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h AP-HP, Hôpital Pitié-Salpêtrière, Department of Neuroradiology, Paris F-75013, France

Received 8 November 2006; received in revised form 17 December 2007; accepted 7 February 2008
Available online 15 February 2008
Abstract

In neuroscience, the notion has emerged that the brain abides by two principles: segregation and integration. Segregation into func-
tionally specialized systems and integration of information flow across systems are basic principles that are thought to shape the func-
tional architecture of the brain. A measure called integration, originating from information theory and derived from mutual information,
has been proposed to characterize the global integrative state of a network. In this paper, we show that integration can be applied in a
hierarchical fashion to quantify functional interactions between compound systems, each system being composed of several regions. We
apply this method to fMRI datasets from patients with low-grade glioma and show how it can efficiently extract information related to
both intra- and interhemispheric reorganization induced by lesional brain plasticity.
� 2008 Elsevier B.V. All rights reserved.
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1. Introduction

It has been proposed that functional brain architecture
abides by two principles, namely, functional segregation
and functional integration (Zeki and Shipp, 1988; Tononi
et al., 1998a). While the segregation principle states that
some functional processes specifically involve well-localized
brain regions, the integration principle acknowledges that
even simple behaviors imply the merging of information
flows across many systems distributed in the whole brain
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(Roland and Zilles, 1998; Varela et al., 2001; Passingham
et al., 2002). It is only through a subtle balance of these
two principles that the brain can efficiently process func-
tional tasks. Segregation and integration have been at the
center of much attention in many areas of neuroscience,
including theoretical neuroscience and neurocomputing,
neuroanatomy, electrophysiology, and functional neuroim-
aging (for a review, see, e.g., Sporns et al., 2004). The bal-
ance between segregation and integration imposes very
precise constraints on brain design, granting it with a
unique hierarchical structure—neurons, neuron columns,
areas, and systems—that, in turn, deeply influences its
functional processing at all scales (e.g., Chialvo, 2004).
Even though there exists an increasing literature regarding
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small scale properties of the brain (Buonomano and Mer-
zenich, 1998; Stepanyants and Chklovskii, 2005), most
behavioral, imaging, and clinical studies only have access
to larger scales, such as areas or systems.

Blood oxygen level dependent (BOLD) functional mag-
netic resonance imaging (fMRI) is an imaging technique
that makes it possible to dynamically and noninvasively
follow metabolic and hemodynamic consequences of
whole-brain neural activity (Chen and Ogawa, 1999; Huet-
tel et al., 2004). As such, it stands as a potentially powerful
candidate for in vivo investigation of functional integration
within brain networks. Indeed, it is now increasingly
accepted that datasets acquired with that modality convey
relevant information relative to functional integration; to
what extent such information is available, though, is an
issue that remains open and subject to controversies (Stone
and Kötter, 2002; Horwitz, 2003; Lee et al., 2003). In
fMRI, most approaches to study integration rely on either
functional or effective connectivity (for reviews and discus-
sions, see, e.g., Friston, 1994; Marrelec et al., 2006a). The
functional connectivity between two voxels or regions is
defined as the temporal correlation between the voxel or
region time courses (Friston et al., 1993b). As to effective
connectivity, it rather considers the influence that regions
exert on each other in a given model that is fitted to the
data, such as a structural equation model (Friston et al.,
1993a; McIntosh and Gonzalez-Lima, 1994). In these set-
tings, a region is a large patch ([1cm2) of cortical tissue
that is assumed to synchronize its activity through local
cytoarchitecture. This definition strongly relates to that
of Hebbian neural assemblies (Hebb, 1949), and is more-
over thought to be a relevant spatial scale to study such
neural assemblies (Varela et al., 2001). Measures of func-
tional and effective connectivity then characterize the level
of interregional integration for each possible pair of
regions in a given set of brain regions that has been selected
by the investigator. Using functional connectivity as a mea-
sure of integration relates a network of N regions to
NðN � 1Þ=2 functional connections. This potentially large
number of connections make results tedious to obtain,
present and interpret. For instance, N ¼ 10 in Toni et al.
(2002), corresponding to NðN � 1Þ=2 ¼ 45 functional con-
nections. Direct handling of the connectivity matrix can
even become intractable: in Salvador et al. (2005),
N ¼ 96 and NðN � 1Þ=2 ¼ 4560, while N � 100 in Bellec
et al. (2006), making use of data mining techniques such
as multidimensional scaling or hierarchical clustering
mandatory.

An alternative to further reduce the complexity of con-
nectivity studies is to resort to a measure called integration
and denoted by I. Integration, as defined by Tononi et al.
(1994), derives from an information theoretical measure
called mutual information (Cover and Thomas, 1991),
Kullback–Leibler information proper (Whittaker, 1990),
or multiinformation function (Studený and Vejnarová,
1998). Its objective is to capture the global level of statisti-
cal dependence within a brain network. It has been applied
to fMRI to capture the eponymous feature of functional
brain integration (Sporns et al., 2000) through the so-called
functional cluster index (Tononi et al., 1998b; Foucher
et al., 2005). Measures derived from I have mostly been
applied as a way to describe and characterize very complex
models of structural connectivity and summarize their
informational content, which could not have been appre-
hended otherwise. Yet, considering a measure of overall
connectivity may appear somehow extreme and too coarse,
thereby evening out some finer relevant information.

In this paper, we propose to characterize interactions
between systems, i.e., sets of regions that can be gathered
on anatomical, structural, and/or functional grounds. Since
systems represent an intermediate scale between regions and
the whole brain, measuring interactions at this level pro-
vides an intermediate measure between functional connec-
tivity as measured by correlation and global measures
such as integration. To this aim, we show that the measure
introduced by Tononi et al. (1994) can be decomposed in a
way that reflects within- and between-system integration,
similarly to what can be done with inertia and Huygens’ for-
mula. With this approach, the number of measures
obtained only depends on the number S of systems selected;
it is equal to S measures of within-system integration, plus
one measure of between-system integration.

The investigation of patients with low-grade glioma
(LGG) is an example of application where such approach
is of special interest. It is currently well known that slow-
growing cerebral lesions such as LGG may induce brain
plasticity (Duffau, 2005). This was suggested pre-opera-
tively, due to the fact that patients usually have no or mild
deficit despite the frequent invasion of eloquent structures.
Moreover, numerous neurofunctional imaging studies have
demonstrated that LGG could induce progressive func-
tional reshaping of brain networks, with recruitment of
perilesional (Wunderlich et al., 1998; Thiel et al., 2001)
and/or contralateral compensatory areas (Fandino et al.,
1999; Holodny et al., 2002; Krainik et al., 2004). Intrao-
perative acute remapping was also observed using direct
electrical stimulations, regularly performed all along the
surgical resection of LGG (Duffau, 2001). Finally, post-
operative fMRI was performed, in particular after removal
of LGG in the supplementary motor area (SMA), which
had induced a transient postsurgical syndrome: in compar-
ison to the pre-operative state, fMRI showed activations
within the SMA and premotor cortex contralateral to the
lesion (Krainik et al., 2004). Interestingly, a better knowl-
edge of this plastic potential has enabled to improve func-
tional and oncological results in the surgery of LGG within
eloquent areas (Duffau et al., 2003).

