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Abstract

In blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI), assessing functional connectivity
between and within brain networks from datasets acquired during steady-state conditions has become increasingly
common. However, in contrast to connectivity analyses based on task-evoked signal changes, selecting the optimal spatial
location of the regions of interest (ROIs) whose timecourses will be extracted and used in subsequent analyses is not
straightforward. Moreover, it is also unknown how different choices of the precise anatomical locations within given brain
regions influence the estimates of functional connectivity under steady-state conditions. The objective of the present study
was to assess the variability in estimates of functional connectivity induced by different anatomical choices of ROI locations
for a given brain network. We here targeted the default mode network (DMN) sampled during both resting-state and a
continuous verbal 2-back working memory task to compare four different methods to extract ROIs in terms of ROI features
(spatial overlap, spatial functional heterogeneity), signal features (signal distribution, mean, variance, correlation) as well as
strength of functional connectivity as a function of condition. We show that, while different ROI selection methods
produced quantitatively different results, all tested ROI selection methods agreed on the final conclusion that functional
connectivity within the DMN decreased during the continuous working memory task compared to rest.
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Introduction

Since the seminal work of Biswal et al. [1], there has been a

steady increase in the interest to investigate steady-state activity in

networks that are driven by spontaneous, intrinsic MR signal

intensity fluctuations. Correlation-based functional connectivity,

which refers to the statistical covariations of the blood oxygen level

dependent (BOLD) signal in different parts of the brain [2], is a

common way to use functional magnetic resonance imaging

(fMRI) data to this end. An important step of many functional

connectivity analyses consists of selecting representative spatial

locations, or regions of interest (ROIs), from which signal intensity

time courses will be extracted. In the case of functional con-

nectivity analyses performed on task-evoked data, this procedure is

often facilitated by the fact that the investigator’s choice is guided

by either the spatial locations that show the largest activations

and/or deactivations in response to the given task within a certain

brain area or, alternatively, by information obtained from previous

studies.

However, selecting anatomical locations within ROIs for

functional connectivity analyses performed on data acquired

during steady-state conditions is often less straightforward (see,

e.g., recent review [3] and [4]). The primary reason for this is that

there is often no or little prior information regarding the optimal

anatomical location of the ROIs that should reflect intrinsic

activity in any given brain area. For example, in case of functional

connectivity studies of the default mode network (DMN), previous

investigations have used data from independent task-evoked

studies to locate suitable locations for ROIs, which might or

might not constitute an optimal choice to investigate functional

connectivity of low-frequency, spontaneous signal fluctuations in

the DMN [5–7]. Assessing the validity of methods for fMRI data

analysis is a key issue but, for lack of gold standard, also a thorny

one. Still, some efforts have been made to assess the validity of the

methods used. Some studies have tried to assess the effect of

preprocessing on the data and its robustness to certain parameters

[8,9]; a general framework to evaluate preprocessing was also

proposed [10]. Regarding functional connectivity, we are aware of

only few attempts. Himbert et al. [11] and Damoiseaux et al. [12]

investigated the reproducibility and robustness of spatial indepen-

dent component analysis (sICA) . While Vincent et al. [13] found

that correlation maps in monkeys were robust to the choice of the

seed region when it is located within the oculomotor system,

Margulies et al. [14] showed that even a small shift of the seed

voxel within the precuneus could lead to significant changes of the

connectivity pattern; similar results were reported using slightly

different ROIs within the DMN [3]. Since functional connectivity

estimated from intrinsic BOLD activity is routinely used to

characterize differences in networks in patient populations (see,

e.g., [15–17]), we sought to investigate the impact that different
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ROI selection methods might have on the resulting connectivity

measures. More specifically, our objective was to answer the

following question: Given a specific set of ROIs (i.e., brain

regions), how similar are the volumes and time courses extracted

by different ROI selection methods, and how similar are results

from connectivity analyses performed on these volumes and time

courses? Indeed, since the results of [14] and [3], one could

wonder if different ROI selection methods that aim at extracting a

specific set of ROIs provide consistent results. For the present

study, we focused on the relationship between different choices of

ROI selection methods and functional connectivity within the

DMN during both continuous rest and a verbal 2-back working

memory task [18]. Four different strategies of ROI selection were

compared: (a) ROIs centered on the coordinates given in [6]

(TalFox), (b) ROIs centered on the coordinates provided in [7]

(TalFr), (c) ROIs centers obtained from a group-level independent

component analysis (gICA) of the dataset, and (d) selection of

ROIs based on independent component analyses performed at the

individual level (indICAs). Note that, while the anatomical loca-

tions of the ROIs were the same across subjects in schemes a–c,

the exact centers of the ROIs were allowed to vary from subject to

subject in scheme (d).

We compared the four different ROI selection strategies at three

consecutive steps of the analysis. In Step 1, we examined some

spatial and functional features of the regions extracted by the four

ROI selection methods. In Step 2, we compared the signals

extracted by the four methods in terms of temporal distribution,

mean and variance. Steps 1 and 2 are general, in that they

compared general features of the signals regardless of their

subsequent use. In Step 3, we considered the effect that the four

ROI selection methods had on a functional connectivity analysis. In

this step, we examined to which extent changes in features induced

by different ROI selection approaches had an influence on the

results of functional connectivity. Obviously, this step is specific to

functional connectivity. While our primary objective was to

compare the results provided by the ROI selection methods

at this third step, we expected the four methods to produce

quantitatively different results and, as a consequence, designed

Steps 1 and 2 to better understand at what level and in what

measure these methods differed. Furthermore, since knowing that

different methods lead to quantitatively different results provides no

information as to the confidence that one can have regarding the

qualitative interpretation of the results of these methods, we also

compared the conclusions that we could draw using each method.

Analysis

Data and ROI selection
For the purpose of the present article, we re-analyzed data

already published [18,19].

Subjects and tasks. Seventeen subjects (5 males, age span

22–41 years) participated in this study. No subject had any history

of neurological or psychiatric illness. All MR examinations were

carried out according to the ethical guidelines and declarations of

the Declaration of Helsinki (1975) and the current study was

approved at the Karolinska University Hospital by the Regionala

etikproevningsnaemnden i Stockholm (‘‘the regional ethical

committee in Stockholm’’). Written consent was obtained from

all subjects. All subjects participated in two 10 min echo-planar

imaging (EPI) blood oxygenation level dependent (BOLD)

scanning sessions during which they either performed a resting-

state task with their eyes fixating on a hair-cross centered on a

white black screen or engaged in a continuous verbal 2-back

working memory task.

