
Statistics and Probability Letters 78 (2008) 1922–1928
www.elsevier.com/locate/stapro

Conditional independence between two variables given any
conditioning subset implies block diagonal covariance matrix for

multivariate Gaussian distributions

Guillaume Marrelec∗, Habib Benali

Inserm, U678, Paris, F-75013 France
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Abstract

Let x =
(
xV

)
be a multivariate Gaussian variable with covariance matrix Σ . For i and j in V, we show that if the conditional

covariance between xi and x j given any conditioning set K ⊂ V \ {i, j} is equal to zero, then Σ is block diagonal and i and j
belong to two different blocks.
c© 2008 Elsevier B.V. All rights reserved.

1. Introduction

As pointed out by Dawid (1998), the concept of conditional independence is believed to be the fundamental
knowledge in the process of scientific inference. For multivariate Gaussian variables, conditional independence
is quantified by conditional covariance. Investigation of such coefficients have led to a better characterization of
interactions between variables, in particular through the use of conditional independence graphs (Whittaker, 1990;
Lauritzen, 1996; Edwards, 2000). Marginal correlation coefficients have also been examined through covariance
graphs (Kauermann, 1996; Edwards, 2000). It would be interesting to generalize these approaches by simultaneously
considering all possible conditional covariances for a given pair of variables. For instance, consider the case of
a three-dimensional Gaussian variable x = (x1, x2, x3) with covariance matrix Σ . If Corr[x1, x2|x3] = 0, then
Corr[x1, x2] = Corr[x1, x3] · Corr[x2, x3] (Wermuth, 1976; Whittaker, 1990, Proposition 2.6.5). If one furthermore
has Corr[x1, x2] = 0, it directly comes out that either Corr[x1, x3] = 0 or Corr[x2, x3] = 0. In other words, the
following yields:

{Corr[x1, x2] = 0 and Corr[x1, x2|x3] = 0} ⇒ Σ is block diagonal.

To our knowledge, no generalization of such a result has been shown yet. This paper is a first step in this direction.
We prove a result that demonstrates how this approach can inform us regarding the global pattern of interaction and
shed light into the structure of the variables.
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Fig. 1. Sketch of proof. From an original partitioning of V into {Vi
0, . . . ,Vi

N ,V j
0, . . . ,V j

N ,WN } (a), we proceed as follows. We first show that

for all elements ofWN there can be no marginal covariance with both Vi
N and V j

N . We then partitionWN into elements that covariate with Vi
N

(gathered in Vi
N+1), elements that covariate with V j

N (gathered in V j
N+1), and elements that covariate with neither (gathered inWN+1) (b). Last,

we show that elements of Vi
N+1 and V j

N+1 must have zero marginal covariance (c).

2. Main theorem

Let V be a finite set and x = xV = (xv)v∈V be a multivariate Gaussian variable indexed on V with covariance
matrix Σ .

Theorem 1. Let i and j be two elements of V and further assume that xi and x j are conditionally independent given
any set of remaining variables, i.e.,

∀ K ⊂ V \ {i, j} Cov[xi , x j |xK] = 0. (1)

Then Σ is block diagonal and i and j belong to two different blocks.

Sole consideration of marginal and/or partial covariance is not sufficient to provide this result, for there exist
covariance matrices that are not block diagonal while including variables for which Cov[xi , x j ] = 0 and/or
Cov[xi , x j |xV\{ı, j}] = 0.

This result can be established by successive examination of conditional independence constraints (see Fig. 1 for
a graphical sketch of proof). First, Corr[xi , x j ] = 0 and, hence, Σi, j = 0. We also have Cov[xi , x j |xk] = 0 for any
k ∈ V \ {i, j}. Since Σi, j = 0, the general formula for conditional covariance (Anderson, 1958, p. 28) simplifies to

Cov[xi , x j |xk] = −
Σi,kΣk, j

Σk,k
.

