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1. Introduction

Entropy has been an active topic of research for over 50 years and much has been published about this

measure in various contexts. In statistics, recent developments have investigated how to estimate entropy

from data, either in a parametric [1–3] or nonparametric framework [4,5], as well as the reliability and

convergence properties of these estimators [6,7].

By contrast, relatively little is known about the statistical distribution of entropy, even in the

simple case of a multivariate normal distribution. For instance, the differential entropy H(X) of a
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D-dimensional random variable X that is normally distributed with mean μ and covariance matrix Σ is

given by

H(X) = h(Σ) =
D

2
[1 + ln(2π)] +

1

2
ln |Σ| (1)

If (xn)n=1,...,N are N independent and identically distributed realizations of X and S the corresponding

sum of square, then the sample differential entropy h(S/N) is used as the so-called plug-in estimator

for H(X). However, h(S/N) is also a random variable whose sampling distribution could be studied.

Ahmed et al. provided the exact expression for the mean and variance of this variable [1]. Similarly,

in a Bayesian framework, given h(S/N), what are the probable values of h(Σ)? We are not aware of

any study in this direction for multivariate normal distributions (but see, e.g., [8,9] for the posterior

moments of entropy in the case of multinomial distributions). In the present paper, we provide an

asymptotic approximation for both the sampling distribution of h(S/N) and, in a Bayesian framework,

the posterior distribution of h(Σ) given h(S/N). To this aim, we first calculate the moments of |S|/|νΣ|
in the same condition as above. We then use this result to provide a closed form expression for the

cumulant-generating function of U = − ln(|S|/|νΣ|), from which we derive closed form expressions

for the cumulants, together with asymptotic expansions when ν → ∞. Using the characteristic function

of U , we then provide an asymptotic normal approximation for the distribution of this variable. We

finally apply these result to the sample and posterior entropy of multivariate normal distributions.

2. General Result

Assume that S is distributed according to a Wishart distribution with ν ≥ D degrees of freedom and

scale matrix Σ, i.e., [10] (Chapter 7)

p(S|Σ, ν) =
1

ZD(ν)
|Σ|− ν

2 |S| ν−D−1
2 exp

[
−1

2
tr(Σ−1S)

]

where ZD(ν) is the normalizing constant,

ZD(ν) = 2
νD
2 π

D(D−1)
4

D∏
d=1

Γ

(
ν + 1− d

2

)
(2)

Direct calculation show that we have, for t ∈ �,

E

[( |S|
|νΣ|
)t
]

=

∫ ( |S|
|νΣ|
)t

· 1

ZD(ν)
|Σ|− ν

2 |S| ν−D−1
2 exp

[
−1

2
tr(Σ−1S)

]
dS

=
ZD(ν + 2t)

ZD(ν)
ν−Dt

∫
1

ZD(ν + 2t)
|Σ|− ν+2t

2 |S| (ν+2t)−D−1
2 exp

[
−1

2
tr(Σ−1S)

]
dS

=
ZD(ν + 2t)

ZD(ν)
ν−Dt (3)

provided that the integral sums to one, i.e., ν + 2t ≥ D or, equivalently, t ≥ (D − ν)/2.

2.1. Cumulant-Generating Function, Cumulants, and Central Moments of U

Cumulant-generating function Let U be the function defined in the introduction, i.e.,

U = − ln
|S|
|νΣ| (4)
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and gU(t) = lnE
[
etU
]

its cumulant-generating function. gU(t) is the log of the quantity calculated in

Equation (3)

gU(t) = Dt ln ν + lnZD(ν − 2t)− lnZD(ν) (5)

lnZD(ν) and lnZD(ν − 2t) can be expressed using Equation (2), leading to

gU(t) = Dt ln
ν

2
+

D∑
d=1

ln Γ

(
ν − 2t+ 1− d

2

)
−

D∑
d=1

ln Γ

(
ν + 1− d

2

)
(6)

Cumulants By construction, the nth cumulant of U is given by κn = g
(n)
U (0). In the present case,

g
(n)
U (t) can be obtained by direct derivation, yielding for the cumulants

κ1 = g′U(0) = D ln
ν

2
−

D∑
d=1

ψ

(
ν + 1− d

2

)
(7)

and

κn = g
(n)
U (0) = (−1)n

D∑
d=1

ψ(n−1)

(
ν + 1− d

2

)
(8)

for n ≥ 2, where ψ is the digamma function, i.e., ψ(t) = d[ln Γ(t)]/dt, and ψ(n) its nth derivative [11]

(pp. 258–260). For any n ≥ 1, κn is always strictly positive. It is an increasing function of D and a

decreasing function of ν. It tends to 0 when ν tends to infinity. For a proof of these properties, see

the appendix.

