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An important field of blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) is the investigation
of effective connectivity, that is, the actions that a given set of regions exert on one another. We recently proposed a data-driven
method based on the partial correlation matrix that could provide some insight regarding the pattern of functional interaction
between brain regions as represented by structural equation modeling (SEM). So far, the efficiency of this approach was mostly
based on empirical evidence. In this paper, we provide theoretical fundaments explaining why and in what measure structural
equation modeling and partial correlations are related. This gives better insight regarding what parts of SEM can be retrieved by
partial correlation analysis and what remains inaccessible. We illustrate the different results with real data.
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1. Introduction

Blood oxygen level dependent (BOLD) functional magnetic
resonance imaging (fMRI) is an imaging technique that
allows to dynamically and noninvasively follow metabolic
and hemodynamic consequences of brain activity [1, 2].
Since Biswal et al. [3], an increasing number of studies have
suggested that fMRI data could be used to explore how brain
regions interact to perform functional tasks. A key concept
in investigation of functional brain interactions is effective
connectivity, which has been defined as the influence that
regions exert on one another [4].

Path analysis, or structural equation modeling (SEM),
has been the major way to examine effective connectivity in
fMRI [5–7]. Starting from a set of D regions, a model is set a
priori that expresses the time course zi(t) of each region as a
linear function of the time course of other regions

zi(t) =
∑

j /= i
λi jz j(t) + ei(t), (1)

with some coefficients λi j being constrained to 0, the others
are free to vary. λi j quantifies the strength that region j

exerts on region i. Setting an SEM is equivalent to defining a
directed graph, where each node stands for a region, a given
arrow j → i is present if and only if the corresponding
coefficient λi j is not constrained to zero, and, finally, λi j
represents the intensity of arrow j → i. Once the structural
model is completely set, the unconstrained coefficients λi j
are estimated. To this aim, the model covariance matrix Σ,
which is a function of the parameters, is compared to the
sample covariance matrix S using a discrepancy function that
is minimized [8, 9]. In fMRI data analysis, the following
maximum likelihood function is often used [7]:

l(Σ) = tr
(

SΣ−1
)
− ln

∣∣∣Σ−1S
∣∣∣−D, (2)

where tr(·) stands for the standard matrix trace function.
The major flaw of this approach is that it requires the prior
definition of a structural model, that is, of regions and
arrows, each arrow requiring itself information regarding
connection and direction. By contrast, information regard-
ing the functional interactions present within the network
of interest is likely to be scarce, since it is often the very
reason why an fMRI study of effective connectivity is carried
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out. This is all the more problematic that the approach does
not really provide any clear way to challenge the model or
to provide information relative to where or how the model
under investigation could be improved.

We recently proposed a novel approach to gain insight
on effective connectivity. We first showed that, unlike
marginal (i.e., regular) correlation, conditional correlation
could account for many patterns of interaction as modeled
by SEM [10, 11]. We then proposed to focus on a specific set
of conditional correlations, namely partial correlations [12].
Given a set of D regions, denoted by R, and a variable yi
associated to each region i (of which zi(t) mentioned in (1) is
a realization), the method estimates the partial correlation of
any region pair (i, j) given the set ofD−2 remaining regions,

Corr
[
yi, yj | yR\{i, j}

]
. (3)

On both real [13] and synthetic data [14], it was observed
that a large partial correlation value between two regions
was often associated with the presence of an effective
connectivity between these regions. However, the reason for
such a behavior remained unclear. In the present paper,
we further delve into the relationship between SEM and
partial correlation in order to better understand why and
in what measure partial correlation can extract information
that is relevant for effective connectivity analysis. To this
aim, we provide a theoretical relationship between SEM and
partial correlation through the computation of the inverse
covariance matrix (also-called concentration or precision
matrix). To illustrate the results so obtained, we use a dataset
on which SEM analysis has already been performed and
published [7].