Emerging from the literature is thus the hypothesis that
a lesioned hemisphere will preferentially recruit its healthy
counterpart in order to compensate for the disorganization
induced by the tumor and its resection and still be able
to process hand movement. This issue has a natural
translation in terms of hemispheres as systems: Does
interhemispheric (i.e., between-system) integration increase
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in patients with a tumor compared to healthy subjects?
This seemingly simple hypothesis could not be directly
tested until now in neuroimaging for a lack of adequate
tool. Introduction of system integration provides a
straightforward, yet powerful, framework to assess the
validity of this fundamental assumption.

The outline of this paper is the following. In the next
section, we present the general background for integration
and derive the relationship between total, intra-system, and
inter-system integration. The following section is then
devoted to demonstrate the relevance of hierarchical inte-
gration through the analysis of fMRI data following motor
recovery of patients with low-grade glioma located within
the SMA. Further issues are addressed in the discussion.

2. Hierarchical integration

2.1. Regions, systems, and the brain

The purpose of this paper is to investigate functional
integration occurring within a set of N regions. We now
describe our notation regarding regions, systems, and asso-
ciated time series, as well as our modeling hypotheses. We
first assume that the N-dimensional fMRI BOLD time ser-
ies zt, t ¼ 1; . . . ; T associated with the N regions are tempo-
rally independent and identically distributed (i.i.d.)
realizations of a N-dimensional random variable y, each
region hence being associated with a variable yn,
n ¼ 1; . . . ;N . y ¼ ðy1; . . . ; yN Þ then stands for the joint var-
iable and is associated to a probability distribution pðyÞ.

Setting S ¼ f1; . . . ;Ng, we furthermore assume that
these N regions are gathered into K subsets,
S ¼ fS1; . . . ;SKg. To avoid confusion with regions, each
of these sets, Sk, will be called a ‘‘system”. The corre-
sponding variables are denoted by ySk

¼ ðynÞn2Sk
. Note

that, with such notation, yS is equal to y.
For instance, when dealing with the investigation of

motor recovery for patients with low-grade glioma located
within the SMA, the following cortical regions (N ¼ 6)
have a clear implication in the plasticity process (Krainik
et al., 2001, 2004): the two supplementary motor areas,
ISMA and CSMA (I standing for ‘‘ipsilesional”, C for
‘‘contralesional”), the two primary sensorimotor cortices,
ISMC and CSMC, and the two lateral premotor cortices,
IPMC and CPMC. S is then equal to

S ¼ fISMA; ISMC; IPMC;CSMA;CSMC;CPMCg:
To test the hypothesis that regions contralateral to the tu-
mor are more integrated with regions ipsilateral to the tu-
mor after resection of the tumor than before, we could
further gather these regions into K ¼ 2 systems, comprising
all regions within the ipsi- and contralesional hemisphere,
respectively, i.e., S ¼ fSIH;SCHg, with

SIH ¼ fISMA; ISMC; IPMCg
and

SCH ¼ fCSMA;CSMC;CPMCg:
In this example, a system would hence be a hemisphere,
and we would have yIH ¼ ðynÞn¼1;2;3 and yCH ¼ ðynÞn¼4;5;6.
For healthy subjects, we could rather consider that regions
are labeled and partitioned according to their laterality.
The same regions would hence define the following sets

S ¼ fLSMA; LSMC; LPMC; RSMA; RSMC; RPMCg;

where L stands for ‘‘left” and R for ‘‘right”, as well as

SLH ¼ fLSMA; LSMC; LPMCg
and

SRH ¼ fRSMA; RSMC; RPMCg:
2.2. Entropy, mutual information, and integration

We now introduce information theoretic concepts,
namely entropy and mutual information, and their applica-
tion to measure functional integration. The entropy of pðyÞ
is given by (Shannon, 1948)

H ½pðyÞ� ¼ �
Z

pðyÞ ln pðyÞdy: ð1Þ

For any two distributions p1ðyÞ and p2ðyÞ, the Kullback–
Leibler information divergence between p1ðyÞ and p2ðyÞ
is given by (Kullback, 1968)

DKL½p1ðyÞ; p2ðyÞ� ¼
Z

p1ðyÞ ln
p1ðyÞ
p2ðyÞ

dy:

This quantity is always positive, and is equal to zero if and
only if p1ðyÞ and p2ðyÞ are almost surely equal. Last, for
any partition ðy1; . . . ; yKÞ of y, mutual information (Cover
and Thomas, 1991), Kullback–Leibler information proper
(Whittaker, 1990), or multiinformation function (Studený
and Vejnarová, 1998) is defined as the Kullback–Leibler
information divergence between the joint distribution
pðy1; . . . ; yKÞ and the product of the marginal distributionsQK

k¼1pðykÞ, i.e.,

I ½y1; . . . ; yK � ¼ DKL pðy1; . . . ; yKÞ;
YK
k¼1

pðykÞ
" #

: ð2Þ

It can also be shown that (see Appendix A or Cover and
Thomas, 1991)

I ½y1; . . . ; yK � ¼
XK

k¼1

H ½pðykÞ�
" #

� H ½pðy1; . . . ; yKÞ�: ð3Þ

A major property of mutual information states that this
quantity is equal to zero if and only if the compound vari-
ables are mutually independent, i.e.,

pðy1; . . . ; yKÞ ¼
YK
k¼1

pðykÞ:

When different from zero, I measures the amount of global
dependence between variables. This quantitative interpre-
tation of mutual information is supported by its interpreta-
tion in information theoretic data compression and
coding theory (MacKay, 2003). Mutual information, or
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integration, was applied to one-dimensional variables, i.e.,
each variable representing a region, in Tononi et al. (1994).
But mutual information can be applied to a much more
general setting, i.e., to compound variables, or systems.