For Cov[xi , x j |xk] to be equal to zero, we must then have Σi,kΣk, j = 0, i.e., either Σi,k = 0 or Σ j,k = 0. This line of
reasoning being valid for any k 6∈ {i, j}, it is possible to separate V \ {i, j} into three sets: Vi

1 such that Σi,k 6= 0 and

Σ j,k = 0 for k ∈ Vi
1; V j

1 such that Σi,k = 0 and Σ j,k 6= 0 for k ∈ V j
1; and W1 such that Σi,k = 0 and Σ j,k = 0 for

k ∈ W1. Let then be K = {k, l} with k ∈ Vi
1 and l ∈ V j

1 . Cov[xi , x j |xK] is given by (see Eq. (A.1))

Cov[xi , x j | xK] = −

∑
a,b∈K

(
Σi∪ j,K

)
i,a

(−1)posK(a)+posK(b) det
[
ΣK\{b},K\{a}

]
det

[
ΣK,K

] (
ΣK,i∪ j

)
b, j ,

where posK(a) stands for the position of a in K. Since k ∈ Vi
1 and l ∈ V j

1 , we have Σi,l = Σ j,k = 0 and
Cov[xi , x j | xK] boils down to

Cov[xi , x j |xK] =
Σi,kΣk,lΣl, j

Σk,kΣl,l − Σ 2
k,k

.

Since we must also have Cov[xi , x j |xK] = 0 according to our hypothesis, this equation leads to Σk,l = 0, given that

Σi,k and Σ j,l are different from zero. Elements of Vi
1 (resp. V j

1) have hence a zero marginal correlation to both j

(resp. i) and all elements of V j
1 (resp. Vi

1).
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We then proceed by induction. Assume that there exist 2(N + 1) subsets Vi
n and V j

n , with n = 0, . . . , N , and one
set WN of V such that

• Vi
0 = {i} and V j

0 = { j};

• {Vi
0, . . . , Vi

N , V j
0, . . . , V j

N , WN } is a partition of V.

• nonzero marginal correlations can only be found between Vi
n−1 and Vi

n , between V j
n−1 and V j

n , or between WN

and {Vi
N , V j

N }.

• all marginal correlations between Vi
n−1 and Vi

n , as well as between V j
n−1 and V j

n are different from zero.

Since we proved that Σi, j = 0, Σi,l = 0 for l ∈ V j
1 , Σ j,k = 0 for k ∈ Vi

1, Σk,l = 0 for (k, l) ∈ V j
1 × V j

1 and

constructed Vi
1 and V j

1 so that Σi,k 6= 0 for k ∈ Vi
1 and Σ j,l 6= 0 for l ∈ V j

1 , the assumption holds for N = 1. We
now assume that it also holds for a given N ≥ 1. If WN is empty, then the process stops. Otherwise, the first step
consists of setting K = {k1, l1, . . . , kN , lN , m}, with (kn, ln) ∈ Vi

n × V j
n for n = 1 . . . , N , and m ∈ WN . Given

the assumption of independence between xi and x j , we must have Cov[xi , x j |xK] = 0. This conditional covariance
coefficient is equal to (cf. Eq. (A.2))

Σi,k1Σ j,l1

[ ∏
n=1,...,N−1

Σkn ,kn+1Σln ,ln+1

]
ΣkN ,mΣlN ,m

det
[
ΣK,K

]
and is equal to zero if and only if ΣkN ,mΣlN ,m = 0, since, by construction all Σkn ,kn+1 and Σln ,ln+1 are different
from zero. It is then possible to separate WN into three sets: Vi

N+1 such that ΣkN ,m 6= 0 and ΣlN ,m = 0 for all

m ∈ Vi
N+1; V j

N+1 such that ΣkN ,m = 0 and ΣlN ,m 6= 0 for all m ∈ V j
N+1; and WN+1 such that ΣkN ,m = ΣlN ,m = 0

for all m ∈ WN+1. It now remains to prove that we have Σk,l = 0 for (k, l) ∈ Vi
N+1 × V j

N+1. To this aim, set

K = {k1, l1, . . . , kN+1, lN+1} with (kn, ln) ∈ Vi
n × V j

n for n = 1 . . . , N + 1. Since xi and x j are independent, we
must have Cov[xi , x j |xK] = 0. This quantity being equal to (see Eq. (A.3))

Cov
[
xi , x j |xK

]
=

Σi,k1Σ j,l1

[ ∏
n=1,...,N

Σkn ,kn+1Σln ,ln+1

]
ΣkN+1,lN+1

det
[
ΣK,K

] ,

it is equal to zero if and only if ΣkN+1,lN+1 = 0. The assumption is therefore also valid for N + 1.
The sequence (WN ) is of decreasing cardinal. V being a finite set, there exists a step N0 for which WN0 is empty:

the process ends there. Set Vi
= {V i

0 , . . . , Vi
N0

} and V j
= {V j

0, . . . , V j
N0

}. {Vi , V j
} is hence a partition of V for which

there exists no marginal correlation between an element of Vi and an element of V j . Consequently, the covariance
matrix of x has the following structural form:(

ΣVi ,Vi 0
0 ΣV j ,V j

)
,

thereby proving the theorem.

