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Abstract
The use of mutual information as a similarity measure in agglomerative hierarchical cluster-

ing (AHC) raises an important issue: some correction needs to be applied for the dimension-

ality of variables. In this work, we formulate the decision of merging dependent multivariate

normal variables in an AHC procedure as a Bayesian model comparison. We found that the

Bayesian formulation naturally shrinks the empirical covariance matrix towards a matrix set

a priori (e.g., the identity), provides an automated stopping rule, and corrects for dimension-

ality using a term that scales up the measure as a function of the dimensionality of the vari-

ables. Also, the resulting log Bayes factor is asymptotically proportional to the plug-in

estimate of mutual information, with an additive correction for dimensionality in agreement

with the Bayesian information criterion. We investigated the behavior of these Bayesian

alternatives (in exact and asymptotic forms) to mutual information on simulated and real

data. An encouraging result was first derived on simulations: the hierarchical clustering

based on the log Bayes factor outperformed off-the-shelf clustering techniques as well as

raw and normalized mutual information in terms of classification accuracy. On a toy exam-

ple, we found that the Bayesian approaches led to results that were similar to those of

mutual information clustering techniques, with the advantage of an automated thresholding.

On real functional magnetic resonance imaging (fMRI) datasets measuring brain activity, it

identified clusters consistent with the established outcome of standard procedures. On this

application, normalized mutual information had a highly atypical behavior, in the sense that

it systematically favored very large clusters. These initial experiments suggest that the pro-

posed Bayesian alternatives to mutual information are a useful new tool for hierarchical

clustering.

PLOS ONE | DOI:10.1371/journal.pone.0137278 September 25, 2015 1 / 26

a11111

OPEN ACCESS

Citation: Marrelec G, Messé A, Bellec P (2015) A
Bayesian Alternative to Mutual Information for the
Hierarchical Clustering of Dependent Random
Variables. PLoS ONE 10(9): e0137278. doi:10.1371/
journal.pone.0137278

Editor: Magnus Rattray, University of Manchester,
UNITED KINGDOM

Received: January 19, 2015

Accepted: August 16, 2015

Published: September 25, 2015

Copyright: © 2015 Marrelec et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: Data have been
deposited to Figshare: http://dx.doi.org/10.6084/m9.
figshare.1521155.

Funding: A.M. is supported by Deutsche
Forschungsgemeinschaft (DFG) grant SFB 936/Z3.
P.B. is supported by the Fonds de Recherche du
Quebec {Sante (FRQS). The funders had no role in
study design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Competing Interests: PB offers consulting in brain
image analysis for two Contract Research
Organizations, NeuroRX and Biospective, Montreal,

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0137278&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.6084/m9.figshare.1521155
http://dx.doi.org/10.6084/m9.figshare.1521155


Introduction
Cluster analysis aims at uncovering natural groups of objects in a multivariate dataset (see [1]
for a review). In the vast variety of methods used in cluster analysis, an agglomerative hierar-
chical clustering (AHC) is a generic procedure that sequentially merges pairs of clusters that
are most similar according to an arbitrary function called similarity measure, thereby generat-
ing a nested set of partitions, also called hierarchy [2]. The choice of the similarity measure
indirectly defines the shape of the clusters, and thus plays a critical role in the clustering pro-
cess. While this choice is guided by the features of the problem at hand, it is also often restricted
to a limited number of commonly used measures, such as the Euclidean distance or Pearson
correlation coefficient [3]. In the present work, we focus on the clustering of random variables
based on their mutual information, which has recently gained in popularity in cluster analysis,
notably in the field of genomics [4–7] and in functional magnetic resonance imaging (fMRI)
data analysis [8–10]. Mutual information is a general measure of statistical dependency derived
from information theory [11–13]. A key feature of mutual information is its ability to capture
nonlinear interactions for any type of random variables [14]; also of interest, it indifferently
applies to univariate or multivariate variables and can thus be applied to clusters of arbitrary
size. Yet, mutual information is an extensive measure that increases with variable dimensional-

ity. In addition, Î , the finite-sample estimator of mutual information, suffers from a dimension-
ality-dependent bias (see §A of S1 File). Several authors have proposed to correct mutual
information for dimensionality by using a “normalized” version of mutual information
[15–17]. In the clustering literature, normalized mutual information is routinely used. How-
ever, the impact of such correction procedure has not been extensively evaluated so far.

In the present paper, we consider Bayesian model-based clustering [1, 18–20] as an alterna-
tive to mutual information for the hierarchical clustering of dependent multivariate normal
variables. Specifically, we derive a similarity measure by comparing two models:MI where Xi

and Xj are independent (i.e., the covariance between any element of Xi and any element of Xj is
equal to zero), againstMD where the covariance between Xi and Xj can be set to any admissible
value. The proposed similarity measure is then the log Bayes factor in favor ofMD againstMI

[21]. With appropriate priors on the model parameters, we show that the similarity measure s
(Xi,Xj) between Xi and Xj can be expressed in closed form. As will be shown below, the Bayesian
formulation naturally (1) allows for clustering even when the sample covariance matrix is ill-
defined; (2) provides for an automated stopping rule when the clustering reached has s(Xi,Xj)
� 0 for any pair of remaining clusters; (3) corrects for dimensionality using a term that scales
up the measure as a function of the dimensionality of the variables; and (4) provides for a local
and global measure of similarity, in that it can be used to decide which pair of variables to clus-
ter at each step (local level) as well as to compare different levels of the resulting hierarchy
(global level). Asymptotically (i.e., when the number of samples N!1), the similarity mea-
sure is a linear function of mutual information, with a penalization factor that is in agreement
with the Bayesian information criterion (BIC) [22]. In this sense, the present paper makes an
explicit connection between Bayesian model comparison for the clustering of dependent ran-
dom variables and mutual information. The code corresponding to the Bayesian approach is
freely available online (https://github.com/SIMEXP/arXiv-1501.05194/releases/tag/1.0)

We evaluated an AHC procedure based on this approach with synthetic datasets. The exper-
iment aimed to evaluate how it behaved under both its exact and asymptotic forms compared
to other approaches, including raw and normalized mutual information. We finally tested the
new measures on two real datasets: a toy dataset and functional magnetic resonance imaging
(fMRI) data.
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Analysis
In the following, we develop a Bayesian solution to the problem of clustering detailed above.
We first introduce the model together with the Bayesian framework and a general expression
for the similarity measure. In subsequent subsections, we derive a closed-form expression for
the marginal model likelihoods under both assumptions of dependence and independence as
well as exact and asymptotic expressions for the similarity measure. We then provide a descrip-
tion of the hierarchical agglomerative clustering algorithm resulting from the present develop-
ment. We examine how the same framework can be conveniently used to compare nested
partitions, that is, different levels of a hierarchy. We also deal with the issue of setting the
hyperparameters. Finally, we show how the Bayesian solution can naturally provide for an
automatic stopping rule.