2.3. Relation between integration at various levels

Integration is a key quantity to investigate interactions
within the brain, for it allows not only to calculate the total
functional integration of a brain network, but also to pre-
cisely track the origin of this integration and pinpoint the
respective contributions of within- and between-system
integrations. Indeed, on the one hand we have, at the glo-
bal, network level, the total integration:

I ½y1; . . . ; yN � ¼
XN

n¼1

H ½pðynÞ�
" #

� H ½pðy1; . . . ; yN Þ�: ð4Þ

On the other hand, we have, at the system level, either the
between-system integration

I ½yS1
; . . . ; ySK

� ¼
XK

k¼1

H ½pðySk
Þ�

" #

� H ½pðyS1
; . . . ; ySK

Þ�; ð5Þ

or the within-system integration of system Sk, that reads

I ½ðynÞn2Sk
� ¼

X
n2Sk

H ½ pðynÞ�
" #

� H ½pðySk
Þ� ð6Þ

for all k. Summing Eq. (5) and Eq. (6), for all k, leads to

I ½yS1
; . . . ; ySK

� þ
XK

k¼1

I ½ðynÞn2Sk
�

¼
XK

k¼1

H ½pðySk
Þ�

" #
� H ½pðyS1

; . . . ; ySK
Þ�

þ
XK

k¼1

X
n2Sk

H ½ pðynÞ� � H ½pðySk
Þ�

 !
:

The terms H ½pðySk
Þ� canceling out, simplification of the

right-hand side of this equation leads to

XN

n¼1

H ½ pðynÞ�
" #

� H ½pðyS1
; . . . ; ySK

Þ�:

Since pðyS1
; . . . ; ySK

Þ is equal to pðy1; . . . ; yN Þ, the right-
hand side of the equation is nothing more than
I ½y1; . . . ; yN � of Eq. (4). We have hence proved that

I ½y1; . . . ; yN � ¼ I ½yS1
; . . . ; ySK

� þ
XK

k¼1

I ½ðynÞn2Sk
�: ð7Þ

In words, the total integration I t ¼ I ½y1; . . . ; yN � can be
decomposed as the sum of a between-system integration term

Ibs ¼ I ½yS1
. . . ; ySK

�

and the sum of each system’s integration relative to its
regions,
Iws;k ¼ I ½ySk
� ¼ I ½ðynÞn2Sk

�;

or Ik for simplicity:

I t ¼ Ibs þ
XK

k¼1

Ik: ð8Þ
2.4. Gaussian variables

Gaussianity is a common assumption in fMRI data
analysis. Deriving a simple expression for the quantities
dealt with earlier in a Gaussian framework is hence
highly relevant. Assume that y is Gaussian distributed
with mean l ¼ ðlnÞ and covariance matrix R ¼ ðRn;nÞ.
The joint entropy of y is equal to (Cover and Thomas,
1991)

H ½pðyÞ� ¼ 1

2
ln½ð2peÞN jRj�;

where j � j stands for the determinant. The quantity jRj that
appears in this expression is also called the generalized var-
iance (Anderson, 1958). The entropy of each system Sk is
equal to

H ½pðySk
Þ� ¼ 1

2
ln½ð2peÞNk jRSk ;Sk j�;

where Nk is the number of regions comprising system Sk

and RSk ;Sk ¼ ðRl;mÞl;m2Sk
the covariance submatrix associ-

ated with ySk
. Finally, the entropy of each region is equal

to

H ½pðynÞ� ¼
1

2
ln½ð2peÞRn;n�:

According to Eq. (4), the total integration is then given by

I ½y1; . . . ; yN � ¼
1

2
ln

QN
n¼1Rn;n

jRj

" #
: ð9Þ

Note that, if one decomposes the covariance matrix into

R ¼ diagðRÞ½ �1=2
R diagðRÞ½ �1=2

;

where R is the correlation matrix and diagðRÞ is the diago-
nal matrix of variances, then, using the simple property of
determinants detðABÞ ¼ detðAÞ detðBÞ, one obtains

I ½y1; . . . ; yN � ¼ �
1

2
ln jRj:

jRj is again analogous to a generalized variance.
I ½y1; . . . ; yN � can be considered as the generalization of a
correlation coefficient to a multidimensional system. It is
the theoretical counterpart of the minimum discrimination
information statistic for the test of independence (Kull-
back, 1968, Eq. (3.18), p. 303).

The between-system integration can be obtained from
Eq. (5) as being

I ½ðySk
Þk¼1;...;K � ¼

1

2
ln

QK
k¼1jRSk ;Sk j
jRj

" #
: ð10Þ



Table 1
Evidence, odds, and probability (from Jaynes, 2003, Table 4.1, p. 93)

e (dB) O P

0 1:1 1/2
3 2:1 2/3
6 4:1 4/5
10 10:1 10/11
20 100:1 100/101
30 1000:1 0.999
40 104:1 0.9999

�e (dB) 1=O 1� P
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Writing this expression in the form � 1
2

lnð1� R2Þ shows
that I ½ðySk

Þk¼1;...;K � can be considered as a generalization
of the multiple correlation coefficient R2 (Anderson, 1958,
Eq. (20), p. 32). It can also be interpreted as the theoretical
counterpart of either the log-likelihood ratio criterion
(Anderson, 1958, Eq. (16), p. 232) or the minimum discrim-
ination information statistic (Kullback, 1968, Eq. (3.30), p.
305) for testing independent sets of variates. As to within-
system integration, it can be derived from Eq. (6) and yields

I ½ðynÞn2Sk
� ¼ 1

2
ln

Q
n2Sk

Rn;n

jRSk ;Sk j

� �
ð11Þ

for all k. Based on these results, it is incidentally straight-
forward to check that Eq. (7) holds for Gaussian variables
(see Appendix B).

2.5. Inference

Given the model parameters l and R, all quantities of
interest can be uniquely determined by Eqs. (9)–(11).
Unfortunately, since the true values of l and R are
unknown and only partly accessible through the data, so
are the values of integration, which must hence be inferred
from the data. To this aim, we resort to a Bayesian numer-
ical sampling scheme that approximates the posterior dis-
tribution of the parameters of interest in a group analysis
(see Appendix C, or Marrelec et al., 2006b). From there,
all statistics can easily be obtained. For instance, any inte-
gration I can be approximated from L samples ðI ½l�Þ origi-
nating from pðI jyÞ by

I � M �
ffiffiffiffi
V
p

with

M ¼ 1

L

XL

l¼1

I ½l�

and

V ¼ 1

L

XL

l¼1

ðI ½l� �MÞ2:

More generally, this method provides a simple way to
approximate the posterior probability PðAjyÞ of any (sim-
ple or compound) assertion A related to the within-system,
the between-system, and the total integration measures
introduced here. For instance, the posterior probability
that a total integration I t;1 is simultaneously lower than
two other total integrations I t;2 and I t;3, i.e., A ¼
‘‘(I t;1 < I t;2) and (I t;1 < I t;3)”, can be approximated by

PðAjyÞ � 1

L
# l : I ½l�t;1 < I ½l�t;2 and I ½l�t;1 < I ½l�t;3

n o
;

where # stands for the cardinal function of a set. Such a
procedure nicely eliminates the issue usually caused by
multiple comparisons and the subsequent need to devise
ad hocqueries in classical statistics, since multiple compar-
isons are taken into account in the comparison. This is not
a specific feature of our approach, but is characteristic of
the Bayesian paradigm.

A convenient index of the validity of A is then provided
by the so-called evidence for A given y, defined as (Jaynes,
2003, Section 4.2)

eðAjyÞ ¼ 10 log10OðAjyÞ;
where OðAjyÞ is the posterior odd ratio of A, defined as

OðAjyÞ ¼ PðAjyÞ
Pð:AjyÞ ¼

PðAjyÞ
1� PðAjyÞ ;

where :A stands for the negation of A. Evidence is mea-
sured in decibels (dB) (see Table 1).