MR image acquisition. All MRI data was acquired on a

General Electric Twin-Speed Signa Horizon 1.5 T MRI scanner.

Echo-planar imaging (TR/TE~2000/40 ms, flip~80 degrees,

64|64 matrix size, FOV~220|220 mm2, 29 slices) was used to

detect BOLD fMRI signal changes during rest and the working

memory task. 300 echo-planar image volumes were acquired for

each task.

Image preprocessing. All image processing was performed

using the SPM2 software package (Wellcome Dept. of Imaging

Neuroscience, London, UK). As a first step, functional image time-

series were corrected for head motion by realigning all images to the

first image volume. Second, the mean EPI image for each subject

was co-registered to a corresponding T1-weighted high-resolution

image volume and subsequently spatially normalized and re-

sampled (3|3|3 mm3 voxels) to the approximate Talairach space

[20] as defined by the MNI (Montreal Neurological Institute) EPI

template in SPM2. As a last step, the normalized echo-planar image

volumes were spatially filtered using an isotropic Gaussian filter

(6 mm FWHM).

Selecting regions of interest. According to previous studies,

nine regions of interest (ROIs) belonging to the default mode

network were selected: precuneus/posterior cingulate cortex (pC/

pCC), left and right inferior parietal lobes (lIPL, rIPL), dorsal and

ventral medial prefrontal cortices (dmPFC, vmPFC), left and right

temporal cortices (lTC, rTC) and left and right medial temporal

lobes (lMTL, rMTL). All nine ROIs were independently selected

following four distinct methods:

N using Talairach coordinates as given in [7], denoted TalFr;

N using Talairach corrdinates as given in [6], denoted TalFox;

N performing group spatial independent component analysis

(ICA), denoted gICA; and

N performing individual sICAs, denoted indICAs.

Since the ROI coordinates given in [6] were supplied in Talairach

space, we used the nonlinear conversion routine tal2mni.m (http://

imaging.mrc-cbu.cam.ac.uk/imaging/MniTalairach) to convert

the coordinates to the space defined by the MNI atlas in SPM.

ROI selection based on individual ICAs was accomplished as in

[19], that is, in a three-step procedure. First, an independent

component analysis (ICA) of the resting-state data was performed

and 60 spatio-temporal independent components were extracted

from each individual dataset using the MELODIC FSL software

(MELODIC v4.0; FMRIB Oxford University, UK). Second, by

matching each independent component with a spatial template of

the default mode network based on an independent dataset [7],

the spatially best-fitting independent component was extracted

for each subject as previously described [21,22]. Third, local

estimates of default mode activity in each network region were

identified in terms of voxels exhibiting local Z-score maxima in

the best-fitting independent component. To ensure that only the

relevant anatomical structures were included, the search for each

local maximum was constrained by using the WFU (Wake Forest

University) Pickatlas toolbox [23] together with the AAL (Auto-

matic Anatomical Labelling) atlas [24] within SPM. Consequent-

ly, the exact spatial location for the ROIs was allowed to vary

between individuals, although only within specified anatomical

boundaries [19]. Although the anatomical constraints were set

to be rather liberal, the possibility that they impose a user-

introduced bias in the ROI selection process can not be fully ruled

out. An additional constraint was that the individual regions had

to be located at least 15 mm apart. Since the distance between the

dorsal and ventral medial prefrontal cortices was less than 15 mm

in three subjects, these three subjects were discarded and the
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subsequent partial and marginal correlation analysis was based on

the remaining fourteen subjects.

The group independent component analysis was performed

using the temporal concatenation approach to tensorial version of

the independent component analysis module implemented in

MELODIC.

For a graphical presentation of the location of the ROIs for all

four methods, see Figure 1. Regardless of the ROI selection

approach, signal intensity time-courses during both rest and the

working memory task were extracted using spherical ROIs with a

radius of 6 mm. All signal intensity time-courses were bandpass

filtered (passband 0.012–0.1 Hz) and orthogonalized with respect

to the global mean brain signal. Thus, in each individual, 9

(network regions/nodes)|2 (conditions: rest and working mem-

ory) BOLD signal intensity time-courses were extracted, resulting

in two datasets per subject pertaining to default mode network

activity in the nine network regions.

We finally obtained 4 (ROI selection methods)|2 (con-

ditions)|9 (regions)|14 (subjects) time series to assess the

variability induced by ROI selection. All computations were

performed using Matlab (The MathWorks, Inc.).

Methods

We here introduce several tools that we used for data analysis,

namely a measure of within-ROI spatial functional heterogeneity,

a test to measure the discrepancy between two probability

distribution functions, a series of appproximate nonparametric

permutation tests based on N-way ANOVA to check for the

presence of effects, and, finally, a measure making it possible to

quantify the similarity between correlation matrices.

Assessing within-ROI spatial functional heterogeneity
To quantify the functional heterogeneity of a ROI composed of

N voxels, we defined spatial functional heterogeneity based on the

similarity of the time courses of the N voxels composing the region

as follows. We first computed the N-by-N covariance matrix of the

N time courses as well as the N corresponding eigenvalues. If the

sum of all eigenvalues were divided randomly between the various

components, then the expected distribution of the eigenvalues

would follow a broken-stick distribution; observed eigenvalues en

were then kept if they exceeded eigenvalues bn generated by the

broken-stick model, i.e. [25,26]

enwbn~
XN

i~n

1

i
: ð1Þ

To avoid spurious effects due to the discrete nature of this

measure, we defined spatial functional heterogeneity h as the (real)

value for which the plots of (en) and (bn) last intersect. If n0 was

the last eigenvalue for which we have en0
§bn0

and en0z1vbn0z1,

then h was defined as

h~n0z
en0

{bn0

(en0
{en0z1){(bn0

{bn0z1)
: ð2Þ

Comparing two distributions
Probability distributions were compared using the 2-sample

Cramér-von Mises-Smirnov test [27–30]. More specifically, let

(ak) and (bk) be two samples of size K obtained according to two

probability distributions F1(x) and F2(x), respectively. We test the

equality of F1(x) and F2(x) through the quantity

v2~

ð
F1(x){F2(x)½ �2dG2K (x),

where G2K (x) is the distribution obtained by assuming that both

samples originate from the same distribution. Let (rk) be the ranks

of the (ak) in the combined sample and (sk) be the ranks of the

(bk) in the combined sample. Then the statistic is

T~
U

2K3
{

4K2{1

12K
ð3Þ

with

U~K
XK

k~1

(rk{k)2zK
XK

k~1

(sk{k)2: ð4Þ

Based on the assumption of large K , significance levels of the

statistic were obtained from [30].