Bayesian model comparison
Let X be a D-dimensional multivariate normal variable with known mean μ and unknown
covariance matrix�. Define Xi and Xj as two disjoint subvectors of X (of size Di and Dj, respec-
tively), and Xi[j as their union (of size Di[j = Di + Dj). Assume that we have to decide whether
we should cluster Xi and Xj based on their level of dependence. To this end, consider two com-
peting modelsMI andMD. InMI, Xi and Xj are independent and the distribution of Xi[j can
be decomposed as the product of the marginal distributions of Xi and Xj. Under such condi-
tion,�i[j, the restriction of� to Xi[j, is block diagonal with blocks�i and�j, the restrictions
of� to Xi and Xj, respectively. InMD, by contrast, Xi and Xj are dependent. Given a dataset
{x1, . . ., xN} of N independent and identically distributed (i.i.d.) realizations of X and S the cor-
responding sample sum-of-square matrix

S ¼
XN
n¼1
ðxn � μÞðxn � μÞt;

we propose to quantify the similarity between Xi and Xj as the log Bayes factor, that is, the log
ratio of the marginal model likelihoods ofMD versusMI

sðXi;XjÞ ¼ ln
pðSi[jjMDÞ
pðSi[jjMIÞ

: ð1Þ

Each marginal model likelihood can be expressed as an integral over the model parameters as
described below.

Note that we assumed a known mean in the following theoretical development for the sake
of simplicity. If the mean is unknown (as will be the case in the simulation and real data sec-
tions), this development is still valid, with N replaced by N − 1 and μ by the sample mean

m ¼ 1

N

XN
n¼1

xn:

in the expression of the sample sum-of-square matrix.

Marginal model likelihood under the hypothesis of dependence
Let us first calculate P(Si[jjMD), the marginal model likelihood under the hypothesis of depen-
dence. Expressing this quantity as a function of the model parameters yields

pðSi[jjMDÞ ¼
Z

pðSi[jjMD;Σi[jÞ pðΣi[jjMDÞ dΣi[j: ð2Þ
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Calculation of the integral requires to know the likelihood p(Si[jjMD,�i[j) and the prior distri-
bution p(�i[jjMD) of the covariance matrix underMD. With multivariate normal data, Si[j
given�i[j is Wishart distributed with N degrees of freedom and scale matrix�i[j ([23] Corol-
lary 7.2.2), leading to the following likelihood

pðSi[jjMD;Σi[jÞ ¼
jSi[jj

N � Di[j � 1

2

ZðDi[j;NÞ
jΣi[jj�

N
2 exp � 1

2
trðΣ�1i[jSi[jÞ

� �
; ð3Þ

where Z(d, n) is the inverse of the normalization constant

Zðd; nÞ ¼ 2
nd
2 p

dðd � 1Þ
4

Yd
d0¼1

G
nþ 1� d0

2

� �
:

As to the prior distribution, this quantity is here set as a conjugate prior, namely an inverse-
Wishart distribution with νi[j degrees of freedom and inverse scale matrix Λi[j ([24] §3.6)

pðΣi[jjMDÞ ¼
jΛi[jj

ni[j
2

ZðDi[j; ni[jÞ
jΣi[jj�

ni[jþDi[jþ1
2 exp � 1

2
trðΣ�1i[jΛi[jÞ

� �
: ð4Þ

Bringing Eqs (3) and (4) together into Eq (2) yields for the marginal model likelihood

pðSi[jjMDÞ ¼
jΛi[jj

ni[j
2 jSi[jj

N � Di[j � 1

2

ZðDi[j;NÞZðDi[j; ni[jÞ

�
Z
jΣi[jj�

Nþni[jþDi[jþ1
2 exp � 1

2
tr ðΛi[j þ Si[jÞΣ�1i[j

h i� �
dΣi[j:

The integrand is proportional to an inverse-Wishart distribution with N + νi[j degrees of free-
dom and scale matrix Λi[j + Si[j, leading to

pðSi[jjMDÞ ¼
jSi[jj

N � Di[j � 1

2

ZðDi[j;NÞ
ZðDi[j;N þ ni[jÞ
ZðDi[j; ni[jÞ

jΛi[jj
ni[j
2

jSi[j þ Λi[jj
N þ ni[j

2

: ð5Þ

Marginal model likelihood under the hypothesis of independence
We can now calculate P(Si[jjMI), the marginal model likelihood under the hypothesis of inde-
pendence. IfMI holds, then�i[j is block-diagonal with two blocks�i and�j the submatrix
restrictions of�i[j to Xi and Xj, respectively. Introduction of the model parameters therefore
yields for the marginal likelihood

pðSi[jjMIÞ ¼
Z

pðSi[jjMI;Σi;ΣjÞ pðΣi;ΣjjMIÞ dΣi dΣj: ð6Þ

To calculate this integral, we again need to know the likelihood p(Si[jjMI,�i,�j) and the prior
distribution p(�i,�jjMD) of the two blocks of the covariance matrix underMI. The likelihood
is the same as forMD and has the form of Eq (3). Furthermore, since�i[j is here block diago-
nal, we have j�i[jj = j�ij j�jj and trðΣ�1i[jSi[jÞ ¼ trðΣ�1i SiÞ þ trðΣ�1j SjÞ, where Si and Sj are the
restrictions of S to Xi and Xj, respectively. Consequently, the likelihood can be further
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expanded as

pðSi[jjMI ;Σi;ΣjÞ ¼
jSi[jj

N � Di[j � 1

2

ZðDi[j;NÞ
Y
k2fi;jg
jΣkj�

N
2 exp � 1

2
trðΣ�1k SkÞ

� �
: ð7Þ

As to the prior distribution, assuming no prior dependence between�i and�j yields

pðΣi;ΣjjMIÞ ¼ pðΣijMIÞ pðΣjjMIÞ: ð8Þ

For the sake of consistency, p(�ijMI) and p(�jjMI) are set equal to p(�ijMD) and p
(�jjMD), respectively, which are in turn obtained by marginalization of p(�i[jjMD) as given
by Eq (4). For k 2 {i, j}, p(�kjMI) can be found to have an inverse-Wishart distribution with
νk = νi[j − Di[j + Dk degrees of freedom and inverse scale matrix Λk the restriction of Λi[j to Xk

([25] §5.2)

pðΣkjMIÞ ¼
jΛkj

nk
2

ZðDk; nkÞ
jΣkj�

nkþDkþ1
2 exp � 1

2
trðΛkΣ

�1
k Þ

� �
: ð9Þ

Incorporating Eqs (7), (8), and (9) into Eq (6) yields

pðSi[jjMIÞ ¼
jSi[jj

N � Di[j � 1

2

ZðDi[j;NÞ
Y
k2fi;jg

jΛkj
nk
2

ZðDk; nkÞ

� R jΣkj�
NþnkþDkþ1

2 exp f� 1

2
tr ðSk þ ΛkÞΣ�1k

� 	g:
Each integrand is proportional to an inverse-Wishart distribution with N + νk degrees of free-
dom and scale matrix Sk + Λk, leading to

pðSi[jjMIÞ ¼
jSi[jj

N � Di[j � 1

2

ZðDi[j;NÞ
Y
k2fi;jg

ZðDk;N þ nkÞ
ZðDk; nkÞ

jΛkj
nk
2

jSk þ Λkj
N þ nk

2

: ð10Þ

Log Bayes factor of dependence versus independence
Let us now express the Bayesian similarity measure by incorporating Eqs (5) and (10) into Eq
(1), yielding

sðXi;XjÞ ¼
X
k2fi;jg

N þ nk
2

ln jΛk þ Skj
" #

� N þ ni[j
2

ln jΛi[j þ Si[jj þ cst ð11Þ

with

cst ¼ ni[j
2

ln jΛi[jj þ
XDi[j

d¼1
lnG

N þ ni[j þ 1� d

2

� �
� lnG

ni[j þ 1� d

2

� �� �

�
X
k2fi;jg

nk
2
ln jΛkj þ

XDk

d¼1
lnG

N þ nk þ 1� d
2

� �
þ lnG

nk þ 1� d
2

� �� �( )
:

ð12Þ

Another form for s(Xi,Xj) is

sðXi;XjÞ ¼ D�i[j � D�i � D�j; ð13Þ
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with

D�k ¼ �ðN þ nk;Λk þ SkÞ � �ðnk;ΛkÞ; k 2 fi; j; i [ jg; ð14Þ
and

�ðn;AÞ ¼ � n
2
ln jAj þ

Xdim ðAÞ

d¼1
lnG

nþ 1� d
2

� �
: ð15Þ

Δϕk quantifies, up to a constant that cancels out in s(Xi,Xj), the amount by which the data sup-
port a model of multivariate normal distributions with unrestricted covariance matrix for Xk.