3. Real data

3.1. Imaging and preprocessing

The MR protocol was carried out with a General Elec-
tric 1.5T Signa system. Functional MRI using BOLD con-
trast was performed. The protocol included: (1) two runs
comprising 42 T �2-weighted functional volumes each, each
volume covering the whole frontal lobes (TR/TE/flip angle:
3000 ms/60 ms/90�, 20 contiguous slices per volume, 5 mm
slice thickness, in-plane pixel size: 3.75 mm 	 3.75 mm)
and (2) one axial inversion recovery three-dimensional
T 1-weighted image for anatomical localization.

Six right-handed patients with low-grade glioma close to
the supplementary motor area were scanned both upon
admission and after removal of the glioma and recovery
of the motor abilities. The tumor was located in the right
hemisphere for three patients, in the left hemisphere for
the three others. The experimental design protocol con-
sisted of two different blocked-trial tasks: self-paced flex-
ion/extension of the fingers of the right or left hand,
depending on the session. Before the experiment started,
all subjects practiced each movement to keep frequency,
amplitude, acceleration, and strength constant. The sub-
jects were asked to perform the tasks at a movement rate
of 0.5 Hz. The paradigm was block-designed, alternating
rest (R) and activation (A), and consisted of seven epochs
of 18 s each for either activation or rest (total duration of
each run: 2 min 06 s in this order: R–A–R–A–R–A–R).
The task instructions were auditory-cued using a digital
audio tape and presented using standard headphones



Fig. 1. Real data. Partitioning of the six regions into two systems: ipsi-
and contralesional hemispheres.
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customized for fMRI experiments and inserted in a noise-
protecting helmet that provided isolation from scanner
noise. Direct observation of the tasks was performed by
an investigator during the fMRI acquisitions. Seven
healthy right-handed male volunteers were also scanned
after giving informed consent set by the local ethic
committee.

Preprocessing was performed in MATLAB�1 with the
SPM99 software.2 The first six images of each run were dis-
carded for signal stabilization. For each subject, images
were corrected for rigid subject motion with the first vol-
ume of each run used as a reference, and transformed ste-
reotactically to common spatial coordinates using the
standard template of the Montreal Neurologic Institute
(MNI). The resulting images were smoothed with a Gauss-
ian isotropic spatial filter (FWHM = 5 	 5 	 5 mm).

3.2. Region and signal selection

According to previous studies (Krainik et al., 2001,
2004), six cortical regions were selected: ISMA, ISMC,
IPMC, CSMA, CSMC, and CPMC. These regions were
manually drawn by an expert onto normalized T 1-weighted
anatomical images without reference to the activation pat-
terns, using a standard sulcal atlas (Talairach and Tour-
noux, 1988; Naidich et al., 2001). Coregistration across
anatomical and functional images and across subjects was
assessed on anatomical landmarks located in the vicinity
of the regions of interest (ROIs) such as the interhemispheric
fissure, the ‘‘hand knob”, and the crossing between precen-
tral and frontal superior sulci. We also used standardized
ROIs to avoid an effect of ROIs volume across subjects.

The signal characteristic of each region was then selected
as the spatial average of the time course of all voxels within
the region. This signal was then translated and scaled to be
of zero mean and unit variance. We finally obtained 6
(patients) 	 2 (ipsi- and contralateral hand move-
ments) 	 2 (before and after surgery) time courses of 36
times samples for patients, and 7 (subjects) 	 2 (left- and
right-hand movements) for the control group.

3.3. Hierarchical integration

In the case of a patient’s cortical motor network, the
total integration yields

I t ¼
1

2
ln

Q6
n¼1Rn;n

jRj

" #
; ð12Þ

and the interhemispheric (i.e., between-system) integration
reads

I i ¼
1

2
ln
jRIH ;IH j � jRCH ;CH j

jRj

� �
: ð13Þ
1 The Mathworks Inc., Natick, MA, USA.
2 Wellcome Department of Cognitive Neurology, UCL, London, UK.
As to both intrahemispheric (i.e., within-system) integra-
tions, they read

I IH ¼
1

2
ln

Q
n¼1;2;3Rn;n

jRIH ;IH j

� �
and ICH ¼

1

2
ln

Q
n¼4;5;6Rn;n

jRCH;CHj

� �
;

ð14Þ
respectively. In this setting, Eq. (8) states that the total inte-
gration I t can be decomposed as the sum of an interhemi-
spheric integration term I i and the intrahemispheric
integration terms of each hemisphere relative to their re-
gions, I IH and ICH:

I t ¼ I i þ I IH þ ICH: ð15Þ
The regions, systems, and corresponding integrations are
schematized in Fig. 1. For healthy subjects, the same re-
sults hold with ‘‘RH” and ‘‘LH” instead of ‘‘IH” and
‘‘CH”.

We approximated the posterior distributions for all inte-
gration measures according to the sampling scheme
detailed earlier and Eqs. (12)–(14). The samples so
obtained were then used to calculate the corresponding
means and standard errors, as well as to test for differences.

3.4. Results

The estimated integration measures are summarized in
Fig. 2. We also compared the integration measures of con-
trol and patient groups. In the remainder, a difference is
declared to be significant3 when the corresponding evidence
3 Since inference is performed in a Bayesian framework, the terms
‘‘significant” and ‘‘significance” are not used in their usual, frequentist
sense (i.e., when comparing the p-value of a null hypothesis to a given
threshold) but in the sense of ‘‘above threshold”.



Table 2
Real data

H/R H/L Pr/I Pr/C Po/I

Total integration

H/L �2.0
Pr/I 1.8 3.5
Pr/C 9.6 12.4 6.9
Po/I �20.9 �19.2 �21.5 <�30.0

Po/C �25.2 �19.5 �25.2 <�30.0 0.1
Interhemispheric integration

H/L �2.0
Pr/I �2.5 0.52
Pr/C 24.0 25.2 21.5

Po/I �15.9 �14.0 �12.6 <�30.0

Po/C 3.9 5.7 5.6 �13.6 25.2

Changes in total (top) and interhemispheric (bottom) integration as
measured by evidence (in dB, see Section 2.5). Significant differences
(absolute values higher than 10 dB) are emphasized in bold. Positive
values correspond to increases, negative values to decreases. H: healthy
subjects; R: right hand; L: left hand; Pr: patients pre-operatively; Po:
patients post-operatively; I: ipsilesional hand; C: contralesional hand. For
instance, the total integration is significantly higher for Pr/C than for H/L,
with an evidence eðIPr=C > IH=LjyÞ � 12:4 dB.
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is larger than a threshold of 10 dB. The interested reader
may refer to a comprehensive report of the evidences of
all pairwise comparisons in Table 2 (top – for total
integration, bottom – for interhemispheric integration)
and Table 3 (for intrahemispheric integration). In the fol-
lowing, we only mention results that are relevant to our
hypotheses. Evidences are denoted e throughout the text.
When some observed feature was the joint result of several
simple evidences, it was denoted ecompound. For instance, to
prove that the total integration is significantly lower for
patients performing an ipsilesional hand movement post-
operatively than for patients performing the same move-
ment pre-operatively, one has to compute the evidence of
the assertion

AI ¼ \I t;Po=I < I t;Pr=I";

similarly, to prove that the total integration is significantly
lower for patients performing a contralesional hand move-
ment post-operatively than for patients performing the
same movement pre-operatively, one has to compute the
evidence of the assertion

AC ¼ \It;Po=C < I t;Pr=C":

Now, if one wants to prove that the total integration is
significantly lower for patients post-operatively than for
patients pre-operatively (regardless of the movement),
one must compute the evidence of the assertion

A ¼ \AI and AC":

Assertion A is a compound assertion and, as such, its
corresponding evidence is denoted ecompound. For a non-
significant compound assertion, we reported the highest
marginal evidence.