3. Discussion and perspectives

In this paper, we considered x = xV = (xv)v∈V a multivariate Gaussian variable with covariance matrix Σ . For i
and j in V, we showed that if the conditional covariance between xi and x j given any conditioning set K ⊂ V \ {i, j}
is equal to zero, then Σ is block diagonal and i and j belonged to two different blocks. Note that the converse of
this theorem is straightforward. Indeed, if one considers that the covariance matrix Σ is block diagonal, then any
conditional covariance between variables belonging to two different blocks is equal to zero according to Eq. (A.1).

Theorem 1 shows that, for multivariate Gaussian variables, there is a clear separation between two variables xi
and x j that are independent with regard to any conditioning subset, and that this separation also applies to all other



G. Marrelec, H. Benali / Statistics and Probability Letters 78 (2008) 1922–1928 1925

variables, which are either “with” xi or “with” x j . Consequently, their effect can be analyzed independently in one
block of variables or the other.

Interestingly, this result nicely relates two distinct properties of Gaussian distributions. The block diagonal property
of the covariance matrix is clearly a global feature of Gaussian probability distributions. By contrast, the relationship
of “complete independence” (i.e., conditioned on all subsets) is rather a local description and characterization of
the interaction structure between variables, since the definition gives a particular role to xi and x j . This perspective
differs from the common approach, where one usually sets a “level” of conditioning (marginal for covariance graphs,
partial for conditional independence graphs) and then varies the two variables on which correlation is calculated. In
this “dual” approach, the definition does not so much depend on the conditioning set than on the variables whose
conditional covariance we examine. We mainly focus on the independence pattern that can be exhibited with a single
pair of variables and its potential implications onto the global structure. We believe that there is much to gain by
analyzing variables from this perspective and hope to be able to provide further results along the same lines in the
near future.
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Appendix. Calculation of Cov[xi , x j |xK]

The conditional covariance between i and j given K reads (Anderson, 1958, p. 28)

Cov[xi , x j |xK] = Σi, j −

∑
a,b∈K

(
Σi∪ j,K

)
i,a

[(
ΣK,K

)−1
]

a,b

(
ΣK,i∪ j

)
b, j .

Calculating
(
ΣK,K

)−1 from the adjoint matrix (Horn and Johnson, 1999) yields for Cov[xi , x j |xK]:

cov[xi , x j | xK] = Σi, j −

∑
a,b∈K

(
Σi∪ j,K

)
i,a

(−1)posK(a)+posK(b) det
[
ΣK\{b},K\{a}

]
det

[
ΣK,K

] (
ΣK,i∪ j

)
b, j , (A.1)

where posK(a) stands for the position of a in K. From now on, we also assume that there exist 2(N + 1) + 1 subsets
of V, namely Vi

n , V j
n , with n = 0, . . . , N , and WN , respecting the conditions detailed on page 3.

First, for N ≥ 1, set K = {k1, l1, . . . , kN , lN , m}, kn ∈ Vi
n and ln ∈ V j

n for n = 1 . . . , N , and m ∈ WN . By
construction, only elements in Vi

1 (resp. V j
1) have nonzero marginal covariance with i (resp. j). Consequently, the

sum in Eq. (A.1) can be simplified into

Σi,k1

(−1)posK(a)+posK(b) det
[
ΣK\{l1},K\{k1}

]
det

[
ΣK,K

] Σ j,l1 .

Given the definition of K, ΣK,K, ΣK\{l1},K\{k1}, and the determinant of the latter matrix respectively read

ΣK,K =



Σk1,k1 0 Σk1,k2 0 0 0 0 · · · 0
0 Σl1,l1 0 Σl1,l2 0 0 0

Σk1,k2 0 Σk2,k2 0 Σk2,k3 0 0
...

0 Σl1,l2 0 Σl2,l2 0 Σl2,l3 0
. . .

. . .
. . .

. . .
. . .

. . .
. . .