Central moments Cumulants and central moments are related as follows: If we denote by μ, σ2, γ

and γ2 the mean, variance, skewness and excess kurtosis of U , respectively, we have μ = κ1, σ
2 = κ2,

γ1 = κ3/κ
3/2
2 , and γ2 = κ4/κ

2
2. Note that, by definition, μ is equal to the expression of Equation (7) and

σ2 to that of Equation (8) with n = 2.

2.2. Asymptotic Expansion

When ν is large, ψ can be approximated using the following asymptotic expansion [11] (p. 260)

ψ(z) = ln z − 1

2z
− 1

12z2
+O

(
1

z3

)

where O(1/zn) refers to Landau notation and stands for any function f(z) for which there exists z0 so

that znf(z) is bounded for z ≥ z0. This leads to

ψ

(
ν + 1− d

2

)
= ln

(
ν + 1− d

2

)
− 1

ν + 1− d
− 1

3(ν + 1− d)2
+O

(
1

ν3

)

= ln
ν

2
+ ln

(
1 +

1− d

ν

)
− 1

ν
(
1 + 1−d

ν

) − 1

3ν2
(
1 + 1−d

ν

)2 +O

(
1

ν3

)

= ln
ν

2
+

[
1− d

ν
− 1

2

(
1− d

ν

)2
]
− 1

ν

(
1− 1− d

ν

)
− 1

3ν2
+O

(
1

ν3

)

= ln
ν

2
− d

ν
+

1− 3d2

6ν2
+O

(
1

ν3

)
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Incorporating this expansion in Equation (7) yields for the first cumulant κ1 or, equivalently, the mean μ

κ1 = μ =
D(D + 1)

2ν
+

2D3 + 3D2 −D

12ν2
+O

(
1

ν3

)
(9)

For the cumulants and central moments of order 2 and up, we use the following approximation

of ψ(n) [11] (p. 260)

ψ(n)(z) = (−1)n−1

[
(n− 1)!

zn
+

n!

2zn+1
+O

(
1

zn+2

)]
(10)

Each term in the sum of Equation (8) can therefore be approximated as

ψ(n−1)

(
ν + 1− d

2

)
= (−1)n−2

[
2n−1(n− 2)!

νn−1
(
1 + 1−d

ν

)n−1 +
2n−1(n− 1)!

νn
(
1 + 1−d

ν

)n +O

(
1

νn+1

)]

= (−1)n−2

[
2n−1(n− 2)!

νn−1

(
1− (n− 1)(1− d)

ν

)
+

2n−1(n− 1)!

νn
+O

(
1

νn+1

)]

= (−1)n−2

[
2n−1(n− 2)!

νn−1
+

2n−1(n− 1)!d

νn
+O

(
1

νn+1

)]

leading to an approximation of κn = g
(n)
U (0) of the form

κn =
2n−1D(n− 2)!

νn−1
+

2n−1D(D + 1)(n− 1)!

2νn
+O

(
1

νn+1

)
(11)

Taking n equal to 2, 3, and 4 respectively yields for the cumulants of order 2, 3, and 4

κ2 =
2D

ν
+

D(D + 1)

ν2
+O

(
1

ν3

)
(12)

κ3 =
4D

ν2
+

4D(D + 1)

ν3
+O

(
1

ν4

)
(13)

κ4 =
16D

ν3
+

24D(D + 1)

ν4
+O

(
1

ν5

)
(14)

We can now provide asymptotic approximations for the corresponding central moments. The variance

σ2 = κ2 is given by Equation (12). Approximation for the skewness γ1 = κ3/κ
3/2
2 can be obtained from

Equations (12) and (13) as

γ1 =
4D

ν2

[
1 +

D + 1

ν
+O

(
1

ν2

)](
2D

ν

)− 3
2
[
1 +

D + 1

2ν
+O

(
1

ν2

)]− 3
2

=

√
2

Dν

[
1 +

D + 1

4ν
+O

(
1

ν2

)]