For the control group, there was globally no significant
difference in either the total (I t) or interhemispheric (I i)
integration when comparing a left- and a right-hand move-
ment (jej ¼ 2:0 dB in both cases). Also, for a given hand
movement, there existed a significant dominance of the
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patients before surgery, and after surgery and recovery of the motor ability.
hemisphere is represented with a right (resp. left) pointing arrow. For patients
represented with a left (resp. right) pointing arrow.
intrahemispheric integration of the hemisphere contralat-
eral to the hand movement ðecompound ¼ 10:5 dBÞ, i.e., of
the left hemisphere over the right one for a right-hand
movement ðe ¼ 17:9 dBÞ and of the right hemisphere over
the left one for a left-hand movement ðe ¼ 11:5 dBÞ. Glob-
ally, the laterality of movement had little influence on the
integration, for the level of intrahemispheric integration
in the hemisphere ispilateral (resp. contralateral) to the
hand movement did not significantly depend on the hand
used. Ipsilaterally to the hand movement, ILH for a left-
hand movement was not different from IRH for a right-
hand movement ðjej ¼ 0:4 dBÞ; contralaterally to the hand
movement, IRH for a left-hand movement was not signifi-
cantly different from ILH for a right-hand movement
ðjej ¼ 3:3 dBÞ. In other words, the motor network behaved
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, intrahemispheric integration of the lesioned (resp. healthy) hemisphere is



Table 3
Real data

H/R/R H/R/L H/L/R H/L/L Pr/I/I Pr/I/C Pr/C/I Pr/C/C Po/I/I Po/I/C Po/C/I

H/R/L 17.9

H/L/R 9.2 �3.3
H/L/L 0.4 �13.6 �11.5

Pr/I/I 7.1 �3.3 �0.2 6.9
Pr/I/C 9.5 �1.4 1.5 9.5 2.6
Pr/C/I 13.2 2.0 �4.5 13.8 4.4 3.0
Pr/C/C 5.2 �4.5 �2.0 5.6 �1.1 �2.7 �9.9
Po/I/I �22.2 <�30.0 <�30.0 �25.2 <�30.0 <�30.0 <�30.0 <�30.0

Po/I/C 1.0 �9.6 �7.0 0.7 �6.1 �7.8 �11.7 �4.3 27.0

Po/C/I �25.2 <�30.0 �30 �24.0 <�30.0 <�30.0 <�30.0 <�30.0 �2.0 �24.0

Po/C/C �12.3 <�30.0 �23.0 �12.7 �20.9 �24.0 <�30.0 �19.2 7.16 �13.1 12.4

Changes in intrahemispheric integration as measured by evidence (in dB, see Section 2.5). Significant differences (absolute values higher than 10 dB) are
emphasized in bold. Positive values correspond to increases, negative values to decreases. The different datasets are classified as follows: subject type/hand
movement/hemisphere. H: healthy subjects; Pr: patients pre-operatively; Po: patients post-operatively; R: right; L: left; I: ipsilesional; C: contralesional.
For instance, the intrahemispheric integration of Pr/C/I is significantly higher than that of H/L/L, with eðIPr=C=I > IH=L=LjyÞ � 13:8 dB.
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rather symmetrically relative to simple-hand movements as
far as functional integration was concerned: a shift in hand
laterality essentially induced a shift in intrahemispheric
integration, i.e., decrease ipsilaterally and increase contra-
laterally to the movement.

For patients before surgery, a pattern similar to that of
the control group was observed within the group: no dif-
ference in total integration ðjej ¼ 6:9 dBÞ, symmetry of
intrahemispheric integration relative to movement
ðjej < 3:0 dBÞ. Unlike the control group, while there could
exist a difference between intrahemispheric integrations
for an contralesional hand movement (e ¼ 9:9 dB, close
to significance), no difference was found for a ipsilesional
hand movement ðjej ¼ 2:6 dBÞ. Comparing the group of
patients before surgery during an ipsilesional hand move-
ment to the control group, no difference was found in
total integration ðjej < 3:5 dBÞ, intrahemispheric integra-
tion ðjej < 7:1 dBÞ, as well as interhemispheric integration
during an ipsilesional hand movement ðjej < 2:5 dBÞ. By
contrast, interhemispheric integration during contralesion-
al hand movement was significantly stronger (ecompound ¼
18:5 dB) than both during an ipsilesional movement
(e ¼ 21:2 dB) and what could be observed in the control
group (e > 24:0 dB).

For patients after surgery and recovery, significant
decreases in total (ecompound ¼ 21:5 dB) and interhemi-
spheric (ecompound ¼ 9:9 dB, close to significance) integra-
tions were found for both hand movements, as well as a
significant decrease (ecompound > 30 dB) in ipsilesional intra-
hemispheric integration compared to before surgery and
the control group. Similarly to before surgery, interhemi-
spheric integration during contralesional hand movement
was significantly stronger than during an ipsilesional
movement (e ¼ 21:2 dB). Unlike before surgery,
contralesional integration after surgery was found to be
modulated by hand movement, significantly decreasing
from an ipsilesional to a contralesional hand movement
(e ¼ 13:1 dB).

In summary, we observed the four following major
changes (ecompound ¼ 12:4 dB):

 the total integrations I t measured for both hand move-
ments were significantly lower (ecompound ¼ 14:4 dB) for
patients after surgery and recovery than they were for
healthy subjects and patients before surgery;

 unlike healthy subjects (jej ¼ 2:0), the interhemispheric

integration I i significantly increased (ecompound ¼
20:0 dB) when switching from ipsilesional to contrale-
sional hand movement for patients, both before and
after surgery;

 the ipsilesional intrahemispheric integration I IH mea-

sured for both hands was significantly lower
(ecompound ¼ 18:2 dB) for patients after surgery and
recovery than it was before surgery and for the control
group;

 differing from before surgery (jej ¼ 1:1 dB), a significant

difference between the two intrahemispheric integrations
I IH and ICH when patients after surgery and recovery
performed ipsilateral hand movement (e ¼ 27:0 dB).