2. From SEM to Partial Correlation

2.1. Bullmore et al. [7] SEM Study. We here quickly recall
the essentials of a previous study on which our investigation
of partial correlation relies. For more detail, we refer the
reader to Bullmore et al. [7]. The study focused on D =
5 left hemispheric cortical regions of interest: the ventral
extrastriate cortex (VEC), the prefrontal cortex (PFC), the
supplementary motor area (SMA), the inferior frontal gyrus
(IFG), and the inferior parietal lobule (IPL). Each region was
associated to a time course for a total of five time courses of
lengthT = 96 time samples. The sample marginal and partial
correlation matrices corresponding to these time courses are
reported in Table 1. The time courses were a group average
over the subjects, and the correlation matrix corresponds to
the correlations of the averaged time series.

A plausible structural model, henceforth referred to as
the “theoretically preferred model” (or “TP”), was proposed
and is represented in Figure 1(a). Using the correlation
matrix of Table 1, a procedure implemented in the LISREL
proprietary software package (http://www.ssicentral.com/
lisrel/) computed a so-called “best fit” model from the data,
henceforth referred to as such (or “BF”) and represented in
Figure 1(b). While similar in some ways, the two models had
different features:

Table 1: Sample marginal correlation coefficients of the real data
set examined in Bullmore et al. [7].

(1) (2) (3) (4) (5)

VEC PFC SMA IFG IPL

(1) VEC 1

(2) PFC 0.661 1

(3) SMA 0.525 0.660 1

(4) IFG 0.486 0.507 0.437 1

(5) IPL 0.731 0.630 0.558 0.517 1

(i) VEC→ IPL and SMA→ IFG were present in the
theoretically preferred model but were not selected in
the best fit model;

(ii) PFC→ IFG and SMA→ IPL were absent in the theo-
retically preferred model but appeared in the best fit
model.

We now go back to a different perspective. Indeed, the
structure of any SEM entails specific constraints on the
covariance matrix, as well as other matrices characteristic
of the process, such as the concentration matrix and the
marginal and partial correlation matrices.

2.2. SEM Modeling. Generally speaking, a structural model
can be defined in matrix form as

y = Ky + e, (4)

where y is the D-dimensional variable characterizing the
state of each region and e is a temporally independent and
identically distributed (i.i.d.) Gaussian noise with diagonal
covariance matrix. K = (Kij)i, j=1,...,D contains the path
coefficients. The N time samples (z(tn))n=1,...,N , where z(tn)
is the signal measured in each of the D regions at time tn,
are supposed to be N i.i.d. realizations of y. The matrices
corresponding to the theoretically preferred and the best fit
models are, respectively, given by (see also Figure 1)

KTP =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 λ15

λ21 0 0 0 0 0

0 λ32 0 0 0 0

0 0 λ43 0 0 0

λ51 0 0 λ54 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

KBF =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 μ15

μ21 0 0 0 0 0

0 μ32 0 0 0 0

0 μ42 0 0 0 0

0 0 μ53 μ54 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(5)

2.3. SEM and Covariance. Classically, we further assume that
the noise e of (4) is composed of spatially and temporally
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Figure 1: Structural models and path coefficients corresponding to the theoretically preferred (a) and best fit (b) models (from [7]).

independent Gaussian variables with diagonal covariance
matrix:

Var[e] = V =

⎛
⎜⎜⎜⎜⎝

V1 0

. . .

0 VD

⎞
⎟⎟⎟⎟⎠
. (6)

Since (4) rereads y = (I−K)−1e, where I stands for the D-
dimensional unit matrix, it is straightforward to show that y
is also Gaussian distributed with covariance matrix [15]

Σ = (I−K)−1V
[

(I−K)−1
]t

, (7)

where “t” stands for matrix transposition. Since K is a
function of the path coefficients, so is Σ. This relationship is
central to SEM analysis, for most methods rely on comparing
the covariance matrix Σ implied by a structural model to
the data sample covariance matrix using normal theory
maximum likelihood—leading to the discrepancy function
of (2)—, generalized least squares, or ordinary least squares
[8, 9]. Note that, in (2), Σ only appears through its inverse
Υ = Σ−1. Υ is called the concentration, or precision, matrix
and it is on this matrix that we will focus to get a better
understanding of the data structure.