γ1 being asymptotically positive, the distribution is skewed on the right. Finally, the approximation for

γ2 = κ4/κ
2
2 can be expressed as

γ2 =
16D

ν3

[
1 +

3(D + 1)

2ν
+O

(
1

ν2

)](
2D

ν

)−2 [
1 +

D + 1

2ν
+O

(
1

ν2

)]−2

=
4

Dν

(
1 +

D + 1

2ν

)
+O

(
1

ν3

)

which is asymptotically positive, corresponding to a leptokurtic distribution.
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2.3. Asymptotic Distribution of U

We now use the previous results to prove that U is asymptotically normally distributed with mean

D(D + 1)/2ν and variance 2D/ν. To this aim, set

Vν =
U − a

ν
b√
ν

(15)

with a = D(D + 1)/2 and b =
√
2D. The logarithm of the characteristic function of Vν reads

lnφVν (t) = lnE

{
exp

[
it

(
U − a

ν
b√
ν

)]}

= − ita

b
√
ν
+ lnE

{
exp

[(
it
√
ν

b

)
U

]}

= − ita

b
√
ν
+ lnφU

(
it
√
ν

b

)

= lnφU

(
it
√
ν

b

)
+O

(
1√
ν

)

where φU(t) is the characteristic function of U . We proved Equation (3) as an analytic identity for t ∈ �.

This expression will, however, be valid in the range where ZD(ν+2t) is analytic. We can thus obtain an

expression for φU(it
√
ν/b) by replacing t by −it

√
ν/b in Equation (3), leading to

lnφU

(
it
√
ν

b

)
= ln

⎡
⎣ZD

(
ν − 2it

√
ν

b

)
ZD(ν)

⎤
⎦+ itD

√
ν ln ν

b

= ln

⎡
⎢⎢⎢⎣
2

(
ν− 2it

√
ν

b

)
D

2 π
D(D−1)

2

∏D
d=1 Γ

(
ν− 2it

√
ν

b
+1−d

2

)
2

νD
2 π

D(D−1)
2

∏D
d=1 Γ

(
ν+1−d

2

)
⎤
⎥⎥⎥⎦+ itD

√
ν ln ν

b

=
itD

√
ν

b
ln

ν

2
+

D∑
d=1

ln

⎡
⎢⎢⎣
Γ

(
ν− 2it

√
ν

b
+1−d

2

)
Γ
(
ν+1−d

2

)
⎤
⎥⎥⎦ (16)

We then use Stirling’s approximation [11] (p. 257)

ln Γ(z) =

(
z − 1

2

)
ln z − z +

1

2
ln 2π +O

(
1

z

)

to approximate each term of the sum in the second term of the right-hand side of Equation (16) when ν

is large, yielding
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ln

⎡
⎢⎢⎣
Γ

(
ν− 2it

√
ν

b
+1−d

2

)
Γ
(
ν+1−d

2

)
⎤
⎥⎥⎦ =

ν − 2it
√
ν

b
− d

2
ln

(
ν − 2it

√
ν

b
+ 1− d

2

)
− ν − 2it

√
ν

b
+ 1− d

2

−ν − d

2
ln

(
ν + 1− d

2

)
+

ν + 1− d

2
+O

(
1√
ν

)

=
ν − 2it

√
ν

b
− d

2

[
ln

ν

2
+ ln

(
1− 2it

b
√
ν
+

1− d

ν

)]
+

it
√
ν

b

−ν − d

ν

[
ln

ν

2
+ ln

(
1 +

1− d

ν

)]
+O

(
1√
ν

)

= − it
√
ν

b
ln

ν

2
+

it
√
ν

b

+
ν − 2it

√
ν
b
− d

2

[
− 2it

b
√
ν
+

1− d

ν
+

2t2

b2ν
+O

(
1

ν3/2

)]

−ν − d

2

[
1− d

ν
+O

(
1

ν3/2

)]
+O

(
1√
ν

)

= − it
√
ν

b
ln

ν

2
− t2

b2
+O

(
1√
ν

)

We consequently have for the characteristic moment of Vν

lnφVν (t) = lnφU

(
it

√
ν

b

)
+O

(
1√
ν

)