0 ΣlN−1,lN 0 ΣlN−1,lN−1 0 ΣlN−1,lN−1 0
... 0 0 ΣkN−1,kN 0 ΣkN ,kN 0 ΣkN ,m

0 0 0 ΣlN−1,lN 0 ΣlN ,lN ΣlN ,m
0 · · · 0 0 0 0 ΣkN ,m ΣlN ,m Σm,m


,
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ΣK\{l1},K\{k1} =



0 Σk1,k2 0 0 0 0 0 · · · 0
0 Σk2,k2 0 Σk2,k3 0 0 0

Σl1,l2 0 Σl2,l2 0 Σl2,l3 0 0
...

0 Σk2,k3 0 Σk3,k3 0 Σk3,k4 0
. . .

. . .
. . .

. . .
. . .

. . .
. . .

0 ΣlN−1,lN 0 ΣlN−1,lN−1 0 ΣlN−1,lN−1 0
... 0 0 ΣkN−1,kN 0 ΣkN ,kN 0 ΣkN ,m

0 0 0 ΣlN−1,lN 0 ΣlN ,lN ΣlN ,m
0 · · · 0 0 0 0 ΣkN ,m ΣlN ,m Σm,m


,

and

det
[
ΣK\{l1},K\{k1}

]
= −Σk1,k2 det

(
ΣK\{l1,k1},K\{k1,k2}

)
.

We also have

ΣK\{l1,k1},K\{k1,k2}

=



0 0 Σk2,k3 0 0 0 0 · · · 0
Σl1,l2 Σl2,l2 0 Σl2,l3 0 0 0

0 0 Σk3,k3 0 Σk3,k4 0 0
...

0 Σl2,l3 0 Σl3,l3 0 Σl3,l4 0
. . .

. . .
. . .

. . .
. . .

. . .
. . .

0 ΣlN−1,lN 0 ΣlN−1,lN−1 0 ΣlN−1,lN−1 0
... 0 0 ΣkN−1,kN 0 ΣkN ,kN 0 ΣkN ,m

0 0 0 ΣlN−1,lN 0 ΣlN ,lN ΣlN ,m
0 · · · 0 0 0 0 ΣkN ,m ΣlN ,m Σm,m


,

and, hence,

det
(
ΣK\{l1,k1},K\{k1,k2}

)
= −Σl1,l2 det

(
ΣK\{l1,k1,l2},K\{k1,l1,k2}

)
.

This leads to

det
[
ΣK\{l1},K\{k1}

]
= Σk1,k2Σl1,l2 det

(
ΣK\{l1,k1,l2},K\{k1,l1,k2}

)
,

with

ΣK\{l1,k1,l2},K\{k1,k2,l1}

=



0 Σk2,k3 0 0 0 0 0 · · · 0
0 Σk3,k3 0 Σk3,k4 0 0 0

Σl2,l3 0 Σl3,l3 0 Σl3,l4 0 0
...

0 Σl3,l4 0 Σk4,k4 0 Σk4,k5 0
. . .

. . .
. . .

. . .
. . .

. . .
. . .

0 ΣlN−1,lN 0 ΣlN−1,lN−1 0 ΣlN−1,lN−1 0
... 0 0 ΣkN−1,kN 0 ΣkN ,kN 0 ΣkN ,m

0 0 0 ΣlN−1,lN 0 ΣlN ,lN ΣlN ,m
0 · · · 0 0 0 0 ΣkN ,m ΣlN ,m Σm,m


,

which is of the same form as ΣK\{l1},K\{k1}. Consequently, a similar calculation shows that

det
(
ΣK\{l1,k1,l2},K\{k1,l1,k2}

)
= Σk2,k3Σl2,l3 det

(
ΣK\{l1,k1,l2,k2,l3},K\{k1,l1,k2,l2,k3}

)
,
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and, by induction, one can hence easily show that, for all n ≥ 2,

det
(
ΣK\{l1,k1,...,ln−1,kn−1,ln},K\{k1,l1,...,kn−1,ln−1,kn}

)
= Σkn ,kn+1Σln ,ln+1 det

(
ΣK\{l1,k1,...,ln ,kn ,ln+1},K\{k1,l1,...,kn ,ln ,kn+1,ln}

)
.