Asymptotic form of the log Bayes factor

We can now provide an asymptotic expression for s(Xi,Xj). Define Ŝk as the standard sample

covariance matrix, i.e., Sk ¼ NŜk. When N!1, we can use Stirling approximation ([26]
p. 257) to expand the expression ϕ of Eq (15), leading to (see §B of S1 File)

sðXi;XjÞ ¼
N
2
ln
jŜij jŜ jj
jŜ i[jj

� 1

2

Di[jðDi[j þ 1Þ
2

�
X
k2fi;jg

DkðDk þ 1Þ
2

" #
lnN þ Oð1Þ

¼ N ÎðXi;XjÞ �
DiDj

2
lnN þ Oð1Þ;

ð16Þ

where

ÎðXi;XjÞ ¼
1

2
ln
jŜij jŜ jj
jŜ i[jj

is the plug-in estimator of mutual information for a multivariate normal distribution. Alterna-

tively, N ÎðXi;XjÞ can be seen as the minimum discrimination information for the indepen-

dence of Xi and Xj ([12] Chap. 12, §3.6).

Hierarchical agglomerative clustering

A hierarchy on a set of D variables is a nested set of partitions ðClÞDl¼0, where Cl is a partition of
{1, . . ., D} into D − l clusters [2]. A hierarchical agglomerative clustering (AHC) is a generic
procedure to generate such a hierarchy, outlined in pseudo-code in Algorithm 1. The main
steps of the algorithm are: (1) Initialize the partition with singletons (line 2); (2) derive a matrix
sl where each element represents the similarity between two clusters Xi and Xj of Cl, based on
an arbitrary function s(Xi,Xj) (line 4); (3) identify the two clusters that are most similar (line 5);
(4) form a new partition identical to the previous one, except that the two most similar clusters
are now merged (lines 6–7); (5) iterate Steps 2–4 until the partition has only one single element
which covers the whole set of variables (line 3). In the case of the methods proposed here, the
similarity measure is given by either Eq (11) for the exact formulation or Eq (16) for the
asymptotic BIC approximation.

Note that for the selection of the pair of clusters that are most similar (step 3), there may be
more than one pair of clusters which maximize the similarity function. Most implementations
of AHC proceed by selecting arbitrarily one such pair (e.g., the first one to be detected). In the
in-house implementation we used, the pair was selected randomly amongst all these pairs. This
was done to properly capture the instability of the algorithm. In such a form, AHC may not be
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deterministic anymore, in that two runs of the same algorithm on the same dataset may result
in different hierarchies.

1: return Hierarchy ðClÞDl¼0
2: C0 {{X1}, . . ., {XD}}
3: for l = 0, . . ., D − 2 do
4: sl [s(Xi,Xj)]Xi,Xj 2 Cl

5: (i�, j�) arg maxi, j sl(i, j)
6: Cl+1 Cl\{i�, j�}
7: Cl+1 Cl[{i�[j�}
8: end for

Algorithm 1 General description of the hierarchial agglomerative cluster-
ing algorithm.

Comparing distinct levels of the hierarchy
The last development aims at providing a way to compare nested partitions, i.e., different levels
of the hierarchy. Once the hierarchical clustering has been performed, each step is associated
with a partition of X. Assume that, at level l, the partition reads {X1, . . ., XK} and that, at step l
+ 1, Xi and Xj are clustered. Denote by Cl the assumption that the partition at level l is the cor-
rect partition of X. The global improvement brought by the clustering of Xi and Xj between
steps l and l + 1 can be quantified by the log ratio between the marginal model likelihoods

ln
pðSjClþ1Þ
pðSjClÞ

;

where both quantities can be computed in a manner similar to what was done for the similarity
measure. For instance, if Cl is true, then� is block-diagonal with K blocks�k’s, the submatrix
restrictions of� to Xk. Introducing the model parameters then yields

pðSjClÞ ¼
Z

pðSjCl;Σ1; � � � ;ΣKÞ pðΣ1; � � � ;ΣK jClÞ
YK
k¼1

dΣk: ð17Þ

In a way similar to what was done previously, the likelihood p(SjCl,�1, . . .,�K) can be
expanded as

pðSjCl;Σ1; � � � ;ΣKÞ ¼
jSj

N � D� 1

2

ZðD;NÞ
YK
k¼1
jΣkj�

N
2 exp � 1

2
trðΣ�1k SkÞ

� �
: ð18Þ

Turning to the prior distribution p(�1, . . .,�KjCl) and assuming no prior dependence between
the�k’s, we can set

pðΣ1; � � � ;ΣK jC lÞ ¼
YK
k¼1

pðΣkjClÞ: ð19Þ

Each p(�kjCl) can be obtained by the marginalization of p(�jCl), which is here taken as an
inverse-Wishart distribution with ν degrees of freedom and inverse scale matrix the D-by-D
diagonal matrix Λ. Note that such a prior on� is compatible with the prior used earlier for
�i[j if one sets νi[j = ν − D + Di[j and if Λi[j is the restriction of Λ to Xi[j ([25] §5.2). We then
have

pðΣkjClÞ ¼
jΛkj�

nk
2

ZðDk; nkÞ
jΣkj�

nkþDkþ1
2 exp � 1

2
trðΛkΣ

�1
k Þ

� �
: ð20Þ
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Incorporating Eqs (18), (19), and (20) into Eq (17) and integrating leads to

pðSjClÞ ¼
jSj

N � D� 1

2

ZðD;NÞ
YK
k¼1

ZðDk;N þ nkÞ
ZðDk; nkÞ

jΛkj
nk
2

jΛk þ Skj
N þ nk

2

: ð21Þ

The same calculation can be performed for p(SjCl+1). The result is the same as in Eq (21),
except that the product is composed of K − 1 terms. Of these terms, K − 2 correspond to clus-
ters that are unchanged from Cl to Cl+1 and, as a consequence, are identical to those of Eq (21).
The (K − 1)th term corresponds to the cluster obtained by the merging of Xi and Xj. As a conse-
quence, the log Bayes factor reads

ln
pðSjClþ1Þ
pðSjClÞ

¼ ln
ZðDi[j;N þ ni[jÞ
ZðDi[j; ni[jÞ

jΛi[jj
ni[j
2

jΛi[j þ Si[jj
N þ ni[j

2

2
4

3
5

�
X
k2fi;jg

ln
ZðDk;N þ nkÞ
ZðDk; nkÞ

jΛkj
nk
2

jΛk þ Skj
N þ nk

2

2
4

3
5:

But this quantity is nothing else than s(Xi,Xj). In other words, we proved that

ln
pðSjClþ1Þ
pðSjClÞ

¼ sðXi;XjÞ; ð22Þ

i.e., s(Xi,Xj), the localmeasure of similarity between Xi and Xj, can be used to compute the
globalmeasure of relative probability between two successive levels of the hierarchy.