Testing for normality
In a similar fashion, the hypothesis that a distribution is normal

can be tested using the one-sample Cramér-von Mises test, whose

goal is to provide an approximation of

v2~

ð
FK (x){F (x)½ �2 dF (x),

where F is the theoretical distribution (here, a normal distribu-

tion), and FK the empirical distribution. Let (ak)k~1,...,K be the

time series sorted in increasing order. Then

T~Kv2~
1

12K
z
XK

k~1

2k{1

2k
{F (ak)

� �
: ð5Þ

Figure 1. Location of the ROIs used in the present analysis.
Large blue filled dots: centers for TalFr; large red filled dots: centers for
TalFox; large green filled dots: centers for gICA; green circles: pC/PCC;
red squares: lIPL; blue diamonds: rIPL; blue crosses: dmPFC; magenta
astrixes: vmPFC; black down-pointing triangles: lTC; cyan up-pointing
triangles: rTC; green left-pointing triangles: lMTL; red right-pointing
triangles: rMTL.
doi:10.1371/journal.pone.0014788.g001
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Akin to the 2-sample Cramér-von-Mises-Smirnov test, this statistic

was thresholded using tables from [30] and the assumption of large

datasets.

Checking the presence of effects
To ascertain the presence of a global effect of method on the

data, we used appproximate nonparametric permutation tests

based on N-way ANOVA with one replicate. Specifically, denote

by q the quantity of interest. Since, in the following, q always

depends on at least methode m, condition c and subject s, we write

q(m,c,s,x), where x stands for any other set of variables. For

instance, in the case of region-dependent scalar measures (e.g.,

mean, variance), we have x~r with 1ƒrƒR. If q is a global scalar

measure (e.g., integration), we have x~ 6 0. If q is a global

multidimensional measure of dimension d (e.g., correlation matrix:

d~R(R{1)=2; MDS components: d is the number of compo-

nents), then x is an index varying from 1 to d . Using standard

N-way ANOVA with one replicate [31], we first computed F (m)
q ,

the F statistic corresponding to an effect of method on q. F (m)
q was

then transformed into a P-value using the empirical distribution of

F (m)
q under the null hypothesis as obtained by approximate

permutation test [32,33]. More precisely, we defined a null

hypothesis (H
(m)
0 ) of no effect of method on q. Under (H

(m)
0 ), all

methods are equivalent. Consequently, for a given condition c,

subject s and other variables x, methods are exchangeable and can

be randomly permutated, leading to a new set of measures

q(m)�(m,c,s,x), 1ƒmƒM (here M~4) for each random permu-

tation. When q was multidimensional, we preserved its structure

by performing the same random permutation to the whole

multidimensional structure; for instance, in the case of correlation,

all elements of the matrix corresponding to condition c and subject

s were subject to the same random permutation. Applying N-way

ANOVA to this synthetic dataset yielded a new statistic F (m)�
q . This

step was repeated N times (here N~10 000), leading to a set of N

F (m)�
q values which were then used as an approximation for the

distributions of F (m)
q under (H

(m)
0 ). Last, the P-value correspond-

ing to an effect of method in the original dataset was approximated

by the fraction of F (m)�
q that were above F (m)

q .

Pairwise comparison of methods was performed likewise, but for

the fact that we each time only considered the two methods under

investigation instead of the full set of M methods. A similar

argument was applied to assess the significance of an effect of

condition.

Lastly, to validate the consistency of the effects detected across

methods and conditions, we also performed N-was ANOVAs to

test for the presence of a method-specific effect of condition as well

as a condition-specific effect of method.

Comparing correlation matrices
To compare matrices to one another, we resorted to the

following metric. For a group of N datasets, each dataset n having

a correlation matrix Rn, we computed the average correlation

matrix R as

R~
1

N

XN

n~1

Rn

and the corresponding measure of nonhomogeneity, or variability,

of that dataset as

V~
XN

n~1

ln
jRj
jRnj

, ð6Þ

where j:j stands for matrix determinant. V is a normalized version

of the minimum discriminant statistic introduced by [34],

pp. 318–324, with datasets of equal lengths. It can be shown that

V is always positive, with equality if and only if all correlation

matrices are equal. As a consequence, V quantified the variability

in terms of functional connectivity that can be observed within the

N datasets.

Step 1: ROI features
For each ROI, we first compared the different volumes

extracted by the four ROI selection procedures in terms of spatial

localization and the temporal heterogeneity of the BOLD signals

extracted for all voxels inside the ROIs.

Spatial localization. The first step was to examine the

degree of spatial overlap for the same ROI as extracted by

different methods. The results are summarized in Figure 2 (for

detailed results, see Figures S1 and S2). Since the degree of spatial

overlap was equal to zero in many cases, we also reported in

Figure 3 the distances between the different peaks extracted by the

four methods (for detailed results, see Figures S3 and S4).

Functional heterogeneity. For each ROI extracted, we also

investigated the signal of its constituting voxels as follows. We first

determined the spatial functional heterogeneity of each ROI using

the broken-stick model mentioned in the Methods Section, see

Equation (1). Results are summarized in Figure 4. We then

examined the potential effect of method and condition. We found

an effect for method and condition (Pv0:001 in both cases). All

pairwise comparisons between methods are reported in Table 1.

As to condition, the effect was an increase in within-ROI spatial

functional heterogeneity from rest to the working memory task.

We also examined the between-method functional similarity of

ROIs as follows. Denote by ROI(m,c,s,r) the ROI extracted by

method m from data corresponding to subject s for region r during

condition c, and h½ROI(m,c,s,r)� its spatial functional heteroge-

neity. For each pair of methods (m1,m2), condition c, subject s,

and region r, we computed the relative functional heterogeneity as

h½ROI(m1,c,s,r)|ROI(m2,c,s,r)�
h½ROI(m1,c,s,r)�zh½ROI(m2,c,s,r)� :

A relative heterogeneity close to 0.5 indicates that ROI(m1,c,s,r)
and ROI(m2,c,s,r) have very similar functional content, while a

relative heterogeneity around 1 indicates two ROIs that have

voxels with rather distinct time series. We found an effect of

method on relative heterogeneity that was barely above the

significance level (P~0:047) and no effect of condition (P~0:630).