We hence obtain that

det
[
ΣK\{l1},K\{k1}

]
= det

(
ΣK\{l1,k1,...,kN−2,lN−2,lN−1},K\{k1,l1,...,kN−2,lN−2,kN−1}

) ∏
n=1,...,N−2

Σkn ,kn+1Σln ,ln+1 ,

where the matrix whose determinant is calculated is equal to

ΣK\{l1,k1,...,kN−2,lN−2,lN−1},K\{k1,l1,...,kN−2,lN−2,kN−1} = Σ{kN−1,kN ,ln ,m},{lN−1,kN ,lN ,m}

=


0 ΣkN−1,kN 0 0
0 ΣkN ,kN 0 ΣkN ,m

ΣlN−1,lN 0 ΣlN ,lN ΣlN ,m
0 ΣkN ,m ΣlN ,m Σm,m

 .

The determinant of this matrix can be obtained by a similar argument as previously developed:

det
(
Σ{kN−1,kN ,ln ,m},{lN−1,kN ,lN ,m}

)
= −ΣkN−1,kN

∣∣∣∣∣∣
0 0 ΣkN ,m

ΣlN−1,lN ΣlN ,lN ΣlN ,m
0 ΣlN ,m Σm,m

∣∣∣∣∣∣
= ΣkN−1,kN ΣlN−1,lN

∣∣∣∣ 0 ΣkN ,m
ΣlN ,m Σm,m

∣∣∣∣
= −ΣkN−1,kN ΣlN−1,lN ΣkN ,mΣlN ,m .

We finally have

det
[
ΣK\{l1},K\{k1}

]
= ΣkN ,mΣlN ,m

∏
n=1,...,N−1

Σkn ,kn+1Σln ,ln+1 ,

and, in conclusion, for K = {k1, l1, . . . , kN , lN , m}, we obtain for Cov
[
xi , x j |xK

]
Σi,k1

[ ∏
n=1,...,N−1

Σkn ,kn+1

]
ΣkN ,m · Σ j,l1

[ ∏
n=1,...,N−1

Σln ,ln+1

]
ΣlN ,m

det
[
ΣK,K

] . (A.2)

The second case is rather similar to the first one. Set K = {k1, l1, . . . , kN+1, lN+1}, with N ≥ 1, kn ∈ Vi
n

and ln ∈ V j
n for n = 1 . . . , N + 1. The previous line of reasoning can be applied in this case too, except that

ΣK\{l1,k1,...,lN−1},K\{k1,l1,...,kN−1} reads

Σ{kN−1,kN ,lN ,kN+1,lN+1},{lN−1,kN ,lN ,kN+1,lN+1} =


0 ΣkN−1,kN 0 0 0
0 ΣkN ,kN 0 ΣkN ,kN+1 0

ΣlN−1,lN 0 ΣlN ,lN 0 ΣlN ,lN+1

0 ΣkN ,kN+1 0 ΣkN+1,kN+1 ΣkN+1,lN+1

0 0 ΣlN ,lN+1 ΣkN+1,lN+1 ΣlN ,lN

 ,

leading to a determinant of ΣK\{l1,k1,...,,lN−1},K\{k1,l1,...,kN−1} equal to

= −ΣkN−1,kN

∣∣∣∣∣∣∣∣
0 0 ΣkN ,kN+1 0

ΣlN−1,lN ΣlN ,lN 0 ΣlN ,lN+1

0 0 ΣkN+1,kN+1 ΣkN+1,lN+1

0 ΣlN ,lN+1 0 ΣlN ,lN

∣∣∣∣∣∣∣∣
= ΣkN−1,kN ΣlN−1,lN

∣∣∣∣∣∣
0 ΣkN ,kN+1 0
0 ΣkN+1,kN+1 ΣkN+1,lN+1

ΣlN ,lN+1 0 ΣlN ,lN

∣∣∣∣∣∣
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= −ΣkN−1,kN ΣlN−1,lN ΣkN ,kN+1

∣∣∣∣ 0 ΣkN+1,lN+1

ΣlN ,lN+1 ΣlN ,lN

∣∣∣∣
= ΣkN−1,kN ΣlN−1,lN ΣkN ,kN+1ΣlN ,lN+1ΣkN+1,lN+1 .

Finally, Cov
[
xi , x j |xK

]
reads

Σi,k1

[ ∏
n=1,...,N

Σkn ,kn+1

]
· Σ j,l1

[ ∏
n=1,...,N

Σln ,ln+1

]
· ΣkN+1,lN+1

det
[
ΣK,K

] . (A.3)
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