, conditional, correlation

coefficients could extract the (undirected) structure of
effective connectivity from the data [14]. The analysis

developed in this paper strongly supports this assumption.

Indeed, while we demonstrated that a lack of partial

correlation between two regions can potentially be related

to a lack of underlying anatomical connection, the example

used suggests that a strong and significant partial correla-

tion can be interpreted as the presence of an effective

connection. Whether this behavior is a general property of

fMRI data or only incidental remains to be investigated.

Nonetheless, we believe that partial correlation will prove

essential to effective connectivity investigation, for it can

compensate for some of the most important drawbacks

from which SEM analysis suffers (i.e., difficulty to provide

a structural model a priori and lack of control over the SEM

algorithms and results).

Partial correlation analysis, as introduced in this paper, has

a very strong bearing on both the analysis and the consistency

of SEM. In this perspective, it stands as an efficient way to

provide feedback regarding the relevance of a model given a

set of data. A good way to perform joint SEM and partial

correlation analysis would be as follows: a blind partial

correlation analysis could be performed from the data, based

on the data-driven inferential process detailed in this paper.

The resulting structure could then be compared to previous

knowledge from the literature and checked for any discrep-

ancies. If no discrepancies are observed, a first structural

model could then be proposed, integrating both prior

information from the literature and paths with significant

partial correlations. Orientation of the connections (i.e.,

transformation of the unoriented links into arrows) should

still rely solely on prior knowledge. A classical SEM analysis

could then be conducted with the model obtained. After

estimation of the corresponding path coefficients, simulations

could be run to compare the partial correlation structure

expected from such a structural model to the partial

correlation structure actually observed in the data. This

comparison would exhibit both connections on which there is

a good agreement (i.e., well modeled) and connections for

which there exists a discrepancy between the simulated

expected value and the value observed in the data. Such a

comparison could give some insight regarding potential

improvements that could be made to allow for a better fit. In

case of a discrepancy between the extracted pattern of partial

correlation and previous knowledge, further research must be

conducted in order to provide rules to properly constrain the

partial correlation matrix with existing information.

At this stage, how SEM and partial correlation deal with

group analysis deserves a comment. SEM software by and

large only accepts a single correlation matrix as input,

thereby not explicitly considering any potential group

variability — only the baverageQ subject can be examined.

To compensate for this flaw, various pre-processing schemes

try to artificially incorporate some variability induced by the

group. For instance, Bullmore et al. [9] first calculated one

spatially averaged time series for each of the five regions

and each of the 20 subjects. For each of the five regions,
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they then performed PCA of the 20 corresponding subject

time series and kept the first eigenseries as representative of

an average pattern of response to the experimental design

over all subjects in each region. This step led to a total of

five times series (one for each region), from which they

calculated a correlation matrix (Table 1). It is this correlation

matrix that was subsequently used for path analysis in

Bullmore et al. [9] and for partial correlation investigation in

this manuscript. While it is fairly easy to model some group

variability in the method that we expounded here (see, e.g.,

Ref. [12]), how such results can be compared to an SEM

analysis remains to be investigated.

The relevance of partial correlation to investigate SEM

comes up as a cogent demonstration that this technique

provides a pertinent first step to bridge the gap that has

endured between functional and effective connectivity.

Marginal correlation is often used in functional connectivity

analyses (e.g., Refs. [18–23]). However, it has been

suspected of being a rather poor measure of effective

connectivity, based on the prediction that two regions that

were indirectly connected or driven by the same stimulus

could still exhibit a significant marginal correlation (e.g.,

Refs. [14,15]). Our results, both from Marrelec et al. [12]

and this article, tend to experimentally confirm this

theoretical assumption. By contrast, the same research tends

to demonstrate that partial correlation, while also being data

driven, sheds some light on the effective connectivity

structure of a brain network.

A final key issue that needs mentioning is that partial

correlation is unable to recover connection directionality

from the data. Note first that inferring direct interactions and

directionality are two separate issues. The best proof of this

assertion is that, while some data-driven methods, mainly

based on Granger causality, try to cope with directionality

(e.g., Refs. [24,25]), none has been able to differentiate

between direct and mediated interactions. Directionality

represents an information that is complementary to interac-

tion mediation and still has to be assumed a priori.