The results are summarized in Figure 5.

Step 2: General signal features
Methods for functional connectivity analysis usually require one

BOLD signal intensity time courses per ROI. This time course is

usually obtained as a spatial average of the time courses of all

voxels within the ROI. The second step was therefore to assess the

effect of method and condition on the sampling distribution of

these time courses.

Signal distributions. We performed an analysis of the

marginal features of the average signal within each ROI by

assessing such characteristics as the global shape of the distribution

as well as its mean and variance.

Signal distributions: whole distributions. We used the

approach detailed in the Methods section, see Equations (3) and

(4). When examining the effect of method, we had 2 (con-

ditions)|14 (subjects)|9 (regions)~252 tests for each pair of

ROI Selection in fcMRI
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methods (m1,m2) to compare. We found many significant

differences (between 61 and 105 at p~0:05 uncorrected,

depending on the pair of methods compared; between 33 and

75 at p~0:01 uncorrected; between 17 and 53 at p~0:001
uncorrected). However, most of these differences vanished when

ROI signals were scaled to zero mean and unit variance: at

p~0:05 uncorrected, we found only two significant differences

and both differences even vanished when the threshold was

lowered to p~0:01 uncorrected. Regarding the effect of condition,

we performed 4 (methods)|14 (subjects)|9 (regions)~504 tests.

We found the same pattern as for the effect of method, namely

many significant differences between raw signals (187 at p~0:05
uncorrected; 111 at p~0:01 uncorrected; 50 at p~0:001
uncorrected), differences that disappeared when the scaled data

were considered (3 at p~0:05 uncorrected; 1 at p~0:01
uncorrected; none at p~0:001 uncorrected).

Signal distributions: normality of data. We tested the

hypothesis that the signal sampling distributions could be normal

using the approach detailed in the Methods section, see Equation (4).

We found that, out of the 4 (methods)|2 (tasks)|14 (subjects)|9

(regions)~1008 tests performed, very few were significant (15 at

p~0:05 , uncorrected; 5 at p~0:01, uncorrected; 1 at p~0:001,

uncorrected).

Signal distributions: signal means. Using the approach

described in the Methods section, we investigated the influence

of method and condition on the ROI signal means. We

found no significant effect of method (P~0:555) nor condition

(P~0:906).

Figure 2. Spatial overlap between ROIs according to the four ROI selection methods. If S1 and S2 are the spheres extracted for a given ROI
by methods 1 and 2, respectively, then the overlap between methods 1 and 2 for that ROI is computed as volume(S1\S2)=
f½volume(S1)zvolume(S2)�=2g. The bottom and top of the box are the 25th and 75th percentile (the lower and upper quartiles, respectively),
and the band in the box is the 50th percentile (median); whiskers represent minimum and maximum values.
doi:10.1371/journal.pone.0014788.g002

Figure 3. Distance between ROI centers according to the four ROI selection methods. The bottom and top of the box are the 25th and
75th percentile (the lower and upper quartiles, respectively), and the band in the box is the 50th percentile (median); whiskers represent minimum
and maximum values.
doi:10.1371/journal.pone.0014788.g003

ROI Selection in fcMRI
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Signal distributions: signal variances. Examining the

temporal variances of the representative ROI signals, we found

significant effect of both method and condition (Pv0:001 in both

cases). All between-method pairwise comparisons are reported in

Table 2A. Variance for gICA and indICAs were found to be lower

and higher, respectively, than for any other method. By contrast,

TalFr and TalFox did not significantly differ. Regarding

condition, we found a decrease of variance from rest to task.

Regarding this change, we found a significant effect of method on

its absolute value (P~0:004) but not on its relative value

(P~0:124). Pairwise comparisons of the between-condition

changes are reported in Figure 2B.

Between-method regional correlations. Pairwise correla-

tions between two signals observed in the same ROI but obtained

with two different methods were also examined. We found that

there globally existed a strong correlation between signals extracted

from the same region and condition but with different methods. We

found a significant effect for both the pair of methods considered

and condition (Pv0:001 in both cases). No specific pattern was

observed for method. For condition, the effect was a decrease when

going from continuous rest to the working memory task.

Differences in patterns of functional connectivity
As a second evaluation step, we investigated the influence of

method and condition on functional connectivity and, more

specifically, on one global measure (integration), two pairwise

measures (marginal and partial correlation), as well as on the

global pattern of correlation.

Integration. In this first approach, we summarized the

information contained in the correlation matrices by computing

their integration. Integration is a measure known in information

theory and multivariate analysis as total correlation [35],

multivariate constraint [36], or multiinformation [37,38]. In

neuroscience, it was first applied to neurocomputing [39]; more

recently, it was also applied to functional MRI data analysis [40,41].

We found an effect of both method and condition (Pv0:001 in both

cases). With respect to methods, the results of all pairwise

comparisons are summarized in Table 3A. Similarly to what was

found for variance, integration in gICA and indICAs was found to

be lower and larger, respectively, than for TalFr and TalFox. As to

the global effect of condition, integration within the DMN during

the working memory task was found to be lower than during rest.

When considering the change in integration from rest to task, we

found a significant effect of method (Pv0:001) on the the absolute

intensity. All pairwise comparisons are reported in Table 3B; effects

were only found between indICAs on the one hand and other

methods on the other hand, with a larger decrease of the former

compared to the latter. We also found a significant effect of method

on the relative change in integration (P~0:019), but none of the

pairwise comparisons we made exhibited significant differences with

a threshold of p~0:05 corrected (see Table 3C).

Marginal correlation. We here examined the effect of

method and condition on the marginal correlation coefficients.