Setting the hyperparameters
Hyperparameter selection is often a thorny issue in Bayesian analysis. We here considered two
approaches. The first approach (coined BayesCov) is to set the degree of freedom to the lowest
value that still corresponds to a well-defined distribution, that is ν = D, and a diagonal scale
matrix that optimizes the marginal model likelihood of Eq (21) before any clustering (that is,
with K = D clusters and Dk = 1 for all k), yielding (see §C of S1 File)

Λdd ¼
n� Dþ 1

N
Sdd;

where Λdd and Sdd are the diagonal elements of the prior inverse scale matrix Λ and sum-of-
square matrix S, respectively. An alternative approach (coined BayesCorr) is to work with the
sample correlation matrix instead of the sample covariance matrix. One can then set the num-
ber of degrees of freedom to ν = D + 1 and the scale matrix to the identity matrix. The corre-
sponding prior distribution yields uniform marginal distributions for the correlation
coefficients [27]. Note that clustering with the asymptotic form of Eq (16) (coined Bic) does
not involve hyperparameters; it is also insensitive to the fact that the input is the covariance
matrix or the correlation matrix.

Automatic stopping rule
An advantage of the Bayesian clustering scheme proposed here and its BIC approximation is
that they come naturally with an automatic stopping rule. By definition of s in Eq (1), the fact
that s(Xi0,Xj0)> 0 for the pair that is selected for clustering also means that the marginal model
likelihood forMD is larger than that forMI. As such, Xi0 and Xj0 are more likely to belong to
the same cluster than not and, as a consequence, it indeed makes sense to cluster them. By
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contrast, if we have s(Xi0,Xj0)< 0 for the same pair, the marginal model likelihood forMD is
smaller than that forMI. Xi0 and Xj0 are therefore more likely to belong to different clusters. If,
at a given step of the clustering, the pair with highest similarity measure has a negative similar-
ity measures, then all pairs do, meaning that all pairs of clusters tested more probably belong to
different clusters. It therefore makes sense to stop the clustering procedure at that point. This
shows that an automatic stopping rule can simply be implemented into the clustering algo-
rithm: Stop the clustering if the pair (Xi0,Xj0) selected for clustering at a given step has s(Xi0,Xj0)
< 0. Note that, according to Eq (22), the resulting clustering corresponds to the one in the hier-
archy that has largest marginal likelihood. We will refer to BayesCovAuto, BayesCorrAuto and
BicAuto when applying the clustering schemes with this automated stopping rule.

Results

Validation on synthetic data
To assess the behavior of the method expounded here, we examined how it fared on synthetic
data. We used the two variants of the Bayes factor mentioned above (BayesCov and Bayes-
Corr), Bic, as well as the same methods with automatic stopping rule (BayesCovAuto, Bayes-
CorrAuto and BicAuto). As a mean of comparison, we also used the following methods—

• A random hierarchical clustering scheme, where variables were clustered uniformly at ran-
dom at each step. This category contains only one algorithm: Random, which was imple-
mented for the purpose of the present study.

• Hierarchical clustering schemes with similarity measures given by either Pearson correlation
or absolute Pearson correlation, and a merging rule based on either the single, average, or
complete linkage, or using Ward criterion. This category contains 8 algorithms: Single, Aver-
age, Complete, Ward, SingleAbs, AverageAbs, CompleteAbs, WardAbs. We used the imple-
mentations of these methods proposed in NIAK (https://github.com/SIMEXP/niak)

• Hierarchical clustering with a similarity measure given by mutual information, with and
without normalization. This category contains 2 algorithms: Infomut and InfomutNorm.
These methods were implemented for the purpose of the present study. Note that neither
algorithm can run on small samples.

• An approach where the clusters are estimated as the blocks of the precision (i.e., inverse
covariance) matrix estimated with the graphical lasso—essentially a maximum-likelihood
with L1-norm penalization [28]. The penalization parameter λ was set in [0, 1] by step of 0.1,
then to 5, 10, 20, 50, 100, 200 [29]. A version that optimizes λ with a BIC criterion was also
used [30]. Since the graphical lasso is not invariant by transformation of a covariance matrix
into a correlation matrix, we used either the covariance matrix or the correlation matrix as
input. Note that this approach automatically determined a number of clusters. Also, for λ = 0
(unconstrained case), the algorithm cannot run on small samples. This category contains 34
algorithms: 16 algorithms gLassoCov-x and 16 algorithms gLassoCorr-x, where x is the value
of λ, and 2 algorithms gLassoCovOpt and gLassoCorrOpt. For this category of algorithms,
we used a package freely available (http://www.cs.ubc.ca/*schmidtm/Software/L1precision.
html) and already used in [29].

• An approach based on the spectral clustering [31] of either the raw value or the absolute
value of either the correlation or the partial correlation matrix. This approach required the
number of clusters as input. Since this clustering has a step of k-means, which is stochastic by
nature, we considered 2 variants: one with 1 step of k-means and the other one with 10 repe-
titions of k-means and selection of the best clustering in terms of inertia. The similarity
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measures were defined so that the range would be the same (namely in [0, 1]) when using the
signed or the absolute value of correlation: 0.5(1+r) and jrj, respectively. This category con-
tains 8 algorithms: 2 algorithms SpecCorr-x, 2 algorithms SpecCorrAbs-x, 2 algorithms Spec-
Corrpar-x and 2 algorithms SpecCorrparAbs-x, where x is the number of times that k-means
is performed. The spectral clustering algorithms of this category were coded for the purpose
of the present study, while we used the implementations of the k-means algorithm proposed
in NIAK.

All in all, 59 variants were tested.
Data description. In order to assess the performance of the Bayesian approach, we per-

formed the following set of simulations. For each value of D in {6,10,20,40}, we considered par-
titions with increasing number of clusters C (1� C� D). For a given value of C, we performed
500 simulations. For each simulation, the D variables were randomly partitioned into C clus-
ters, all partitions having equal probability of occurrence ([32] chap. 12); [33]. For a given par-
tition {X1, . . ., XK} of X, we generated data according to

f ðxÞ ¼
YK
k¼1

fkðxkÞ; ð23Þ

where all fk’s were taken either as multivariate normal distributions (parameters: mean μk and
covariance matrix�k) or multivariate Student-t distributions (parameters: degres of freedom
ν, location parameter μk and scale matrix�k). In both case, the μk’s were set to 0 and the�k’s
were first sampled according to a Wishart distribution with Dk + 1 degrees of freedom and
scale matrix the identity matrix and then rescaled to a correlation matrix. The sampling scheme
on�k generated correlation matrices with uniform marginal distributions for all correlation
coefficients [27]. For the multivariate Student-t distributions, ν was set in {1,3,5}. Eq (23) was
used to generate synthetic datasets of length N varying from 10 to 300 by increment of 40. Each
dataset was summarized by its sample correlation matrix and hierarchical clustering was per-
formed using the methods mentioned above. All simulations were implemented using the
Pipeline System for Octave and Matlab, PSOM (https://github.com/SIMEXP/psom) [34] under
Matlab 7.2 (The MathWorks, Inc.) and run on a 24-core server.