2.4. SEM and Concentration. Indeed, Υ has intriguing struc-
tural properties when related to a structural model. Using
(7), this matrix is given by

Υ = (I−K)tV−1(I−K). (8)

V being a diagonal matrix, the expression for each element
Υi j of the concentration matrix can easily be expanded as

Υi j =
∑

l

(δli − Kli)
(
δl j − Kl j

)

Vl
. (9)

Given that Kii = 0, the previous equation yields

Υii = 1
Vi

+
∑

l /= i

K2
li

Vl
, (10)

and, for i /= j,

Υi j = −
Kij
Vi
− Kji

Vj
+
∑

l /∈{i, j}

KliKl j
Vl

. (11)

Equation (11) can be used to compute the concentration
coefficients corresponding to the TP and BF structural
models. For instance, we have for the TP model

Υ12 = −λ21

V2
,

Υ13 = 0,

Υ14 = λ51λ54

V5
.

(12)

From this example, we see that two cases can arise. In the
first case (e.g., Υ13), the value of the concentration coefficient
is equal to zero, not because of the specific numerical values
that have been assigned to the path coefficients, but because
of the structure of the SEM itself. In the second case (e.g., Υ12

or Υ14), the concentration coefficient is equal to zero only if
the path coefficients are set to certain values (e.g, λ21 = 0 for
Υ12; λ51 = 0 or λ54 = 0 for Υ15). For our purpose, the exact
values taken by the nonzero Υi j are of minor importance; we
rather focus on the elements that, such asΥ13, are structurally
equal to zero, that is, that are equal to zero independently of
the values taken by the path coefficients. More generally, it
can be shown using (11) that Υi j is identically equal to zero
regardless of the numerical values of the path coefficients if
and only if the three terms of the right-hand side of (11) are
equal to zero, that is,

(C1) Kij = 0 and Kji = 0: neither region i nor region j has
an effect on each other;

(C2) KliKl j = 0: regions i and j do not jointly influence
region l, for all l /= i, j.

In other words, Υi j = 0 if and only if there are no such
structures as i → j, i ← j, or i → l ← j for any l in
the structural graph: according to (C1), there is no structural
connection between i and j and, according to (C2), regions i
and j do not jointly influence a third region l. When a pair of
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Figure 2: Structures that render either constraint (C1) or (C2)
invalid for the pair i- j, thereby leading to Υi j /= 0 or, equivalently,
Πi j /= 0.

regions is not directly connected in the structural model or
both regions do not jointly point to any common region, the
coefficient of partial correlation between these two regions
is expected to be structurally equal to zero. On the other
hand, if either condition is not satisfied, the corresponding
coefficient of partial correlation is not structurally equal to
zero (see Figure 2). Turning our attention back to the TP
model, we see that, while regions VEC and SMA satisfy both
(C1) and (C2) (implying Π13 = 0), regions VEC and PFC do
not satisfy (C1) (since we have VEC→PFC) and regions VEC
and IFG do not satisfy (C2) (since we have VEC→ IPL←IFG).
As a matter of fact, all cases can be found in both the TP
and the BF models, as shown in Tables 2 and 3. Using the
aforementioned rule, we are able to retrieve the following
structural constraints for partial correlation:

(i) for the TP model: Υ13 = Υ24 = Υ25 = Υ35 = 0;

(ii) for the BF model: Υ13 = Υ14 = Υ25 = 0.

2.5. SEM and Partial Correlation. As correlation matrices are
often easier to interpret than covariance matrices, we can
decide to examine partial correlation matrices rather than
concentration matrices. The partial correlation coefficient
between two regions i and j, denoted by Πi j , is here defined
as a particular conditional correlation coefficient; it is the
correlation between these two regions conditioned on the set
of remaining regions, that is,

Πi j = Corr
[
yi, yj | yR\{i, j}

]
. (13)

There are hence D(D − 1)/2 partial correlation coefficients
(10 in our example) that form theD-by-D partial correlation
matrix Π = (Πi j). Π can readily be calculated from Υ
through the following relationship [17]:

Πi j = −
Υi j√

Υii · Υ j j

(14)

for two distinct regions i and j, and Πii = 1. Consequently,
we have

Υi j = 0⇐⇒ Πi j = 0, (15)

and what has been said about the relationship between the
structural model and the structural zeros of the concentra-
tion matrix, namely conditions (C1) and (C2), also holds for

the partial correlation matrix. Furthermore, since the partial
correlation coefficients are correlation coefficients, they are
not influenced by any scale effect and remain between −1
and 1; for this reason, they are much easier to analyze and
interpret than elements of the concentration matrix.

3. Validating Partial Correlation Structures

As we saw, a structural model has unique implications in
terms of the structural pattern of partial correlation that
can be expected from the data. Since the partial correlation
matrix is a quantity that can be inferred from the data, we
can use partial correlation analysis as a way to validate a
structural model by comparing what is expected and what
is observed.

3.1. Local Hypotheses. The approach consists of translating
the structural hypotheses in terms of partial correlation.
Indeed, according to Tables 2 and 3, the two structural mod-
els entail different hypotheses in term of partial correlation.
For the theoretically preferred model, we have

Π13 = 0 (HTP1),

Π24 = 0 (HTP2),

Π25 = 0 (HTP3),

Π35 = 0 (HTP4),

(16)

and, for the best fit model,

Π13 = 0 (HBF1),

Π14 = 0 (HBF2),

Π25 = 0 (HBF3).

(17)

While some hypotheses are identical for both models,
(HTP1) = (HBF1) and (HTP3) = (HBF3), others have no
equivalent in the other model, such as (HTP1), (HTP4), and
(HBF2). The objective is then to infer the validity of these
hypotheses with regard to the data.

3.2. Inference. Assessing the validity of the various hypothe-
ses can be done by first estimating the partial correlation
matrix. Inference of Π can be performed in a Bayesian
framework using a numerical sampling scheme ([11, 13],
see also the appendix). While direct computation of p(Π |
z) is rather complex, this technique provides a simple
approximation by sampling L (e.g., L = 5000) matrices

(Π[l])l=1,...,L from p(Π | z). We then quantify the relevance of
all hypotheses as follows. First, the probability of a coefficient
Πi j to be higher than 0 can be approximated by

p+
i j = Pr

(
Πi j > 0

)
≈ 1
L

#
{
l : Π[l]

i j > 0
}

, (18)

where “#” stands for the cardinal of a set (i.e., its size). The
probability p−i j of a coefficient to be lower than 0 could be
approximated in a similar way, but only one of these two
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Table 2: Partial correlation constraints in the TP and BF models (1/2). For each link between regions and each model, examination of
whether (C1) and (C2) are satisfied.

Link i- j
TP model BF model

(C1) satisfied (C2) satisfied Υi j (C1) satisfied (C2) satisfied Υi j

VEC-PFC no:
SMA

VEC

IFG

IPLPFC

yes ≠ 0 no:

VEC

IFG

IPLPFC

yes ≠ 0

VEC-SMA yes yes = 0 yes yes = 0

VEC-IFG yes no:

VEC

IFG

IPLPFC

≠ 0 yes yes = 0

VEC-IPL no: SMA

VEC

IFG

IPLPFC

yes ≠ 0 no:

VEC

IFG

IPLPFC

yes ≠ 0

PFC-SMA no:

VEC

IFG

IPLPFC

yes ≠ 0 no:

VEC

IFG

IPLPFC

yes ≠ 0

SMA

SMA

SMA

SMA SMA

quantities need to be computed, since we have p+
i j + p−i j = 1.

From there, the bearing of having Πi j > 0 can be quantified
by the log-odd ratio

ei j = 10 log10

p+
i j

p−i j
= 10 log10

p+
i j

1− p+
i j
. (19)

If ei j is large and positive, we are more inclined to accept
Πi j > 0, while, if it is large and negative, we are more inclined
to accept Πi j < 0. Usually, a value of 10 dB can be considered
as good evidence in favor of the hypothesis (see Table 4 for
some relationships between p+

i j and ei j). We finally take |ei j|
as a measure of howΠi j differs from zero and, hence, as a way
to quantify the deviation of the data from hypothesisΠi j = 0:
values close to zero indicate a coefficient close to zero, while
large values suggest a large coefficient value.