Correlation has been used as a measure of functional connectivity

since the first studies [1,2,42]. We found a significant effect for

both method and condition (Pv0:001 in both cases). All pairwise

comparisons are summarized in Table 4A. Globally, IndICAs

provided correlation values that were larger than for any other

method, gICA with values that tended to be lower. As to

condition, its effect was a decrease from rest to task. When we

examined the effect of method on this decrease, we found a

significant effect of method (Pv0:001) on absolute variation. All

pairwise comparisons are reported in Table 4B. The decrease is

larger for indICAs than for any other method; it is similar for

TalFr, TalFox, and gICA. By contrast, there was no effect of

method on the relative variations (P~0:661).

Partial correlation. We also examined the effect of method

and condition on the partial correlation coefficients. Partial

correlation coefficients are here computed as the correlations

between any two regions after the effect of the seven other regions

onto these two regions have been removed by conditioning. It was

used as a measure of functional connectivity that could be closer to

effective connectivity than classical (marginal) correlation

coefficients [43–50]. We found a significant effect for both

method and condition (Pv0:001 in both cases). Pairwise

comparisons can be found in Table 5. Partial correlations were

largest for indICAs, lowest for gICA. The effect of condition was a

decrease of partial correlation coefficients from rest to task.

Regarding the change in partial correlation, we found no

significant effect of method for either the absolute change

(P~0:705) nor the relative change (P~0:460).

Global structure. We finally dealt with the whole correlation

matrix in order to provide some insight into the global structure of

functional connectivity. Using V of Equation (6), we quantified the

influence of method on within- and between-group variability.

Global structure: within-group variability. We first used

V to investigate the effect of method and condition on group

variability regarding functional connectivity. We considered 8

groups, each being composed of 14 subjects in either rest or task,

Figure 4. Within-ROI spatial functional heterogeneity as a
function of method and condition. The bottom and top of the box
are the 25th and 75th percentile (the lower and upper quartiles,
respectively), and the band in the box is the 50th percentile (median);
whiskers represent minimum and maximum values.
doi:10.1371/journal.pone.0014788.g004

Table 1. Pairwise effects of method on within-ROI spatial
functional heterogeneity.

(A) TalFr TalFox gICA indICAs

TalFr — P~0:005 Pv0:001 P~0:040

TalFox TalFoxwTalFr — Pv0:001 Pv0:001

gICA gICAwTalFr gICAwTalFox — Pv0:001

indICAs n.s. indICAsvTalFox indICAsvgICA —

Upper triangular matrix: significance level of an effect of method. Significant
P-values at a threshold of p~0:05 corrected are emphasized in bold. Lower
triangular matrix: direction of effect.
doi:10.1371/journal.pone.0014788.t001
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and with any of the 4 methods. For each method m and condition

c, we computed the average correlation matrix characteristic of

that method and condition, Rmc, as

Rmc~
1

S

XS

s~1

Rmcs, ð7Þ

and corresponding measure of group variability:

Vmc~
XS

s~1

ln
jRmcj
jRmcsj

: ð8Þ

If the group were very homogeneous, then all correlation matrices

would be similar and, consequently, Vmc would have a low value.

By contrast, if the subjects had very different correlation matrices,

then the corresponding Vmc would be large. The results of this

analysis are summarized in Table 6, first two rows. Group

variability was larger at rest than during the working memory task

regardless of method. It was also found to be smaller with gICA

than with TalFr or TalFox, and smaller with TalFr or TalFox than

with indICAs, regardless of condition.

Global structure: within- versus between-group varia-

bility. To obtain a more precise sense of the relative effect

induced by method compared to condition, we also set

Rm~
1

2S

X2

c~1

XS

s~1

Rmcs~
1

2
(Rm,restzRm,task)

the average correlation matrix corresponding to method m,

regardless of condition (i.e., the grand average). Similarly to the

within- and between-group variance decomposition [51], we

defined within-group variability for either the rest or the task

condition as in Equation (8), between-group variability as

Vm,inter~S
X2

c~1

ln
jRmj
jRmcj

~S ln
jRmj
jRm,restj

zln
jRmj
jRm,taskj

� �
, ð9Þ

and, finally, total variability as

Vm,tot~
X2

c~1

XS

s~1

ln
jRmj
jRmcsj

: ð10Þ

Vm,intra, Vm,inter, and Vm,tot are related by (see Appendix S1)

Vm,intrazVm,inter~Vm,tot: ð11Þ

This relationship makes it possible to determine what part of

variance is accounted for by group variability

aintra~
Vm,restzVm,task

Vm,tot
ð12Þ

Figure 5. Relative spatial functional heterogeneity as a function of pair of methods and condition. The bottom and top of the box are
the 25th and 75th percentile (the lower and upper quartiles, respectively), and the band in the box is the 50th percentile (median); whiskers represent
minimum and maximum values.
doi:10.1371/journal.pone.0014788.g005

Table 2. Pairwise effects of method on signal variance.

(A) TalFr TalFox gICA indICAs

TalFr — P~0:443 Pv0:001 Pv0:001

TalFox n.s. — Pv0:001 Pv0:001

gICA gICAvTalFr gICAvTalFox — Pv0:001

indICAs indICAswTalFr indICAswTalFox indICAswgICA —

(B)

TalFr — P~0:127 P~0:037 P~0:141

TalFox n.s. — P~0:777 P~0:017

gICA n.s. n.s. — P~0:003

indICAs n.s. n.s. indICAsvgICA —

(A) Variance. (B) Absolute variance change. Upper triangular matrix: significance
level of an effect of method. Significant P-values at a threshold of p~0:05

corected are emphasized in bold. Lower triangular matrix: direction of effect;
n.s.: nonsignificant. Note that, since changes are usually negative, a larger
change means a change that is smaller in amplitude.
doi:10.1371/journal.pone.0014788.t002
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and what part of variance is accounted for by the difference in

task,

ainter~
Vm,inter

Vm,tot
: ð13Þ

The higher the ratio ainter=aintra, the more we expect to be able to

discriminate the effect of the task compared to group variability.

The results of the present study are reported in Table 6.

Obviously, we found the same results as those presented in the

previous section for within-group variability. In terms of

percentage, though, intraclass variability increased in the

following order: indICAs, gICA, TalFr, and TalFox. Still, in

terms of between-group variability, the greatest difference was

found using individual ICA, where the ratio ainter=aintra was about

twice as large as with the other methods.