To assess the efficiency of the various methods, we thresholded each clustering at the true
number of clusters, except for BayesCovAuto, BayesCorrAuto, BicAuto and gLasso for which
we used the clustering obtained by the method. We then quantified the quality of the resulting
partition using the proportion of correct classifications as well as the adjusted Rand index,
which computes the fraction of variable pairs that are correctly clustered corrected for chance
[35, 36]. Results corresponding to a given dimension D and a given method were then pooled
across numbers of clusters C, lengths N and distributions (multivariate normal and Student).
We classified the methods from best to worst based on these global results using the following
indices (in this order): median of adjusted Rand index, 25% percentile value of adjusted Rand
index, 5% percentile value of adjusted Rand index, smallest value of adjusted Rand index, and
proportion of correct classifications. Note that some algorithms (Infomut, InfomutNorm and
SpecCorrpar) require the sample covariance matrix to be definite positive. As a consequence,
these algorithms could not run on small samples. We therefore restrained our evaluation to
cases where all algorithms were operational. Finally, we performed a Bayesian ANOVA-like
regression analysis ([24] §15.6), where we explained the adjusted Rand index of nine algo-
rithms (BayesCov, BayesCovAuto, BayesCorr, BayesCorrAuto, Bic, BicAuto, Infomut, Info-
mutNorm, and AverageAbs) with the following effects: clustering algorithm (9 levels), number
of variables D (4 levels: D 2 {6,10,20,40}), type of distribution (4 levels: multivariate Gaussian
or multivariate Student-t with 1, 3, or 5 degrees of freedom), number of samples N (8 levels: N
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2 {10,50,90,130,170,210,250,290}), and number of clusters C (68 levels: from 2 to D − 1 clusters
for each D). In other words, the model considered was of the form

adj Rand indexðalgo;D; distr;N;CÞ ¼ b0 þ balgo þ bD þ bdistr þ bN þ bD;C þ �: ð24Þ

Interactions between effects, while potentially relevant, were not considered to keep the analy-
sis tractable. The posterior distribution for the various regression parameters were estimated
using Gibbs sampling.

Results. The results corresponding to the adjusted Rand index and fraction of correct clas-
sification are summarized in Figs 1 and 2 for the 20 best methods. Globally, and as expected, all
methods were adversely affected by an increase in the number of variables. In all cases, the vari-
ants proposed in the present paper performed very well compared to other methods. BayesCov
and BayesCorr were always classified as the two best algorithms and Bic was never outper-
formed by a method already published. The methods with automatic thresholding of the hier-
archy performed surprinsingly well, considered that they were compared against methods with
oracle. In particular, they clearly outperformed all variants of gLasso, the only method that was
able to automatically determine the number of clusters. Of note, all variants of gLasso proved
too slow to be applied to our simulation data for D 2 {20,40}.

The results of the regression analysis are represented in Fig 3. The 9 algorithms selected
included the ones proposed in the present manuscript (BayesCov, BayesCovAuto, BayesCorr,
BayesCorrAuto, Bic, and BicAuto), the best-performing classic algorithm in the previous anal-
ysis (AverageAbs) as well as the algorithms based on mutual information (Infomut and Info-
mutNorm). We found that increasing the dataset size (N) increased the performance of the
algorithm, while increasing the dimensionality of the problem (D) and the number of clusters

Fig 1. Simulation study.Computational time (top), adjusted Rand index (middle) and proportion of correct classifications (bottom) for D = 6 (left) and D = 10
(right).

doi:10.1371/journal.pone.0137278.g001
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(C) decreased it. Note that dimension was found to have a negative influence on the adjusted
Rand index, even though this index was partly proposed as a modification from the raw Rand
index to overcome this limitation. Finally, this analysis confirmed the superior behavior of the
methods proposed here, even when the method included the automatic stopping rule.

Toy example
This data set was first used in [37] and later re-analyzed in [38] in the context of conditional
independence graphs. It originates from a study investigating early diagnosis of HIV infection
in children from HIV positive mothers. The variables are related to various measures on blood
and its components: X1 and X2 immunoglobin G and A, respectively; X4 the platelet count; X3,
X5 lymphocyte B and T4, respectively; and X6 the T4/T8 lymphocyte ratio. The sample sum-
mary statistics are given in Table 1. [37] found that the correlations between X4 and any other
variable had strong probability around zero and hypothesized that the model was overparame-
trized. Based on the simulation study, we performed clustering of the data with the following
methods: BayesCov(Auto), BayesCorr(Auto), Bic(Auto), Infomut, InfomutNorm, SingleAbs,
AverageAbs, CompleteAbs, WardAbs, SpecCorrAbs and SpecCorrparAbs. For spectral cluster-
ing, we used either 1 or 10 repetitions of the k-means step; since the results obtained for 1 step
of k-means were highly variable for 3, 4, and 5 clusters, we discarded these results.

The resulting clusterings are given in Fig 4 and Table 2. All hierarchical clusterings started
by clustering X3 and X5 (lymphocite). This was confirmed by SpecCorrAbs-10 when required
to provide 5 clusters. All hierarchical clustering methods then clustered X1 and X2 (immuno-
globin). This result was in agreement with both SpecCorrAbs-10 and SpecCorrparAbs-10

Fig 2. Simulation study.Computational time (top), adjusted Rand index (middle) and proportion of correct classifications (bottom) for D = 20 (left) and
D = 40 (right).

doi:10.1371/journal.pone.0137278.g002
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Table 1. Toy example. Summary statistics for the HIV data: sample variances (main diagonal), correlations
(lower triangle) and partial correlations (upper triangle) (from [37]).

x1 8.8374 0.479 −0.043 −0.033 0.356 −0.236

x2 0.483 0.1919 0.068 −0.084 −0.224 −0.110

x3 0.220 0.057 8924231.9 0.085 0.552 −0.330

x4 −0.040 −0.133 0.149 20392.4 0.091 0.013

x5 0.253 −0.124 0.523 0.179 1952795.2 0.384

x6 −0.276 −0.314 −0.183 0.064 0.213 1.378

x1 x2 x3 x4 x5 x6

doi:10.1371/journal.pone.0137278.t001

Fig 3. Simulation study.Result of the regression analysis. Posterior distribution for the different regression coefficients: β0 (global effect), βN (dataset size
N), βalgo (algorithm), βD (number of variablesD), βdistr (type of distribution), and βD, C (number of clusters) [see Eq (24)].

doi:10.1371/journal.pone.0137278.g003
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Fig 4. Toy example.Result of clustering. Algorithms in the top row clustered X4 at the last step, while it was clustered at the before the last step for
algorithms in the bottom row. Algorithms in the left column clustered X6 with {X3, X5}, while X6 was clustered with {X1, X2} for the algorithms in the right column.
Parts in grey correspond to clustering steps that were not performed by BayesCovAuto or BayesCorrAuto in (G1), or Bic in (G3).

doi:10.1371/journal.pone.0137278.g004
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when required to provide 4 clusters. After the second step, we observed four behaviors for the
AHC algorithms and classified them accordingly:

(G1) BayesCov, BayesCorr, Infomut and >InfomutNorm;

(G2) SingleAbs and AverageAbs;

(G3) Bic;

(G4) CompleteAbs andWardAbs.