4. Discussion

In this paper, we showed that the total integration can
be decomposed as the sum of within-system integrations
and a between-system integration, allowing for a hierarchi-
cal approach of integration (e.g., by considering the rela-
tive contributions of regions, hemispheres, and the whole
network). We expressed all quantities as functions of the
covariance matrix in a Gaussian framework and used a
Bayesian sampling scheme to perform group inference
from data. We applied this method to a dataset that both
demonstrated the importance of I as a measure of integra-
tion in fMRI data analysis and illustrated the relevance of
the method to investigate systems’ integration.

From a methodological perspective, the concordance
between expected results in patients with LGG and calcula-
tions obtained with hierarchical integration pleads for the
relevance of this measure in fMRI analysis of functional
interactions. Integration has only been used in fMRI in
conjunction with the so-called functional cluster index, or
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FCI (Tononi et al., 1998b; Foucher et al., 2005), which is
defined as the ratio of a subsystem’s integration and its
interaction with the rest of the system. Also, a degenerate
form of integration is commonly used to measure integra-
tion, namely correlation q. Indeed, when one artificially
considers a network of two regions (i.e., with two 1-region
systems), where each region also stands as a system, the
total integration yields (Kullback, 1968; Marrelec et al.,
2005)

I t ¼ �
1

2
lnð1� q2Þ

and is equal to the between-system integration, both with-
in-system integration terms being equal to zero. Correla-
tion is a common measure of functional connectivity in
fMRI (e.g., Dodel et al., 2005; Achard et al., 2006). Yet
its generalization to quantify interactions between com-
pound variables has only led to correlation-based n-to-1
measures (Jiang et al., 2004). In this context, mutual infor-
mation applied to systems appears as a natural, principled
and powerful generalization of correlation. We advocate
that it is a valid measure of functional brain integration
in fMRI, whose use would prove relevant to investigate
integration within systems composed of several regions.
The framework proposed in this paper supports the use
of systems and hierarchical analyses in investigation of
functional brain integration, since it relates brain integra-
tion at various levels. Indeed, closer examination of sys-
tems can lead to divide them further into subsystems. For
example, a network associated to visuomotor tasks can
arguably be separated into visual and motor systems; the
motor system itself can, in turn, be decomposed into cere-
bellum, striatum, and cortex, and so forth.

Many cases exist where such a hierarchical approach
would prove valuable. Functional MRI data analysis has
brought important information relative to the neural corre-
lates of brain processes. However, this knowledge mostly
originates from activation maps and, hence, merely pro-
vides localization of the network involved. The validity of
new findings was reinforced by the possibility of comparing
these localizations with previous findings coming from
other fields. However, these previous findings display a
wide variety of nature (anatomical or functional; if func-
tional, electromagnetic, metabolic, or hemodynamic) and
scale (temporal and spatial), making comparisons far from
obvious and highly subjective (Horwitz and Poeppel,
2002). Due to its intrinsic complexity, this issue is even
more blatant for the study of integration than it is for local-
ization. Hierarchical integration will, we believe, remove
one obstacle to the interpretation of fMRI results in the
light of results from other fields, such as neuroanatomy,
electrophysiology, case studies, and neurosurgery.

For instance, the case examined in this paper—func-
tional plasticity of the cortical motor network induced by
slow tumor growth and surgery—is a compelling illustra-
tion that hierarchical integration analysis makes it possible,
and convenient, to compare the network’s interaction
features as observed through fMRI data with clinical
experience. Indeed, contrahemispheric recruitment is a
well-established hypothesis in many tumor and stroke
pathologies that could not be tested as such using previous
methodological framework. Some works on strokes used
laterality indices based on activation maps to quantifiy
the degree of contralateral recruitment (Cramer et al.,
1997; Calautti and Baron, 2003), but this approach has sev-
eral drawbacks, such as concentrating on the primary
motor cortices, being threshold-dependent, and only taking
activation phenomena into account. On the other hand, our
approach provides an adapted framework in which such
quantification can be efficiently made at the level of an
hemisphere. Furthermore, this quantification will not only
take activation, but also more generally connectivity effects,
into account. The fact that our analysis strongly
corroborates the hypothesis of contralesional recruitment
is, furthermore, evidence of the relevance of integration in
fMRI.

From the analysis of the real data, it was first shown
that, pre-operatively, in comparison to the control popula-
tion of healthy volunteers, there was a significant increase
in the interhemispheric integration for a contralesional
hand movement. These data fit well with the results of
the literature using neurofonctional imaging in cases of
brain lesions, especially stroke, which have demonstrated
a recruitment of the contralesional homologous (Rijntjes
and Weiller, 2002), due to changes in the transcallosal inhi-
bition and interhemispheric competition (Murase et al.,
2004). In slow-growing LGG, numerous pre-operative neu-
rofunctional imaging studies not only showed activations
within the contralesional hemisphere (Fandino et al.,
1999; Holodny et al., 2002; Krainik et al., 2004), but also
supported the actual functional role of such recruit-
ment—via the recent use of transcranial magnetic stimula-
tions (Thiel et al., 2005).

Second, post-operatively, a modulation of the inter-
hemispheric integration with the laterality of hand move-
ment was equally found, again in accordance with
previous neuroimaging studies performed after functional
recovery following a surgical resection of LGG located
within the motor network—which showed a contralesion-
al recruitment (Krainik et al., 2004). Moreover, there was
a decrease in the intrahemispheric ipsilesional integra-
tion—while the intrahemispheric contralesional integra-
tion was preserved to a certain extent. This observation
is in agreement with the fact that a surgery has been per-
formed within the ipsilesional hemisphere, inducing an
‘‘acute” lesion, in opposition to the pre-operatively slow-
growing LGG that has little impact on the pre-operative
ipsilesional intrahemispheric integration due to an intra-
hemispheric reorganization (Duffau, 2005). Indeed, it is
well known that the tumor resection itself, when per-
formed within eloquent areas, may generate a dysconnec-
tion syndrome, in particular in the premotor region,
explaining the occurrence of a transient SMA syndrome
(Fontaine et al., 2002).
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However, the precise mechanisms of such plasticity
remain incompletely understood, especially at the level of
a whole functional network (i.e., not only regarding one
cortical area separately). Furthermore, it is still difficult
to predict, before the surgery, the pattern of post-operative
remapping—thus the limit of the plastic potential for each
patient. It may be hypothesized that integration changes
could be related to the characteristics of the lesion of func-
tional areas (tumoral infiltration and surgical resection). As
a consequence, it remains necessary to better study the
individual connectivity, namely, the relationships between
areas involved in a large functional network, and to ana-
lyze the dynamics of such interrelations in longitudinal ser-
ies (particularly before and following surgery). In other
words, what are the neural correlates, e.g., in terms of func-
tional integration, of brain plasticity and, more particu-
larly, interhemispheric compensation?