Multidimensional scaling. We finally used V to obtain a

global picture of the data. To this aim, we compared any two

datasets (N~2) with one another, i.e., for any pair of datasets

corresponding to methods m1 and m2, conditions c1 and c2, and

subjects s1 and s2,

V~ln
jRj

jRm1c1s1
jzln

jRj
jRm2c2s2

j ,

where R is the average of Rm1c1s1
and Rm2c2s2

. V was then used as

a distance to perform a 2-dimensional multidimensional scaling

(MDS) analysis (procedure implemented in Matlab). 36

components were extracted. A two-dimensional representation of

the result is shown in Figure 6. To determine whether MDS was

able to summarize the data according to the main effects of

interest, we first tested for a global effect of method and condition.

We found no significant effect of method (P~0:171) but a

significant effect of condition (P~0:007). However, neither

conclusions were robustly found across conditions or methods,

respectively (see Tables 1 and 2). Since MDS components are

supposed to provide a classification of information in decreasing

order of importance, we also tested for the presence of effects in

each component separately. The results are represented in

Figure 7. The effect of method was mostly concentrated on the

first two components (Pv0:001 in both cases); no significant effect

of method on the other components was found at a threshold of

Table 3. Pairwise effects of method on network integration.

(A) TalFr TalFox gICA indICAs

TalFr — P~0:845 P~0:001 Pv0:001

TalFox n.s. — P~0:007 Pv0:001

gICA gICAvTalFr gICAvTalFox — Pv0:001

indICAs indICAswTalFr indICAswTalFox indICAswgICA —

(B)

TalFr — P~0:337 P~0:169 P~0:002

TalFox n.s. — P~0:922 P~0:005

gICA n.s. n.s. — Pv0:001

indICAs indICAsvTalFr indICAsvTalFox indICAsvgICA —

(C)

TalFr — P~0:220 P~0:360 P~0:054

TalFox n.s. — P~0:546 P~0:047

gICA n.s. n.s. — P~0:012

indICAs n.s. n.s. n.s. —

(A) Integration. (B) Absolute integration change. (C) Relative integration change.
Upper triangular matrix: significance level of an effect of method. Significant P-
values at a threshold of p~0:05 corected are emphasized in bold. Lower
triangular matrix: direction of effect; n.s.: nonsignificant. Note that, since
changes are usually negative, a larger change means a change that is smaller in
amplitude.
doi:10.1371/journal.pone.0014788.t003

Table 4. Pairwise effects of method on interregional
correlation.

(A) TalFr TalFox gICA indICAs

TalFr — P~0:017 Pv0:001 Pv0:001

TalFox n.s. — P~0:049 Pv0:001

gICA gICAvTalFr n.s. — Pv0:001

indIAs indICAswTalFr indICAswTalFox indICAswgICA —

(B)

TalFr — P~0:366 P~0:100 P~0:003

TalFox n.s. — P~0:987 Pv0:001

gICA n.s. n.s. — P~0:001

indIAs indICAsvTalFr indICAsvTalFox indICAsvgICA —

(A) Marginal correlation. (B) Absolute change in marginal correlation. Upper
triangular matrix: significance level of a pairwise effect of method. Significant
P-values at a threshold of p~0:05 corrected are emphasized in bold. Lower
triangular matrix: direction of effect; n.s.: nonsignificant. Note that, since
changes are usually negative, a larger change means a change that is smaller in
amplitude.
doi:10.1371/journal.pone.0014788.t004

Table 5. Pairwise effects of method on interregional partial
correlation.

TalFr TalFox gICA indICAs

TalFr — P~0:104 Pv0:001 Pv0:001

TalFox n.s. — P~0:005 Pv0:001

gICA gICAvTalFr gICAvTalFox — Pv0:001

indIAs indICAswTalFr indICAswTalFox indICAswgICA —

Upper triangular matrix: significance level of a pairwise effect of method.
Significant P-values at a threshold of p~0:05 corrected are emphasized in bold.
Lower triangular matrix: direction of effect; n.s.: nonsignificant.
doi:10.1371/journal.pone.0014788.t005

Table 6. Inhomogeneity as a measure of intraclass and
interclass variability.

TalFr TalFox gICA indICAs

Vm,rest 19.0 (51.0%) 19.4 (51.2%) 17.5 (50.6%) 21.2 (48.4%)

Vm,task 16.3 (43.7%) 16.7 (44.1%) 15.2 (43.9%) 18.1 (41.4%)

Vm,intra 35.2 (94.7%) 36.2 (95.3%) 32.8 (94.5%) 39.3 (89.8%)

Vm,inter 2.0 (5.3%) 1.8 (4.7%) 1.9 (5.5%) 4.4 (10.2%)

Vm,tot 37.2 (100%) 37.9 (100%) 34.7 (100%) 43.7 (100%)

ainter=aintra 0.056 0.045 0.058 0.113

All quantities are defined in the text, see Equations (8)–(13).
doi:10.1371/journal.pone.0014788.t006
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p~0:05 corrected. As to the effect of condition, it was found to be

essentially located on the first component (Pv0:001). The effect of

condition on the first component was rather consistent, since it was

observed for three out of four methods (at the exception of TalFox,

see Figure 8, left column). The only other component that

exhibited a significant effect of condition was component #7 for

gICA.

We also performed MDS of the data method by method. In

other words, for each method, we only considered data obtained

using that method both at rest and during the working memory

task condition. The results are summarized in Figure 8, right

column. MDS found 16 components for TalFr and TalFox, 17 for

gICA, and 15 for indICAs. Only indICAs had a significant effect

of condition (p~0:05 corrected) on a component (component #1).

Figure 6. Representation of global MDS. Downward-pointing triangle: TalFr; upward-pointing triangle: TalFox; circle: gICA; square: indICAs.
Hallow symbols stand for the rest condition, full ones for the task condition.
doi:10.1371/journal.pone.0014788.g006

Figure 7. MDS: Component-wise effect of method (left) and condition (right). For each component and corresponding significance level P,
we represented { log10 (P).
doi:10.1371/journal.pone.0014788.g007
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For the three other methods, the effect of condition was spread on

various components (e.g., 4 and 1 for TalFr; 15 and 2 for TalFox;

1 and 3 for gICA), leading to subthreshold values of significance.

Discussion

In the present study, we investigated the influence of four

different ROI selection methods in terms of functional connectiv-

ity within the DMN. Four different strategies to extract ROIs and

corresponding signals were assessed using different approaches.