Since we here focus on the partial correlation constraints
entailed by the structural models, (16) and (17), we only need
the corresponding log odd ratios, summarized in Table 5.
If all these hypotheses were true, then we would expect the
absolute values of all log odd ratios to be lower than 10 dB.
While this is the case for the three hypotheses related to the
BF model, it is not the case for two of the four hypotheses
related to the TP model: according to these results, (HTP2)
and (HTP4) are rather unlikely to be true.

4. Discussion and Perspectives

In this paper, we further examined how partial correlation
could be used to investigate effective connectivity in fMRI.
We introduced theoretical fundaments explaining why and in
what measure the structure of the partial correlation matrix
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Table 3: Partial correlation constraints in the TP and BF models (2/2). For each link between regions and each model, examination of
whether (C1) and (C2) are satisfied.

Link i- j
TP model BF model

(C1) satisfied (C2) satisfied Υi j (C1) satisfied (C2) satisfied Υi j

PFC-IFG yes yes = 0 no:

VEC

IFG

IPLPFC

SMA yes ≠ 0

PFC-IPL yes yes = 0 yes yes = 0

SMA-IFG no:

VEC

IFG

IPLPFC

yes ≠ 0 yes no:

VEC

IFG

IPLPFC

≠ 0

SMA-IPL yes yes = 0 no:

VEC

IFG

IPLPFC

SMA yes ≠ 0

IFG-IPL no:

VEC

IFG

IPLPFC

yes ≠ 0 no:

VEC

IFG

IPLPFC

SMA yes ≠ 0

SMA

SMA

SMA

Table 4: Evidence ei j and probability p+
i j (from [16]). For evidences

of 3 and 6, p+
i j is only approximately equal to the fraction.

ei j (dB) p+
i j

0 1/2 = 0.50

3 2/3 ≈ 0.67

6 4/5 = 0.80

10 10/11 ≈ 0.91

20 100/101 ≈ 0.99

30 1000/1001 ≈ 0.999

40 10000/10001 ≈ 0.9999

can be related to a structural model. More precisely, we
showed that, given a structural model, the partial correlation
Πi j between i and j is structurally equal to zero if and only
if (C1) neither region i nor region j has an effect on each

other, and (C2) regions i and j do not jointly influence a
third region l; in other words, if and only if none of the
following patterns are observed: i ← j, i → j, or i → l ← j
for any l. From there, the definition of a structural model
entails a unique set of constraints that can be tested from
the data, supporting or invalidating the plausibility of the
corresponding structural model.

When examining the global relevance of partial corre-
lation analysis to the investigation of effective connectivity,
we must jointly consider two complementary effects, namely,
the theoretical relationship between structural models and
partial correlation matrices on the one hand and, on the
other hand, the quality of the inference process. From a
purely theoretical standpoint, this result shows that partial
correlation analysis comes up as a combination of two effects.
First, constraints (C1) and (C2) imply that

Πi j = 0 =⇒ ¬(i← j
)
, ¬(i → j

)
, (20)
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Table 5: Real data. Relevance of hypotheses related to the TP and the BF models, respectively. Log odd ratios above a threshold of 10 dB are
represented in bold.