While not a hierarchical clustering, SpecCorrAbs-10 provided successive clusterings that
were in agreement with methods in (G2). Algorithms in (G1) and (G3) clustered X6 with {X3,
X5}, creating a cluster of variables related to lymphocite. Algorithms in (G1) and (G2) (and
SpecCorrAbs-10) agreed that a partitioning of the variables in two clusters should leads to {X1,
X2, X3, X5, X6} on the one hand and {X4} on the other hand. This clustering was also found by
SpecCorrpar-10 when constrained to extract two clusters from the data. It was also considered
the best clustering for BayesCov and BayesCorr. For Bic, the optimal partitioning was com-
posed of three clusters, namely, {X1, X3, X6}, {X1, X2}, and {X4}, which is in agreement with
what would methods in (G1) yield for three clusters; furthermore, it still kept X4 separated
from the other variables.

In Fig 5, we represented the evolution of the log10 Bayes factor during hierarchical clustering
for BayesCov, BayesCorr and Bic. Note that, while the clustering steps are identical for Bayes-
Cov and BayesCorr, the log Bayes factors are similar but not identical. Likewise, while the first
two clustering steps of Bic is identical to those of BayesCov and BayesCorr, one can see that,
unlike BayesCov and BayesCorr, Bic considered the merging of {X3, X5} with X6 almost as likely
as that of X1 with X2. Also, while the successive clusterings of X3 with X5 and then X6 as well as
that of X1 with X2 strongly increased the Bayes factor for BayesCov and BayesCorr, the
improvement brought by the clustering of {X3, X5, X6} with {X1, X2} in these methods was less
important.

All in all, this analysis led us to the following conclusion: it is very likely that variables X1

and X2 belong to the same cluster of dependent variables, and similarly for variables X3 and X5.
Also, there is very strong evidence in favor of the fact that X4 is independent from the other
variables. Finally, we suspect that X3, X5 and X6 could belong to the same cluster of variables.

fMRI data
Cluster analysis is a popular tool to study the organization of brain networks in resting-state
fMRI [39, 40], by identifying clusters of brain regions with highly correlated spontaneous activ-
ity. We applied the 13 methods that were found to have good performance on simulations (see
Fig 6) to a collection of resting-state time series. The time series had 205 time samples and
were recorded for 82 brain regions in 19 young healthy subjects. See §D of S1 File for details on

Table 2. Toy example. Result of spectral clustering with increasing number of clusters.

SpecCorrAbs-10 SpecCorrparAbs-10

2 clusters 12356j4
3 clusters 126j35j4 12j356j4
4 clusters 12j35j4j6
5 clusters 1j2j35j4j6 not reproducible

doi:10.1371/journal.pone.0137278.t002

Bayesian Hierarchical Clustering of Dependent Random Variables

PLOS ONE | DOI:10.1371/journal.pone.0137278 September 25, 2015 15 / 26



data collection and preparation. The data are available online (http://figshare.com/articles/
Atlanta_resting_state_fMRI_time_series_preprocessed_using_the_AAL_template/1521155).

We first aimed at establishing which clustering algorithms yielded similar results on these
datasets. We more specifically investigated a 7-cluster solution, as this level of decomposition
has been examined several times in the literature [39, 41, 42]. Each clustering algorithm was
applied to the time series of each subject independently. For a given pair of methods, the simi-
larity between the cluster solutions generated by both methods on the same subject was

Fig 6. Real resting-state fMRI data—between-method similarity. Panel a: Rand indices between individual partitions generated with different methods,
averaged across all subjects and scales (number of clusters). Panel b: Hierarchical clustering using matrix shown in Panel a as a similarity measure and
Ward’s criterion.

doi:10.1371/journal.pone.0137278.g006

Fig 5. Toy example.Result of clustering for BayesCorr, BayesCov and Bic. The values on the y axis correspond to the log10 Bayes factor in favor of the
global clustering obtained at each step compared to a model where all variables are independent (step 0 of hierarchical clustering). The dotted lines
correspond to clustering steps that were not performed with the automatic stopping rule.

doi:10.1371/journal.pone.0137278.g005
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evaluated with the Rand. Note that the raw, unnormalized Rand index was used here, as we did
not compare cluster solutions with different numbers of clusters, which is the main motivation
of the normalization. The unnormalized Rand index has a more intuitive interpretation than
its adjusted counterpart. The Rand indices were averaged across subjects, hence resulting into a
method-by-method matrix capturing the (average) similarity of clustering outputs for each
pair of methods (see Fig 6). An AHC with Ward’s criterion was applied to this matrix in order
to identify clusters of methods with similar cluster outputs. We visually identified five clusters
of methods that had high (> 0.7) average within-cluster Rand index. The largest cluster
included classical AHCs such as CompleteAbs, AverageAbs, WardAbs, as well as the Bic and
BayesCov methods proposed here. It should be noted that this class of algorithms generated
solutions for this problem that were very close to one another (average within-cluster Rand
index> 0.8). The BayesCorr method was also close to that large group of methods, but not
quite as much as the aforementioned methods (average Rand index of about 0.7), and was thus
singled out as a separate cluster. The spectral methods were split into two clusters, depending
on whether they were based on correlation (SpecCorrAbs-1 and SpecCorrAbs-10) or partial
correlation (SpecCorrparAbs-1 and SpecCorrparAbs-10). Finally, the two variants of mutual
information (Infomut and InfomutNorm) generated solutions that were highly similar to Sin-
gleAbs. It was reassuring that the variants of Bayes methods proposed here performed similarly
to algorithms known to produce physiologically plausible solutions, such as Ward [43, 44].
While we found some analogy between BayesCorr, BayesCov, Infomut and InfomutNorm, it
was intriguing that the variants of mutual information tested seemed to generate markedly dif-
ferent classes of solutions from the Bayes methods. We decided to examine the cluster solutions
of these methods in more details.

As a reference, we examined the cluster solutions generated by WardAbs, in addition to two
variants of Bayes clustering that yielded slightly different solutions (BayesCov and BayesCorr),
and nomalized mutual information, InfomutNorm. To represent the typical behavior of each
method across subjects, we generated a “group” consensus clustering summarizing the stable
features of the ensemble of individual cluster solutions. This consensus clustering was gener-
ated by the evidence accumulation algorithm [45] outlined below. First, each partition of each
subject was represented as a binary 81-by-81 adjacency matrix A = (Aij), where for each pair (i,
j) of brain regions, Aij = 1 if areas i and j were in the same cluster, and Aij = 0 otherwise. The
adjacency matrices were then averaged across subjects and selected methods, yielding a 81-by-
81 stability matrix C = (Cij) where each element Cij coded for the frequency at which brain
areas i and j fell in the same cluster. Finally this stability matrix was used as a similarity matrix
in a AHC with Ward’s criterion to generate one consensus partition. The brain regions were
grouped into the same consensus cluster if they had a high probability of falling into the same
cluster on average across subjects and methods, hence the name consensus clustering.