Results are summarized in Table 7 (for method- and condition-

specific results, please refer to Tables S1 and S2). First, we

compared the ROIs themselves in terms of spatial overlap and

within-ROI spatial functional heterogeneity. We found that the

spatial overlap between ROIs corresponding to the same region

but extracted with different methods was rather limited; often the

two volumes were disjoint. We found that the different ROIs had a

relatively similar level of spatial functional heterogeneity, even

though there was an effect of both method and condition. ROIs

extracted with different methods had only limited similarity. We

then compared the statistical characteristics of the extracted

BOLD signal intensity time courses themselves, in terms of various

quantities, such as signal distribution, mean, and variance. Ideally,

these quantities should be identical for all ROI selection methods.

While this was not the case, we observed that the ROI selection

methods had little influence on the marginal distribution of the

time series, which we found could be assumed to be normal to a

good approximation in most cases. Regarding the characteristic

parameters of normal distributions, i.e., mean and variance, we

found that, while the ROI selection method had no influence on

the signal mean, it had an effect on the signal variance. Regarding

condition, we found an effect (a decrease) on signal variance when

going from rest to the working memory task. Furthermore, for

each of the 9 ROIs selected, all four methods produced correlated

signal timecourses and this correlation significantly decreased

when going from rest to performing the working memory task. We

also assessed the similarities between functional connectivity

patterns (as measured by correlation matrices) extracted from

different sets of time series. We examined how a change in the

exact anatomical location of the ROIs induced changes in the

correlation matrix. We showed that the selection method had a

global effect on integration , marginal correlation, and partial

correlation. Despite these differences, all methods detected a

decrease in integration and correlation within the 9 ROIs in the

DMN when switching from continuous rest to the continuous

verbal 2-back working memory task. We also found that the ROI

selection method had a consistent influence on functional

connectivity group variability. Still, regardless of that effect, group

variability decreased from rest compared to the working memory

task. By decomposing total variability into group variability and

between-condition variability, we showed that most of the varia-

bility was accounted for by group variability; the variability related

to condition was small. Nonetheless, MDS made it possible to

extract one component for each method that essentially summa-

rized the effect of condition; this component was consistent

between methods, because a global MDS showed that only the

first component could summarize the condition-induced effect of

all methods.

Altogether, TalFr and TalFox ROI selection procedures

produced similar results (in terms of signal variance, network

integration, interregional correlation, interregional partial corre-

lation, and inhomogeneity), but differences were nonetheless

observed (e.g., in terms of MDS). By contrast, indICAs led to

measures of functional connectivity (signal variance, network

integration, interregional correlation and partial correlation,

between-task inhomogeneity) that were larger than for the three

other methods. While different from indICA, results obtained from

gICA could not easily be compared with those from TalFr or

TalFox. As expected, ROI selection at the individual level, i.e., the

indICAs approach, globally yielded a magnification of all

estimated differences, be it in terms of measures of interest (e.g.,

variance, integration) or nuisance factors, such as group varia-

bility. IndICAs, which was the most specific to the data in our

analysis, yielded the largest changes in terms of the influence of

condition; the strongest effects related to the working memory task

were often obtained with this method. Nonetheless, while the

quantitative results in terms of functional connectivity obtained

with the indICA were to some extent different compared to the

other methods, we could show that the overall conclusions from

the indICA were consistent with those obtained with the other

three ROI selection methods.

While the interpretation of the functional connectivity results is

not the main focus of the present study, it should still be

emphasized that they are in line with our previous study based on

Figure 8. MDS: Effect of condition method by method after MDS on the data from the method only. For each component and
corresponding significance level P, we represented { log10 (P).
doi:10.1371/journal.pone.0014788.g008

Table 7. Summary of results for an effect of method or
condition on the different measures of signal or functional
connectivity.

effect of
method

effect of
condition

ROI features spatial functional heterogeneity Pv0:001 Pv0:001

relative functional heterogeneity P~0:050 P~0:621

signal features mean P~0:555 P~0:906

variance

values Pv0:001 Pv0:001

variations, absolute P~0:004 N/A

variations, relative P~0:124 N/A

functional
connectivity

integration

values Pv0:001 Pv0:001

variations, absolute Pv0:001 N/A

variations, relative P~0:019 N/A

marginal correlation

values Pv0:001 Pv0:001

variations, absolute Pv0:001 N/A

variations, relative P~0:661 N/A

partial correlation

values Pv0:001 Pv0:001

variations, absolute P~0:705 N/A

variations, relative P~0:460 N/A

MDS P~0:171 P~0:007

Significant P-values at a threshold of p~0:05 corrected are emphasized in bold.
N/A: not applicable.
doi:10.1371/journal.pone.0014788.t007
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the same data [19]. In that study, where we used the indICAs ROI

selection method only, we found a global decrease of marginal

correlation and a decrease of partial correlation that was limited to

a few pairs of regions. In the present study, the global decrease was

confirmed with marginal correlation and partial correlation as well

as integration with all four ROI selection methods.

It should be noted that we have studied in this investigation the

effect of anatomical variability of ROI location and its impact on

resting-state functional connectivity. A related question of interest

is the potential influence of ROI size and shape on measures of

functional connectivity. Given the degree of spatial filtering used

and the size of the anatomical regions of interest in the present

study, we believe that the spherical ROIs with a radius of 6 mm

used here represent a reasonable trade-off between anatomical

specificity and signal sensitivity. Regarding size, while selecting

spherical ROIs is the most common procedure, other, more

refined methods could be used to extract ROIs from the data

according to different criteria, such as intra-regional homogeneity

[52] or interregional connectivity profiles [53,54]. A detailed

investigation of the relationship between ROI size and shape and

resting-state functional connectivity is beyond the scope of the

present study.