Hierarchical analysis removes the implicit tradeoff that
usually had to be kept regarding the number of regions
involved in interactivity investigation with, e.g., correlation
analysis. Indeed, incorporating many regions has the
advantage of producing a more comprehensive network
and, hence, analysis. However, it also implies a significant
increase in the amount of information that has to be pro-
cessed by a human operator. Consequently most methods
(with exceptions, e.g., Salvador et al., 2005; Bellec et al.,
2006) only use a few regions. With hierarchical analysis,
it would be possible to use many regions, but only a few
systems. Interestingly, the information contained in inte-
gration is also contained in the correlation matrix, since
healthy subjects
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Fig. 3. Real data. Estimated correlation matrix (posterior mean) correspondin
white to 1).
the former can be considered as a one-dimensional ‘‘sum-
mary” of the latter. This can be evidenced by taking a clo-
ser look at the estimated correlation matrices
corresponding to the various conditions, represented in
Fig. 3. According to Eqs. (12)–(14), the integration of a sys-
tem (respectively, of the whole brain) is a function of the
system submatrix (respectively, the full matrix). Simply
looking at the correlation matrices for patients in Fig. 3
clearly shows (i) a global decrease in correlations after sur-
gery compared to before surgery and healthy subjects; (ii) a
decrease in correlations within the ipsi-lesional hemisphere
after surgery compared to before surgery or healthy sub-
jects; and (iii) an increase in correlations between ipsi-
and contralesional hemispheres before surgery compared
to healthy subjects. We are hence able to visually confirm
the results of integration using the correlation matrices.
Integration provides an efficient and principled way to
quantify this global level of interaction. As illustrated on
this example, I appears to be more a systems property
rather than associated with a particular region or its con-
nections. In this sense, it seems neutral to the internal orga-
nization of that network, e.g., whether ISMA is connected
to ISMC.

From a methodological standpoint, several features of
our method could be improved regarding the estimation
of integration. Since the underlying model assumes i.i.d.
data, no particular temporal coherence or structure is
granted to the data. For this reason, it fails to grasp any
such features of the signal as the influence of the block
design or potential temporal autocorrelation. While such
before surgery after surgery
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effects are obviously present in the data, normal quantile
plots of the time series analyzed in this article showed that
deviations from normality are actually rather limited.
Globally, we believe that the approach expounded here
provides a good, simple, and fast approximation of the
results that would be obtained by more refined methods.
Even though the model provided is very simple at the indi-
vidual level, the major part of the variability, which occurs
between subjects, is correctly taken into consideration by
our model.

A last point that needs to be mentioned is region and
signal selection. Many methods exist to define regions per-
taining to a network, ranging from anatomical delineation
to functional selection based on significant activation or
inter-correlation; similarly, the signal corresponding to a
given region can be obtained by taking the raw or filtered
signal of a voxel, by spatial averaging over a region, by
PCA, or ICA (for a review, see, e.g. Marrelec et al.,
2006a). Different ways to proceed along this first step
may give different results in integration. The influence on
hierarchical integration has yet to be assessed. Nonetheless,
this issue is omnipresent in the field of functional brain
connectivity. While the effects that we investigated in the
real data of this paper were induced by tumor growth
and surgery—and, hence, expected to be rather large—
being able to detect integration variations in healthy sub-
jects might involve more subtle ways to select the regions
and corresponding signals.

5. Conclusion and perspectives

The objective of this article was to provide a methodo-
logical framework for the hierarchical examination of func-
tional brain integration. To provide an investigation tool
that is more refined than global integration, we proposed
to apply integration at a system’s level. We also showed
that a relationship exists between integrations at different
levels, allowing for a hierarchical analysis of integration.
We illustrated the relevance of this approach by applying
it to patients with low-grade glioma, in order to extract
information related to the reorganization induced by
lesional brain plasticity.

The measures of integration seemed to be in accor-
dance with the data collected during the surgical proce-
dures and with the data provided by neurofunctional
imaging (in both the pre- and post-operative stages).
Indeed, they were able to detect the effects induced by
the slow-growing LGG then by the acute resection. Con-
sequently, this method could be useful concerning (1) clin-
ical applications (selection and planning of brain tumor
surgeries) and (2) fundamental issues (study of the mech-
anisms of brain plasticity).

The proposed approach could also prove useful with a
wide range of protocols and networks, when one has to
deal with several to many regions of interest but is rather
interested in an effect that is not hypothesized to be local-
ized in one particular region but could rather be observed
at a large scale. The study of laterality in language or of
recovery in stroke patients belongs to such examples.
Appendix A. Mutual information and entropy

The entropy of each pðykÞ can be expanded as
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Appendix B. Integration for Gaussian variables
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Appendix C. Inference

For our Bayesian analysis, we used the following hierar-
chical model. For each subject s, s ¼ 1; . . . ; S, the BOLD
signal measured at time t for the N regions is assumed to
be Gaussian distributed with mean ls and covariance
matrix Rs. We further assume that all subjects originate
from a homogeneous population with characteristic covari-
ance matrix R0. Specifically, we set the following:
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 for each subject s, s ¼ 1; . . . ; S:
� the likelihood of the data given the subject parame-

ters ls and Rs reads

ðysjls;RsÞ �Nðls;RsÞ;
� the prior distribution for ls is set to a noninformative

uniform prior:

pðlsÞ / constant;

� we choose a conjugate prior for Rs:

ðRsjR0; m0Þ � Inv-Wishartm0
ðR�1

0 Þ:
While the use of a conjugate prior greatly simplifies
calculations, the proposed model can still efficiently
capture the inter-subject variability through the tun-
ing of parameter m0.

 the prior for R0 is set as a noninformative Jeffreys’ prior:

pðR0Þ / jR0j�
Dþ1

2 ;


 the prior for m0 is set to a noninformative uniform prior:

pðm0Þ / constant:

The ls’s can be integrated out of the model (Marrelec
et al., 2006b); the first two parts of the model are then
replaced by a data likelihood of

pðysjRsÞ / jRsj�
T�1

2 exp � 1

2
trðSsR

�1
s Þ

� �
;

with

Ss ¼
XT

t¼1

ðys;t � ys;tÞðys;t � ys;tÞ
t
;

proportional to the sample covariance matrix of subject
s. Since the method used performs Gibbs sampling
(Marrelec et al., 2006b), we must calculate the condi-
tional distribution of each model parameter given to
all others:

 for each subject s, s ¼ 1; . . . ; S, we have for Rsjrest:

pðRsjrestÞ / pðysjRsÞ � pðRsjR0; m0Þ

/ jRsj�
ðT�1Þþm0þNþ1

2 exp � 1

2
tr Ss þ R0ð ÞR�1

s

� �� 	
;

i.e.,

ðRsjrestÞ � Inv-WishartðT�1Þþm0
Ss þ R0½ ��1


 �
;


 for the group covariance matrix, R0jrest:

p R0jrestð Þ / p R0ð Þ �
YS

s¼1

p RsjR0; m0ð Þ

/ jR0j
Sm0�ðNþ1Þ
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2
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R�1
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 !" #( )
;

i.e.,

ðR0jrestÞ �WishartSm0
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R�1
s

" #�1
0
@

1
A;

 as to m0jrest:

p m0jrestð Þ / p RsjR0; m0ð Þ � pðm0Þ /
YS

s¼1

Inv-Wishartm0
R0; Rsð Þ;

where Inv-Wishartm0
ðR0; RsÞ stands for the value of the

inverse Wishart distribution with degree of freedom m0

and scale matrix R0 calculated at point Rs.