Fig 7 represents the stability matrices and consensus clusters, for the four methods of inter-
est. As expected based on our first experiment on the similarity of cluster outputs, the War-
dAbs and BayesCov methods were associated with highly similar stability matrices and almost
identical consensus clusters. Many areas of high consensus could be identified (with values
close of 0 or 1), illustrating the very good agreement of the cluster solutions across subjects.
The outline of the consensus clusters as well as a volumetric representation of the brain parcel-
lation are presented in Fig 7b. Some of these clusters closely matched those reported in previ-
ous studies: cluster 7 can be recognized as being the visual network, cluster 2 the sensorimotor
network, and clusters 6 and 3 the anterior and posterior parts of the default-mode network,
respectively [41, 46, 47]. By contrast with WardAbs and BayesCorr, the InfomutNorm tended
to generate very large clusters, which was apparent both on the stability matrix and the consen-
sus clusters. The BayesCorr method was intermediate between BayesCov and InfomutNorm in
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terms of cluster size. These decompositions into very large clusters do not fit current views on
the organization of resting-state networks.

Overall, our analysis on real fMRI data led to the following conclusions. Three big subsets of
methods emerged: spectral methods, mutual information (with SingleAbs), and finally all the
other methods. Application of this last group of methods, which included the Bayes variants
proposed here, resulted in a plausible decomposition into resting-state networks. In the

Fig 7. Real data—consensus clustering. A consensus clustering was generated based on the average adjacency matrices across all subjects (Panel a).
The (weighted) adjacency matrix associated with the consensus clustering is represented along with a volumetric brain parcellation (Panel b). The weights in
the adjacency matrix were added to establish a visual correspondence with the volumetric representation. Note that the brain regions have been order based
on the hierarchical clustering generated with WardAbs.

doi:10.1371/journal.pone.0137278.g007
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absence of ground truth, it is not possible to further comment on the relevance of the differ-
ences in cluster solutions identified by the three groups of methods. We still noted that the
methods based on mutual information led to large clusters that were difficult to interpret. Our
interpretation is that the strategies implemented in Infomut and InfomutNorm did not behave
well for these datasets.

As a final computational note, the time required by the different methods to cluster data is
summarized in Table 3. Although the differences in execution time may reflect the quality of
the implementation, the methods proposed here were the slowest of the hierarchical methods,
but were still faster than spectral clustering.

Discussion

Contributions
Summary. We here proposed some novel similarity measures well suited for the agglom-

erative hierarchical clustering of dependent variables. These measures rely on a Bayesian
model comparison for multivariate normal random variables. On synthetic data with a known
(ground truth) partition, hierarchical clustering based on the Bayesian measures was found to
outperform several standard clustering procedures in terms of adjusted Rand index and classi-
fication accuracy. On the toy example, the Bayesian approaches led to result similar to those of
mutual information clustering techniques, with the advantage of an automated thresholding.
On the real fMRI data, the Bayesian measures led to results consistent with standard clustering
methods, in contrast to methods based on mutual information, which exhibited a highly atypi-
cal behavior.

Bayesian normalization of mutual information. A key feature of the Bayesian approach
is its ability to take the dimension of the clusters into account. Dimensionality is an important
issue in two respects (see §A of S1 File for an illustration). First, mutual information is an

Table 3. Real resting-state fMRI data—computational cost. Time required by each method to cluster one
dataset.

method minimum median maximum

CompleteAbs 10.9 ms 11.5 ms 24.5 ms

AverageAbs 11.0 ms 11.6 ms 25.2 ms

SingleAbs 11.1 ms 11.7 ms 49.5 ms

WardAbs 14.1 ms 14.8 ms 18.9 ms

InfomutNorm 159 ms 170 ms 261 ms

InfoMut 299 ms 322 ms 416 ms

Bic 666 ms 673 ms 810 ms

BayesCov 1.083 s 1.094 s 1.263 s

BayesCorr 1.108 s 1.151 s 1.133 s

SpecCorrparAbs-1* 1.928 s 2.065 s 2.291 s

SpecCorrAbs-1* 1.992 s 2.176 s 2.417 s

SpecCorrparAbs-10* 13.251 s 13.939 s 14.301 s

SpecCorrAbs-10* 14.456 s 15.381 s 16.101 s

* For nonhierarchical methods, we summed the times used to perform clustering at each scale.

doi:10.1371/journal.pone.0137278.t003
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extensive measure that depends on the dimension of the variables. This has motivated the
introduction of a normalization factor in the application of mutual information to hierarchical
clustering [16, 17]. A second issue is the existence of a bias in the estimation of mutual infor-
mation. This bias mechanically increases with the dimensionality of the variables. Because of
the two issues described above, hierarchical clustering based on mutual information will tend
to cluster unrelated but large variables rather than correlated variables of lower dimensions. As
demonstrated on real fMRI data, the heuristic proposed by [16] does not provide a general
solution to the issue of dimensionality. Furthermore, it removes some interesting features of
mutual information, such as the additivity of the clustering measure. By contrast, the Bayesian
approach takes the dimensionality into account in a principled way, providing a quantitative
version of Occam’s factor ([48] Chap. 20). The Bayesian normalization is additive rather than
multiplicative, thus preserving the additive properties of mutual information.

From similarity measure to log Bayes factor. We defined the similarity measure s(Xi,Xj)
between any two pairs of variables Xi and Xj as a log Bayes factor. At each step, the pair (Xi0,Xj0)
that had the largest similarity measure was merged. Taking into account the unique features of
s as the log Bayes factor defined in Eq (1) allowed us to have access to a global measure of fit as
defined in Eq (22) as well as to provide an automatic stopping rule that behaved very well on
simulated data. Going from a similarity measure to a log Bayes factor has other advantages that
could take the clustering proposed here even further (see below).

Practical value of the Bayes/Bic clustering in fMRI. The new alternatives to mutual
information introduced in this paper (i.e., Bayes and Bic) proved useful for the analysis of rest-
ing-state fMRI. The benefits were particularly clear when compared to InfomutNorm, which
tended to create large, inhomogeneous clusters. By contrast, both Bayes and Bic had a behavior
similar to standard hierarchical clustering based on Pearson’s linear correlation. The possible
benefits of Bayes and Bic over those canonical methods are still substantial. The mutual infor-
mation first provides a multivariate measure of interaction that is well adapted to hierarchical
brain decomposition [49, 50] and which has a clear interpretation in information theory [51–
53]. For these reasons, the mutual information for Gaussian variables is more appealing than a
simple average of pairwise correlation coefficients across clusters. Because mutual information
is measured between clusters, it is natural to build the clusters themselves based on this metric.
A second benefit of the proposed approach is that Bic proved to be the most stable of all tested
methods in the range of 5–15 clusters on real fMRI datasets. The increase in stability over
Ward’s was modest, but significant. This advantage may become even more substantial if the
clustering is performed in higher dimension, i.e., with smaller areas than the AAL brain parcel-
lation or even at the voxel level.

Similarity vs. distance. Clustering techniques are based on either a similarity measure or a
distance measure. While the description of the present manuscript mostly relied on the notion
of similarity, going from one concept to the other one can generally be done with minor
changes. For instance, standard hierarchical procedures which rely on the minimization of a
distance to perform clustering (e.g., single, complete and average linkage) can be applied to
cases where closeness is quantified by a measure of similarity, simply by using the opposite of
the similarity matrix as a distance matrix. Although the resulting measure may not define a
mathematically valid distance, it is not required for the procedure to work. Similarly, in a
Bayesian framework, switching from a similarity measure to a distance measure tantamounts
to switching from

sðXi;XjÞ ¼ ln
pðSi[jjMDÞ
pðSi[jjMIÞ
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to

dðXi;XjÞ ¼ �sðXi;XjÞ ¼ ln
pðSi[jjMIÞ
pðSi[jjMDÞ

;

that is, from the log ratio of the marginal model likelihoods in favor of dependent variables to
the log ratio of the marginal model likelihoods in favor of independent variables.