= −Dt2

b2
+O

(
1√
ν

)

= −t2

2
+O

(
1√
ν

)

As ν tends towards infinity, φVν (t) achieves pointwise convergence toward e−t2/2, which is continuous

in t = 0. According to Lévi’s continuity theorem, Vν therefore converges in distribution to the standard

normal distribution,

Vν =
U − D(D+1)

2ν√
2D
ν

ν→∞∼ N (0, 1)

3. Application to Differential Entropy

We can use the results of the previous section to obtain the exact and asymptotic cumulants of the

sample and posterior entropy when the data are multivariate normal.
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3.1. Sampling Distribution

The differential entropy H(X) of a D-dimensional random variable X that is normally distributed

with (known) mean μ and (unknown) covariance matrix Σ is given by Equation (1). Let (xn)n=1,...,N be

N independent and identically distributed realizations of X . Set S the sum of square, i.e.,

S =
N∑

n=1

(xn − μ)(xn − μ)t (17)

S follows a Wishart distribution with ν = N degrees of freedom and scale matrix Σ [12] (Th. 7.2.2).

Define the sample differential entropy corresponding to the N realizations as h(S/N). Using the fact that

|S/N |/|Σ| = |S|/|NΣ|, we obtain that h(S/N)−h(Σ) = −U/2, where U was defined in Equation (4).

The mean and variance of h(S/N) = h(Σ) − U/2 can therefore be expressed as functions of the

corresponding central moments of U , i.e., μ = κ1 [Equations (7) and (9)] and σ2 = κ2 [Equations (6)

and (12)], leading to the following closed form expressions and approximations

E[h(S/N)|N,Σ] = h(Σ)− μ

2

= h(Σ)− D

2
ln

N

2
+

1

2

D∑
d=1

ψ

(
N + 1− d

2

)
(18)

= h(Σ)− D(D + 1)

4N
− 2D3 + 3D2 −D

24N2
+O

(
1

N3

)
(19)

and

Var[h(S/N)|ν,Σ] =
σ2

4

=
1

4

D∑
d=1

ψ′
(
N + 1− d

2

)
(20)

=
D

2N
+

D(D + 1)

4N2
+O

(
1

N3

)
(21)

Furthermore, use of Section 2.3 shows that, given N and Σ, h(S/N) is asymptotically normally

distributed with mean −D(D + 1)/4N and variance D/2N . If μ is unknown, we replace μ by the

sample mean m in Equation (17). S is then still Wishart distributed with scale matrix Σ but ν = N − 1

degrees of freedom [12] (Cor. 7.2.2). The exact expectation and variance of h[S/(N − 1)] are therefore

given by Equations (18) and (20), respectively where N is replaced by N − 1. Performing asymptotic

expansion of this expression leads to

E {h [S/(N − 1)] |N,Σ} = h(Σ)− D(D + 1)

4N
− 2D3 + 9D2 + 5D

24N2
+O

(
1

N3

)

and

Var {h [S/(N − 1)] |ν,Σ} =
D

2N
+

D(D + 3)

4N2
+O

(
1

N3

)
Furthermore, since the first-order approximation is the same for h[S/(N − 1)] for h(S/N), both

quantities have the same asymptotic distribution.
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3.2. Posterior Distribution

With the same assumptions as above, and assuming a non-informative Jeffreys prior for Σ, i.e.,

p(Σ) ∝ |Σ|−D+1
2

the posterior distribution for Σ given the N realizations of X is inverse Wishart with n = N − 1 degrees

of freedom and scale matrix S−1 [13]. This implies that Υ = Σ−1, the concentration matrix, is Wishart

distributed with n degrees of freedom and scale matrix S−1. Results of Section 3.1 therefore apply

to h(Υ/n) − h(S−1). But, since for any matrix A, ln |A−1| = ln |A|−1 = − ln |A|, we have that

h(Υ/n)− h(S−1) is equal to h(S)− h(nΣ) or, equivalently, to h(S/n)− h(Σ). As a consequence,

E[h(Σ)|N,S] = h(S/n) +
D

2
ln

ν

2
− 1

2

D∑
d=1

ψ

(
N − d

2

)
(22)

= h(S/n) +
D(D + 1)

4N
+

2D3 + 9D2 + 5D

24N2
+O

(
1

N3

)
(23)

and

Var[h(Σ)|n,S] =
1

4

D∑
d=1

ψ′
(
N − d

2

)

=
D

2N
+

D(D + 3)

4N2
+O

(
1

N3

)

Also, h(Σ) is asymptotically normally distributed with mean D(D + 1)/4N and variance D/2N .