Although our investigation showed that our main conclusion (a

condition-dependent decrease of functional connectivity in the

DMN) holds across all ROI selection methods examined, one

should bear in mind that all ROI selection methods considered

here were based on resting-state data only. Whether this should be

considered as a bias or as the cognitive consequence of how the

DMN is defined is an issue that remains to be solved. From a

methodological perspective, ROI extraction was guided by the

neuronal activity that occurred during resting-state conditions

only; resulting ROIS were therefore likely to be optimal (in terms

of sensitivity) for resting-state conditions but potentially sub-

optimal for the working memory task. This fact could potentially

introduce a user-derived bias for our finding that explains why we

found that all measures of functional connectivity within the DMN

were lower during the working memory task than during rest. In

that perspective, ruling out the existence of a method-induced,

hypothesis-unspecific decrease of functional connectivity should be

a matter of concern, which could be solved, e.g., by finding a

specific, hypothesis-driven increase of functional connectivity

within the same regions. However, it is important to bear in

mind that, from a cognitive perspective, the concept of DMN was

based on resting-state PET and fMRI data [55,56]. It therefore

seems natural that the definition of ROIs within the DMN should

be guided by resting-state data. In more general terms, we believe

that the decision of which task condition to use for ROI based

sampling of functional connectivity during steady-state conditions

should be made with a consideration of which cognitive hypothesis

one wishes to test.

As a side remark, we found values of functional heterogeneity

that were always larger than one. This means that the time series

of all voxels within a given ROI could not be considered as

identical, up to some noise. This result provides evidence against

the usual representation of a ROI by one time series only, since

doing so seems to entail information loss of some sort. Whether

this lost information is relevant for connectivity analysis is an issue

that remains to be investigated.

In this paper, we sought to answer the question ‘‘Which ROI

selection technique should be used in the analysis of resting-state

functional connectivity?’’ by a detailed comparison of different

strategies and their potential impact on connectivity measures. As

expected, we found that the method individualizing the placement

of the ROIs provided the best results. By ‘‘best’’, we here mean

that the method yielded results that showed the greatest difference

between the rest and the working memory tasks in terms of both

the functional connectivity measures (integration and marginal

correlation) and the part of variance that could be accounted for

by the task (as opposed to between-subject variability). Overall,

however, our results support the notion that a moderate variability

in anatomical location has a rather limited impact on resting-state

functional connectivity within the DMN. Although differences in

integration and marginal correlation were detected, all ROI

selection schemes reliably detected decreases in connectivity within

the DMN for the rest to a working memory transition. While it is

often optimal to perform individual ROI selection, our result hints

that using group ROIs instead may not lead to a significant loss of

information. This result could prove useful in cases where

individual ROI selection cannot be performed, e.g., when

considering small groups of subjects or individual patients. Note

also that non-individual ROI selection methods have the

advantage of not making use of the same data twice—first for

ROI selection, then for functional connectivity analysis—, a

procedure that could be critized from the point of view of

frequentist statistics. Moreover, our finding that group variability

was larger than variability between tasks warrants some caution to

be exerted when comparing functional connectivity between

cohorts of patient populations or between different mental states.

Finally, the present study relies on the assumption that there is a

change in functional connectivity induced by the change in

condition from rest to task, and that this change was fully captured

by the correlation matrix. We proved that, under such assumption,

the four tested ROI selection methods provided similar conclu-

sions in terms of functional connectivity within the DMN.

Supporting Information

Figure S1 Detailed spatial overlaps between ROIs between

TalFr and TalFox (circle), TalFr and gICA (square), and TalFox

and gICA (diamond). If S1 and S2 are the spheres extracted for a

given ROI by methods 1 and 2, respectively, then the overlap

between methods 1 and 2 for that ROI is computed as volume(S1

> S2)/{[volume(S1)+volume (S2)]/2}.

Found at: doi:10.1371/journal.pone.0014788.s001 (0.01 MB EPS)

Figure S2 Detailed spatial overlaps between ROIs between

indICAs and the three other methods. If S1 and S2 are the spheres

extracted for a given ROI by methods 1 and 2, respectively, then

the overlap between methods 1 and 2 for that ROI is computed as

volume(S1 > S2)/{[volume(S1)+volume (S2)]/2}. The bottom and

top of the box are the 25th and 75th percentile (the lower and

upper quartiles, respectively), and the band in the box is the 50th

percentile (median); whiskers represent minimum and maximum

values.

Found at: doi:10.1371/journal.pone.0014788.s002 (0.08 MB

PDF)

Figure S3 Detailed distances between ROI centers between

TalFr and TalFox (circle), TalFr and gICA (square), and TalFox

and gICA (diamond).

Found at: doi:10.1371/journal.pone.0014788.s003 (0.01 MB EPS)

Figure S4 Detailed distances between ROI centers as extracted

with indICAs and the three other methods. The bottom and top of

the box are the 25th and 75th percentile (the lower and upper

quartiles, respectively), and the band in the box is the 50th

percentile (median); whiskers represent minimum and maximum

values.

Found at: doi:10.1371/journal.pone.0014788.s004 (0.10 MB

PDF)
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Table S1 Method-specific effect of condition. Method-by-

method P-values for an effect of condition. MDS is performed

on the components obtained for a given method after MDS on all

the data. MDS* is performed on the components obtained for a

given method after MDS on the data corresponding to that

method only.

Found at: doi:10.1371/journal.pone.0014788.s005 (0.01 MB

PDF)

Table S2 Condition-specific effect of method. Condition-by-

condition P-values for an effect of method. MDS is performed on

the components obtained for a given method after MDS on all the

data. MDS* is performed on the components obtained for a given

method after MDS on the data corresponding to that method

only.

Found at: doi:10.1371/journal.pone.0014788.s006 (0.01 MB

PDF)

Appendix S1 Proof of Equation (11).

Found at: doi:10.1371/journal.pone.0014788.s007 (0.07 MB

PDF)
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et al. (2010) Dynamics of the functional integration of motor-related areas

interactions during motor sequence learning. Neuroimage 49: 759–766.

42. Friston KJ, Jezzard P, Turner R (1994) Analysis of functional MRI time-series.

Hum Brain Mapp 1: 153–171.

43. Salvador R, Suckling J, Coleman M, Pickard JD, Menon D, et al. (2005)

Neurophysiological architecture of functional magnetic resonance images of

human brain. Cereb Cortex 34: 387–413.

44. Salvador R, Suckling J, Schwarzbauer C, Bullmore E (2005) Undirected graphs

of frequency-dependent functional connectivity in whole brain networks. Phil

Trans R Soc Lond B Biol Sci 360: 937–946.
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46. Marrelec G, Doyon J, Pélégrini-Issac M, Benali H (2005) Heading for data-

driven measures of effective connectivity in functional MRI. In: IJCNN Proc. pp

1528–1533.

47. Marrelec G, Krainik A, Duffau H, Pélégrini-Issac M, Lehéricy S, et al. (2006)
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