Nonetheless, our method still allows one to drastically limit

the number of potential graphs by putting strong constraints

onto the skeleton of any potential structural model.
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B. Horwitz and J. Kim are supported by the NIDCD

Intramural Program.
Appendix A. Inferring the marginal and partial

correlation matrices

With the use of standard Bayesian theory, it can be

shown that the covariance matrix � given the data z follows
an inverse Wishart distribution with T�1 degrees of

freedom and scale matrix U=S�1 , where

S ¼
XT
t¼1

zt � zt
Pð Þ zt � zt

Pð Þt

is proportional to the sample covariance matrix, and �zt is the
temporal mean [26]. Calculation of the posterior probability

density function (pdf) of partial correlation cannot be

performed in close form from this distribution. To approx-

imate the distribution of the marginal and partial correlation

matrices, we can nevertheless resort to the following

sampling scheme [12,15]). For sample l,

(1) sample �[l] according to its inverse Wishart

distribution [26] (Appendix A);

(2) calculate �[l]=(�[l])�1, and /[l] from �[l] accord-

ing to Eq. (2); 6[l] from Eq. (3).

Once a large number L (10,000 in this article) of samples

has been drawn following this process, the marginal pdf of a

given quantity can be approximated by the frequency

histogram obtained from the sample. Likewise, all statistics

and estimators can be approximated by their sample

counterparts. For instance,

E jijjz
� �

cMij ¼
1

L

XL
l¼1

j l½ �
ij ; ðA:1Þ

Var jijjz
� �

cXij ¼
1

L

XL
l¼1

j l½ �
ij �Mij

� �2
: ðA:2Þ

Significance tests can also be approximated in the same

way. For instance, testing against the null hypothesis (H0)

Cij=Cij,0 can be associated with the following significan-

ces: Pr(CijNCij,0) ifMijNCij,0 or Pr(CijbCij,0) ifMijbCij,0.

These quantities can, in turn, be approximated from the

sample by

1� aij ¼ Pr jij Njij;0

� �
c

1

L
e j l½ �

ij Njij;0

n o

and

1� aij ¼ Pr jijbjij;0

� �
c

1

L
e j l½ �

ij bjij;0

n o
;

respectively, where #S stands for the cardinal of set S. For

instance, setting Cij,0 to 0 makes it possible to test the null

hypothesis Cij=0.

Appendix B. Generation of surrogate data

A structural model can be defined in matrix form as

y ¼ Kyþ e; ðB:1Þ

K=(Kij) contains the path coefficients. Both the theoret-

ically preferred and the best-fit models have different

matrices, denoted by Ktp and Kbf, respectively, that are
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functions of the path coefficients. We also assume that the

noise e is composed of spatially and temporally independent

Gaussian variables with diagonal covariance matrix:

Var e½ � ¼ V ¼
V 2
1 0

O
0 V 2

D

1
A:

0
@

The first equation can be rewritten as y=(I�K)�1e,
where I stands for the D-dimensional unit matrix; it is

straightforward to show that y is also Gaussian distributed

with covariance matrix [27]

Sm ¼ I � Kmð Þ�1V I � Kmð Þ�1
h it

; ðB:2Þ

with m e {tp, bf}. Since Km is a function of the path

coefficients, so is �m. The likelihood of the data given �m

then reads:

Pr zjS ¼ Smð Þ ¼ j
T

t¼1
N ll; Sm; ztÞ:ð

In this expression, N (ll, �; z t) stands for the

multivariate normal distribution with mean ll and covari-

ance matrix �. The value of the sample covariance matrix S

is then given by [27]

SjS ¼ Sm fWishart T � 1;
1

T � 1
Sm

	
:




To approximate the distribution of the sample marginal

and partial correlation matrices R and P, we resorted to a

sampling scheme similar to that used for the inference

process and detailed in Appendix A.
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[14] Marrelec G, Daunizeau J, Pélégrini-Issac M, Doyon J, Benali H.

Conditional correlation as a measure of mediated interactivity in fMRI

and MEG/EEG. IEEE Trans Signal Process 2005;53:3503–16.
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