4. Application to Mutual Information and Multiinformation

Similar results can also be derived about the first cumulant of mutual information and

multiinformation, its generalization to more than two variables. The mutual information between two

sets of variables X1 (of dimension D1) and X2 (of dimension D2) is defined as

I(X1, X2) = H(X1) +H(X2)−H(X1, X2)

For multivariate normal variables, we have

I(X1, X2) = i(Σ) = h(Σ1) + h(Σ2)− h(Σ) (24)

where Σ1 and Σ2 are the two block diagonal elements of Σ and where h was defined in Equation (1).

4.1. Sampling Mean

Define the sample mutual information as i(S/N). Using Equation (24), direct calculation shows that

we have

E[i(S/N)|N,Σ] = E[h(S1/N)|N,Σ] + E[h(S2/N)|N,Σ]− E[h(S/N)|N,Σ]

An asymptotic approximation for E[h(S/N)|N,Σ] can be obtained by direct use of Equation (19). For

S1 and S2, we proceed as follows. If S is Wishart distributed with N degrees of freedom and scale
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matrix Σ, then Sj (j ∈ {1, 2}) is also Wishart distributed with N degrees of freedom and scale matrix

Σj [12] (Th. 7.3.4). Equation (19) can therefore be applied to matrix Sj with the proper scale matrix,

yielding

E[h(Sj/N)|N,Σ] = E[h(Sj/N)|N,Σj]

= h(Σj)− Dj(Dj + 1)

4N
− 2D3

j + 3D2
j −Dj

24N2
+O

(
1

N3

)

E[i(S/N)|N,Σ] consequently reads

E[i(S/N)|N,Σ] = i(Σ) +
D1D2

2N

[
1 +

D1 +D2 + 1

2N

]
+O

(
1

N3

)

A similar result can be obtained for the generalization of i to K sets of variables Xk (of size Dk) as a

measure called total correlation [14], multivariate constraint [15], δ [16], or multiinformation [17]. In

that case, we have

E[i(S/N)|N,Σ] = i(Σ) +

∑
i<j DiDj

2N
+

∑
i �=j DiDj

(
Di +

∑
k �=i,j Dk + 1

)
4N2

+O

(
1

N3

)

and, in the particular case where each Xk is one-dimensional (i.e., Dk = 1),

E[i(S/N)|N,Σ] = i(Σ) +
D(D − 1)

4N
+

2D3 + 3D2 − 5D

24N2
+O

(
1

N3

)

4.2. Posterior Mean

A similar argument can be applied to the Bayesian posterior mean of i. Using Equation (24) again,

we have

E[i(Σ)|N,S] = E[h(Σ1)|N,S] + E[h(Σ2)|N,S]− E[h(Σ)|N,S]

An asymptotic approximation for E[h(Σ)|N,S] can be obtained by direct use of Equation (23). Now, if

Σ is inverse Wishart distributed with n degrees of freedom and scale matrix S, then Σj (j ∈ {1, 2}) is

also inverse Wishart distributed with n − Dk (k ∈ {1, 2}, k 	= j) degrees of freedom and scale matrix

Sj [18]. Application of Equation (23) with the proper degrees of freedom and scale matrix leads to

E[h(Σj)|N,S] = h[Sj/(n−Dk)] +
Dj(Dj + 1)

4(N −Dk)
+O

(
1

N2

)

= h(Sj/n)− Dj

2
ln

(
1− Dk

N

)
+

Dj(Dj + 1)

4N
+O

(
1

N2

)

= h[Sj/n] +
D1D2

2N
+

Dj(Dj + 1)

4N
+O

(
1

N2

)

where we only retained the expansion terms of order up to 1/N for the sake of simplicity. E[i(Σ)|N,S]

consequently reads

E[i(Σ)|N,S] = i(S/n) +
D1D2

2N
+O

(
1

N2

)
For posterior multiinformation, we have

E[i(Σ)|N,S] = i(S/n) +

∑
i<j DiDj

2N
+O

(
1

N2

)
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and, in the particular case where each Xk is one-dimensional (i.e., Dk = 1),