Structural model Constituting hypotheses Structural constraints |ei j|
TP (HTP1) Π13 = 0 1.6 dB

(HTP2) Π24 = 0 12.4 dB

(HTP3) Π25 = 0 9.7 dB

(HTP4) Π35 = 0 13.1 dB

BF (HBF1) Π13 = 0 1.6 dB

(HBF2) Π14 = 0 6.4 dB

(HBF3) Π25 = 0 9.7 dB

where ¬ stands for the negation. In other words, a zero
partial correlation between i and j implies the absence of a
direct link between these two regions. Were there only (C1),
this implication would be an equivalence and having Πi j /= 0
would imply a direct link between i and j. However, this
is not true in general and, more specifically, for any pair of
regions for which constraint (C2) is satisfied. Such pairs are
not connected but still have a nonzero partial correlation
coefficient. As a consequence, all that can be said is that the
set of set of pairs of regions with a zero partial correlations
is a subset of the sets of pairs not directly connected in the
structural model or, equivalently, that the set of pairs of
regions connected in the structural model is a subset of the
set of pairs of regions with a nonzero partial correlations.
These features can easily be related to basic graph theoretic
concepts. Condition (C1) states that regions i and j are
not neighbors; condition (C2) states that i and j satisfy the
so-called Wermuth condition [17]. As a consequence, the
partial correlation constraints imposed by a structural model
can be read off the graph obtained by adding undirected
edges to eliminate all Wermuth configurations (for condition
(C2)) and transforming all arrows into undirected edges (for
condition (C1)). Such a graph is called the moral graph
associated with the structural model. Depending on how
many variables share common parents, the moral graph can
be more or less close to the structural graph. For instance,
in each of the two models used in this paper, condition (C2)
was only met once. Whether this is a general feature of fMRI
data or only a characteristic induced by the structure selected
remains to be cleared.

Another theoretical issue that needs to be tackled is the
fact that having a partial correlation that is not constrained
to 0 (e.g., Π14 for the theoretically preferred model) does not
preclude its value to be equal to zero, due to a numerical
coincidence. Indeed, (11) shows that specific values of K and
V could be selected to induce Υi j = 0 and, consequently,
also Πi j = 0. Even though this event is possible, it should be
considered as rather unlikely, unless there is an underlying
constraint at stake that forces the coefficient values to respect
a certain relationship.

Another, more important issue deals with inference and
how confident we can be in the partial correlation estimates
and, critically, in the tests that their values are different
from zero. The major difference between partial correlation
and marginal correlation is that the former is obtained

by removing the effect of D − 2 regions as evidenced by
(14). Importantly, the partialization process tends to decrease
the value of correlation regardless of the exact relationship
between the two variables and the conditioning set. Conse-
quently, the values of partial correlation coefficients usually
tend to be lower than their marginal counterparts; this is
an observation that we have made consistently, and with
only few exceptions. Also, as a rule of thumb, the posterior
variance associated with a (marginal or partial) correlation
coefficient (e.g., Var[Πi j | y] for partial correlation) is
roughly a decreasing function of the absolute value of its
posterior mean (e.g., E[Πi j | y] for partial correlation). For
instance, it is asymptotically (1 − Π2

i j)
2/(N − 1) (which is

indeed a decreasing function of Πi j) for partial correlation
and a similar result hold for marginal correlation [15]. A
lower mean value therefore also implies a higher variance
and, essentially, a bigger difficulty to discriminate a nonzero
value from zero.

Altogether, these various factors, both theoretical and
inferential, have different consequences on the relationship
between the inferred pattern of partial correlation and the
underlying structural model. Although we have observed a
rather good agreement between expected and inferred pat-
terns so far, in the lack of gold standard, these consequences
must be further investigated.

Still, one of the main reasons why partial correlation
analysis might become an important tool for the investiga-
tion of effective connectivity is that it is, to our knowledge,
the only fully exploratory approach. Its key feature is its
ability to retrieve local patterns of interaction. Indeed,
while the method developed for the estimation of structural
parameters, for example, (2), globally assesses the goodness
of fit of the whole model and accordingly provides a general
measure of it, partial correlation analysis provides a rather
local assessment of effective connectivity, since the fact that
two regions have a nonzero partial correlation depends
on their connection with each other and of a potential
connection with a common third region. For instance, in
our example, while Bullmore et al. [7] concluded that the
data did not contain enough evidence to prefer the BF
model over the TP model (global statement), we showed
that the TP model entails two partial correlation constraints
(Π24 = 0 and Π35 = 0) that are rather unlikely to be true
in the data (local statements). According to this result, we
should discard the BF model or, at least, exert great caution
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when using it. Furthermore, if one only had the theoretically
preferred model and were testing it, the large log odd ratios
corresponding to hypotheses Π24 = 0 and Π35 = 0 would
hint that the corresponding constraints might not hold and
that there might be a direct connection between regions PFC
and IFG on the one hand and, on the other hand, between
regions SMA and IPL.