We then run Gibbs sampling on the model to propose
a numerical approximation of pðR0jyÞ (Ruanaidh and
Fitzgerald, 1996; Gelman et al., 1998) and successively
sample each variable given the set of remaining variables.
Rsjrest and R0jrest can be sampled directly from their
conditional distributions. As to m0jrest, a sample is
obtained from a discrete approximation of this unidimen-
sional distribution calculated over a finite grid. To allow
for burn-in effect, we discard the first half of the samples
and only keep the second half for consideration, that we

note ðR½l�0 Þ, l ¼ 1; . . . ; L. It is then possible to use Eqs.
(9)–(11) to obtain samples for the various integrations
of interest.
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Doyon, J., Benali, H., 2006. Identification of large-scale networks in
the brain using fMRI. NeuroImage 29, 1231–1243.

Buonomano, D.V., Merzenich, M.M., 1998. Cortical plasticity: from
synapses to maps. Annual Review of Neuroscience 21, 149–186.

Calautti, C., Baron, J.-C., 2003. Functional neuroimaging studies of
motor recovery after stroke in adults. Stroke 34, 1553–1566.

Chen, W., Ogawa, S., 1999. Principles of BOLD functional MRI. In:
Moonen, C., Bandettini, P. (Eds.), Functional MRI. Springer, Berlin,
pp. 103–113.

Chialvo, D.R., 2004. Critical brain networks. Physica A: Statistical
Mechanics and its Applications 340, 756–765.

Cover, T.M., Thomas, J.A., 1991. Elements of Information Theory. In:
Wiley Series in Telecommunications and Signal Processing. Wiley.

Cramer, S.C., Nelles, G., Benson, R.R., Kaplan, J.D., Parker, R.A.,
Wong, K.K., Kennedy, D.N., Finklestein, S.P., Rosen, B.R., 1997. A
functional MRI study of subjects recovered from hemiparetic stroke.
Stroke 28, 2518–2527.

Dodel, S., Golestani, N., Pallier, C., El Kouby, V., Le Bihan, D., Poline,
J.-B., 2005. Condition-dependent functional connectivity: syntax
network in bilinguals. Philosophical Transactions of the Royal Society
of London. Series B, Biological Sciences 360, 921–935.

Duffau, H., 2001. Acute functional reorganisation of the human motor
cortex during resection of central lesions: a study using intraoperative
brain mapping. Journal of Neurology, Neurosurgery, and Psychiatry
70, 506–513.

Duffau, H., 2005. Lessons from brain mapping in surgery for low grade
glioma: insight into associations between tumour and brain plasticity.
Lancet Neurology 4, 476–486.

Duffau, H., Capelle, L., Denvil, D., Sichez, N., Gatignol, P., Lopes, M.,
Mitchell, M.C., Sichez, J.P., Effenterre, R.V., 2003. Functional
recovery after surgical resection of low-grade gliomas in eloquent



496 G. Marrelec et al. / Medical Image Analysis 12 (2008) 484–496
brain: hypothesis of brain compensation. Journal of Neurology,
Neurosurgery, and Psychiatry 74, 901–907.

Fandino, J., Kollias, S.S., Wieser, H.G., Valavanis, A., Yonekawa, Y.,
1999. Intraoperative validation of functional magnetic resonance
imaging and cortical reorganization patterns in patients with brain
tumors involving the primary motor cortex. Journal of Neurosurgery
91, 238–250.

Fontaine, D., Capelle, L., Duffau, H., 2002. Somatotopy of the supplemen-
tary motor area: evidence from correlation of the extent of surgical
resection with the clinical patterns of deficit. Neurosurgery 50, 297–303.

Foucher, J.R., Vidailhet, P., Chanraud, S., Gounot, D., Grucker, D., Pins,
D., Damsa, C., Danion, J.-M., 2005. Functional integration in
schizophrenia: too little or too much? preliminary results on fMRI
data. NeuroImage 26, 374–388.

Friston, K.J., 1994. Functional and effective connectivity in neuroimaging:
a synthesis. Human Brain Mapping 2, 56–78.

Friston, K.J., Frith, C.D., Frackowiak, R.S.J., 1993a. Time-dependent
changes in effective connectivity measured with PET. Human Brain
Mapping 1, 69–79.

Friston, K.J., Frith, C.D., Liddle, P.F., Frackowiak, R.S.J., 1993b. Func-
tional connectivity: the principal component analysis of large (PET) data
sets. Journal of Cerebral Blood Flow and Metabolism 13, 5–14.

Gelman, A., Carlin, J.B., Stern, H.S., Rubin, D.B., 1998. Bayesian Data
Analysis. Texts in Statistical Science. Chapman & Hall, London.

Hebb, D.O., 1949. The Organization of Behavior: A Neurophysiological
Theory. Wiley, New York.

Holodny, A.I., Schulder, M., Ybasco, A., 2002. Translocation of Broca’s
area to the contralateral hemisphere as the result of the growth of a left
inferior frontal glioma. Journal of Computer Assisted Tomography 26,
941–943.

Horwitz, B., 2003. The elusive concept of brain connectivity. NeuroImage
19, 466–470.

Horwitz, B., Poeppel, D., 2002. How can EEG/MEG and fMRI/PET data
be combined? Human Brain Mapping 17, 1–3.

Huettel, S.A., Song, A.W., McCarthy, G., 2004. Functional Magnetic
Resonance Imaging. Sinauer, Sunderland.

Jaynes, E.T., 2003. Probability Theory: The Logic of Science. In:
Principles and Elementary Applications, vol. I. Cambridge University
Press, Cambridge.

Jiang, T., He, Y., Zang, Y., Weng, X., 2004. Modulation of functional
connectivity during the resting state and the motor task. Human Brain
Mapping 22, 63–71.

Krainik, A., Duffau, H., Capelle, L., Cornu, P., Boch, A.-L., Mangin, J.-
F., Bihan, D.L., Marsault, C., Chiras, J., Lehéricy, S., 2004. Role of
the healthy hemisphere in recovery after resection of the supplemen-
tary motor area. Neurology 62, 1323–1332.

Krainik, A., Lehéricy, S., Duffau, H., Vlaicu, M., Poupon, F., Capelle, L.,
Cornu, P., Clemenceau, S., Sahel, M., Valery, C.-A., Boch, A.-L.,
Mangin, J.-F., Bihan, D.L., Marsault, C., 2001. Role of the supple-
mentary motor area in motor deficit following medial frontal lobe
surgery. Neurology 57, 871–878.

Kullback, S., 1968. Information Theory and Statistics. Dover, Mineola, NY.
Lee, L., Harrison, L.M., Mechelli, A., 2003. The functional brain

connectivity workshop: report and commentary. Network: Computa-
tion in Neural Systems 14, R1–R15.

MacKay, D.J.C., 2003. Information Theory, Inference, and Learning
Algorithms. Cambridge University Press, Cambridge.
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