E[i(Σ)|N,S] = i(S/n) +
D(D − 1)

4N
+O

(
1

N2

)

5. Simulation Study

We conducted the following computations for D ∈ {2, 5, 10}. To assess the accuracy of the

asymptotic expansion of the cumulants of sample entropy, we calculated the error made by the first and

second central moments (i.e., the mean and variance of the distribution) compared to the exact values as a

function of ν. As a way of comparison, we computed the same quantities for 500 different homogeneous

positive definite matrices Σ (i.e., with all non-diagonal elements equal to the same value ρ, generated

uniformly); for each value of Σ and ν, we generated 1,000 samples from S ∼ Wishart(ν,Σ), computed

the corresponding values of sample entropy, and approximated the moments by the corresponding

sampling moments. The results are reported in Figure 1.

6. Discussion

In this work, we calculated both the moments of |S|/|νΣ| and the cumulant-generating function of

U = − ln(|S|/|νΣ|) when S is Wishart distributed with ν degrees of freedom and scale matrix Σ.

From there, we provided an asymptotic approximation of the first four central moments of U . We also

proved that U is asymptotically normally distributed. We then demonstrated the quality of the normal

approximation compared to simulations. We finally applied these results to the multivariate normal

distribution to provide asymptotic approximations of the sample and posterior distributions of differential

entropy, as well as an asymptotic approximation of the sample and posterior mean of multiinformation.

Interestingly, the moments of |S|/|νΣ| and, as a way of consequence, the cumulant-generating

function of U depends on the distribution that S follows only through the matrix dimension D and the

degree of freedom ν, but not through Σ. This means that the exact distribution of U is also independent

from that parameter and could possibly be tabulated as a function of the two integer parameters.

As mentioned in the introduction, the sample differential entropy defined in Equation (1) is equal to

the plug-in estimator for differential entropy. The present work provides a quantification in the case

of multivariate normal samples for the well-known negative bias for this estimator [7]. Obviously,

Equation (18) confirms that, to correct from this bias, one must take the uniformly minimum variance

unbiased (UMVU) estimator [1].

The posterior derivation that we presented here is a particular case of the Bayesian posterior estimate

obtained by [3] with, in our case, the prior distribution for Σ taken as Jeffreys prior (i.e., q = −1 and

B = 0 with their notations). While the same analysis as in [3] could have been performed, it would

essentially lead to the same result, since we only consider the asymptotic case, where the sample is large

and the prior distribution is supposed to have very little influence—provided that it does not contradict

the data. The present study also shows an interesting feature of Bayesian estimation with respect to the

above-mentioned negative bias. As the sample differential entropy tends to underestimate H(Σ) by a

factor of m/2, if one takes the posterior mean as the Bayesian estimate of H(Σ), then the negative bias

is corrected by the opposite factor.
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We were also able to obtain an asymptotic approximation of the sampling and posterior expectations

of mutual information and multiinformation. Contrary to the general argument developed by [7],

we proved that, for multivariate normal distributions, the negative bias for differential entropy does

entail a positive bias for mutual information. This result is in agreement with the fact that, under

the null hypothesis of Σ diagonal matrix, corresponding to i(Σ) = 0, νi(S/ν) is asymptotically chi

square distributed with
∑

i<j DiDj/2 degrees of freedom and, hence, has an expectation equal to that

value [19] (pp. 306–307). Surprisingly, and unlike what was said for entropy, the positive bias of the

sample multiinformation was not corrected by the Bayesian approach. A naive correction of minus the

positive bias could lead to negative values, which is impossible by construction of multiinformation.

Note that, using the present results alone, we were not able to obtain an asymptotic approximation for

the variance of the same measures.

In the present paper, we used loose versions of the inequalities proposed in [20] to prove the

monotonicity and sign of the cumulants of U (see Section 2.1 and Appendix). Note that, using the

same inequalities, it seems that it would also be possible to obtain lower and upper bounds for these

quantities, instead of asymptotic approximations. These bounds would be useful complements to the

approximations provided in the present manuscript.
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17. Studený, M.; Vejnarová, J. The multiinformation function as a tool for measuring stochastic

dependence. In Proceedings of the NATO Advanced Study Institute on Learning in Graphical
Models; Jordan, M.I., Ed.; MIT Press: Cambridge, MA, USA, 1998; pp. 261–298.