In this paper, we determined whether certain coeffi-
cients could be considered as different from zero or not
in a Bayesian framework. This led us to the use of the
evidence ei j of (19). While increasingly used, evidence
admittedly remains rather uncommon in the brain imaging
literature, where significance is often asserted with respect
to a significance threshold, or P-value. It would therefore
be tempting to propose a direct connection between P-
values and evidence or, at least, interpret results of our
Bayesian approach in terms of significance and P-value
(see, e.g., [12]). Unfortunately, doing so is both inaccurate
and misleading, because of the strong difference between
Bayesian probability intervals and their frequentist counter-
parts, confidence intervals. Under the null hypothesis (H0):
Πi j = 0, thresholding a statistic Π̂i j at 10% in a frequentist
framework (corresponding to a statistic of P10%) implies that,
assuming that (H0) is true, there is only 10% to obtain data
with a statistic above the threshold, that is,

p
(
Π̂i j > P10% | H0

)
= 0.10. (21)

In this case, there is no mention whatsoever of any alternative
hypothesis: we only assess how typical the data under
consideration are. By contrast, thresholding a Bayesian
probability at 10% means that we only consider cases where
the alternative hypothesis (H1) of (H0): Πi j ≤ 0 has a
probability of more that 0.9, that is,

p
(
H1 | Pi j

)
> 0.90. (22)

While a frequentist threshold of 10% might appear permis-
sive, a Bayesian threshold of 10% is already conservative,
since it implies that (H1) is about 10 times more probable
than (H0). For more details on this topic, the reader can refer
to Jaynes [18].

A last question is the possibility to apply partial correla-
tion to other imaging modalities, such as electroencephalog-
raphy (EEG) and magnetoencephalography (MEG). While
the issue of removing the effect of other regions when
considering the interactions between two regions remains
relevant, whether partial correlation as defined here can
provide a cogent solution remains to be investigated. One of
the major properties of the fMRI signal is that, due to the
convolution with the hemodynamic response, the temporal
information that it conveys is usually considered as less
relevant than in EEG or MEG. This is one of the major
reasons why most EEG or MEG analyses are performed in
the frequency domain. Of interest would therefore be to use
partial correlation in this frequency domain. This analysis
could be performed over time windows that are narrow
enough to assume stationarity of the signal. How such an
approach could be related to partial coherence [19, 20]
remains to be clarified.

Appendix

Numerical Sampling Scheme

Using standard Bayesian theory, it can be shown that the
covariance matrix Σ given the data z follows an inverse
Wishart distribution with T−1 degrees of freedom and scale
matrix U = S−1, where

S =
T∑

t=1

(zt − zt)(zt − zt)t (A.1)

is proportional to the sample covariance matrix, and zt
is the temporal mean [21]. Calculation of the posterior
probability density function (pdf) of the partial correlation
matrix, p(Π | z) cannot be performed in close form from
this distribution. To approximate this distribution, we can
nevertheless resort to the following sampling scheme [11,
13]. For sample l,

(1) sample Σ[l] according to its inverse Wishart distribu-
tion ([21], Appendix A);

(2) calculate Υ[l] = (Σ[l])
−1

, and Π[l] from Υ[l] according
to (14).

Once a large number L of samples have been drawn following
this process, the marginal pdf of a given quantity can be
approximated by the frequency histogram obtained from
the sample. Likewise, all statistics and estimators can be
approximated by their sample counterparts. For instance,

E
[
Πi j | z

]
≈Mij = 1

L

L∑

l=1

Π[l]
i j ,

Var
[
Πi j | z

]
≈ Xij = 1

L

L∑

l=1

(
Π[l]
i j −Mij

)2
.

(A.2)

One can also compute evidence as explained in the main text.
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