18. Press, S.J. Applied Multivariate Analysis. Using Bayesian and Frequentist Methods of Inference,

2nd ed.; Dover: Mineola, NY, USA, 2005.

19. Kullback, S. Information Theory and Statistics; Dover: Mineola, NY, USA, 1968.

20. Chen, C.P. Inequalities for the polygamma functions with application. Gener. Math. 2005,

13, 65–72.

Appendix

Results Regarding the Cumulants

The proofs differ for κ1 and κn, n ≥ 2.

1. Results for κ1

For ν ≥ D > 0, set fD(ν) = κ1 as defined in Equation (7).

Result 1: fD(ν) is a decreasing function of ν. Derivation of fD(ν) with respect to ν leads to

f ′
D(ν) =

D∑
d=1

[
1

ν
− 1

2
ψ′
(
ν + 1− d

2

)]
(25)

We use the following inequality [20]

ψ′(x) >
1

x
+

1

2x2

This implies that
1

ν
− 1

2
ψ′
(
ν + 1− d

2

)
<

1

ν
− 1

ν + 1− d
− 1

(ν + 1− d)2

For 1 ≤ d ≤ ν, we have 1/ν ≤ 1/(ν + 1 − d). Consequently, each term in the sum of Equation (25) is

strictly negative, and so is f ′
D(ν). fD(ν) is therefore a strictly decreasing function of ν.
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Result 2: fD(ν) is an increasing function of D. We have

fD+1(ν) = fD(ν) + ln
ν

2
− ψ

(
ν + 1−D

2

)
Using the following inequality [20]

ψ(u) < ln u− 1

2u
< lnu

we obtain that

ψ

(
ν + 1−D

2

)
< ln

(
ν + 1−D

2

)
leading to

ln
ν

2
− ψ

(
ν + 1−D

2

)
> − ln

(
1 +

1−D

ν

)
Since ln(1 + x) < x, we have

ln
ν

2
− ψ

(
ν + 1−D

2

)
>

D − 1

ν

and, therefore, fD+1(ν) > fD(ν).

Result 3: fD(ν) is positive. fD(ν) is the sum of terms that are strictly positive (cf previous paragraph);

it is thus strictly positive.

Result 4: fD(ν) tends to infinity as D increases. From the proof of Result 2, we have

fD(ν) >
D∑

d=1

d− 1

ν
=

D(D − 1)

2ν

which tends to infinity when D tends to infinity.

Result 5: fD(ν) tends to 0 as ν increases. We use the following inequality [20]

ln x− 1

2x
− 1

12x2
< ψ(u)

This implies that

ψ

(
ν + 1− d

2

)
> ln

(
ν + 1− d

2

)
− 1

ν + 1− d
− 1

3(ν + 1− d)2

leading to

ln
ν

2
− ψ

(
ν + 1− d

2

)
< − ln

(
1 +

1− d

ν

)
+

1

ν + 1− d
+

1

3(ν + 1− d)2

Since x− x2/2 < ln(1 + x), we have

ln
ν

2
−ψ

(
ν + 1− d

2

)
<

d− 1

ν
+

1

ν + 1− d
+

1

3(ν + 1− d)2
<

d− 1

ν
+

1

ν − (D − 1)
+

1

3[ν − (D − 1)]2

Summing over d yields

fD(ν) <
D(D − 1)

2ν
+

D

ν − (D − 1)
+

D

3[ν − (D − 1)]2

which tends to 0 when ν increases.
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2. Results for κn, n ≥ 2

Define fD(ν) = κn as in Equation (6), (−1)n+1ψ(n) is completely monotonic. As a consequence, κn

is a decreasing function of ν. We also use the following inequality [20]

(n− 1)!

xn
< (−1)n+1ψ(n)(x) <

(n− 1)!

xn
+

n!

2xn+1
+

B2Γ(n+ 2)

2xn+2

This implies that (−1)n+1ψ(n)(x) is strictly positive and, as a consequence, that κn is an increasing

function of D. It also implies that κn tends to 0 as ν tends to infinity.
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