Modeling choices
Choice of priors. Any Bayesian analysis requires the introduction of prior distributions. In

the present study, we needed the prior distribution for the covariance matrix associated to any
clustering of X. Our choices were guided by one assumption, one rule of consistency, and one
rule of simplicity. First, our assumption was to not assume a priori any sort of dependence
between covariance matrices associated to different clusters. This allowed for the decomposition
of any prior as a product of independent priors, see Eqs (8) and (19). The rule of consistency was
to consider that the prior for a given covariance matrix should not be contradictory at different
levels of the hierarchy. This is why we set the prior distribution for the global covariance matrix
� as an inverse-Wishart distribution and then derived the prior for any covariance matrix�k as
the prior distribution for� integrated over all parameters that do not appear in�k; using such
an approach, the resulting prior turned out to be an inverse-Wishart distribution as well. Last,
the rule of simplicity is the one that dictated the use of inverse-Wishart distributions as prior dis-
tributions for the covariance matrices. Such a family of priors had the twofold advantage of being
closed by marginalization and allowing for closed-form expressions of the quantities of interest.
An inverse-Wishart distribution is characterized by two parameters: the degrees of freedom ν
and the inverse scale matrixΛ. If� is a D-by-Dmatrix, we must have ν> D − 1 for the distribu-
tion to be normalized. Also,Λmust be positive definite. From there, we had two strategies. The
first one was to set the degree of freedom to the lowest value that still corresponded to a well
defined distribution (ν = D) and a diagonal scale matrix that optimized the marginal model likeli-
hood. An alternative approach was to work with the sample correlation matrix, set ν = D + 1 and
equalΛ with theD-by-D identity matrix I, since this choice corresponds to a distribution that is
associated with uniform marginal distributions of the correlation coefficients [27]. While we
believe that our assumption and the rule of consistency are sensible choices, we must admit that
we are not quite as content with the choice of inverse-Wishart distributions for priors. The major
issue with such a family of priors is that they simultaneously constrain the structure of correlation
and the variances. By contrast, it seems intuitive that clustering should depend on the correlation
structure only, not on the variances. As such, the prior on the variances should ideally be set inde-
pendently from the correlation structure. Priors that separate variance and correlation have
already been proposed [27]. Unfortunately, the use of such priors would make it impossible to
provide a closed form for the marginal model likelihood. While numeric schemes could be imple-
mented to circumvent this issue, it would render the procedure proposed much more complex
and computationally burdensome. By contrast, the algorithm detailed here is rather straightfor-
ward. Also, the influence of the prior vanishes when the sample size increases. From a practical
perspective, the three methods proposed here (two, BayesCov and BayesCorr, with different pri-
ors and one, Bic, not influenced by the prior) exhibited similar behaviors and still outperformed
other existing methods in the simulation study. We take it as a proof of the robustness of the
method to the choice of prior.

Covariance vs. precision matrix modeling. The presence of clusters of variables that are
mutually independent is equivalent to having a covariance matrix� that is block diagonal,
which is itself equivalent to having a precision (or concentration) matrix U =�−1 that is also

Bayesian Hierarchical Clustering of Dependent Random Variables

PLOS ONE | DOI:10.1371/journal.pone.0137278 September 25, 2015 21 / 26



block diagonal. One could therefore solve the problem using precision matrices instead of
covariance matrices. The corresponding calculations can be found in §E of S1 File. The main
difference between the two approaches stems from the fact that a submatrix of the inverse
covariance matrix is not equal to the inverse of the corresponding submatrix of the covariance
matrix, that is, (Λ−1)k 6¼ (Λk)

−1, unless Λ is block diagonal; also, Wishart and inverse-Wishart
distributions do not marginalize the same way. These differences are to be related to the fact
that a submatrix of a covariance matrix is better estimated than the whole covariance matrix,
while the same does not hold for a precision matrix. From there, we could expect the covari-
ance-based approach to perform better than the precision-based approach, and the difference
to increase with increasing D. This was confirmed on our synthetic data, where the precision-
based approach behaved as well as BayesCov and BayesCorr for D = 6 but had worse results
than these two approaches for D 2 {10,20,40}. Besides, performance of the automated stopping
rule was much more efficient with BayesCov and BayesCorr than it was with the precision-
based approach. As a final note, basing the method on concentration matrices yielded a slower
algorithm, arguably because of the matrix inversions that are required.

Sample covariance matrix vs. full dataset. Intuitively, the structure of dependence of a
multivarite normal distribution is included in its covariance matrix. All existing algorithms
that we used here do not need the full dataset but only the sample covariance (or correlation)
matrix. This is why we started with a likelihood model that only considers the covariance
matrix [see Eqs (3) and (7)]. Rigorously, this model is only valid for N� D; for N< D, one
should resort to a model of the full data as being multivariate normal with a mean μ and covari-
ance matrix�. Nonetheless, we kept the ‘intuitive’ approach as it has fewer hyperparameters,
is easier to deal with, and leads to formulas that are simpler to interpret. Also, the resulting sim-
ilarity measure [Eq (11)] is not restricted to N� D, but is well defined for N< D as well. From
a practical perspective, the ‘intuitive’ algorithm only requires the sample covariance matrix as
input, while a full model would also require the sample mean. Finally, this simpler model
exhibited good behavior on our synthetic data, even for small datasets.

Directions for future work
Computational costs. Regarding the computational cost, measures derived from mutual

information or a Bayesian approach are more demanding than standard methods such as Aver-
age or Ward. The derivation of the similarity matrix and the search for the most similar pairs
of clusters are the two critical operations that can be optimized to decrease computation time.
It is always possible to speed up these two steps by taking advantage of the fact that the similar-
ity matrices of two successive iterations of the algorithm have many elements in common, as
all but one element of a partition at a given iteration are identical to the elements of the parti-
tion of the previous iteration. Critically, in the case of Average and Ward methods, it is in addi-
tion possible to derive the similarity matrix at every iteration only based on the similarity
matrix at initialization through successive updates using the Lance-Jambu-Williams recursive
formula [54]. By contrast, other measures, including BayesCov, BayesCorr, Bic, Infomut, and
InfomutNorm, have to be re-evaluated independently at every step, which means that the
determinant of a covariance matrix with increasing size has to be computed. Finding an update
formula analogous to Lance-Jambu-Williams for clustering methods based on variants of the
mutual information would substantially accelerate these algorithms.

From deterministic to stochastic clustering. Another extension would be to replace the
deterministic rule of selecting the pair with largest similarity measure for merging by a probabi-
listic rule where the probability to cluster a given pair is given by the posterior probability of
the resulting clustering.
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Group analysis. A last extension that could be easily implemented in the present frame-
work is the generalization of the method to account for E different entities (e.g., subjects in
fMRI) sharing the same structure but with potentially different covariance matrices for that
structure. If each entity e is characterized by a variable X[e] and corresponding sample sum-of-
square matrix S[e], one can perform AHC on each X[e] using S[e] and the corresponding similar-
ity measure s[e]. However, with a straightforward modification of the present method, one
could also perform global AHC of all E covariance matrices considered simultaneously.
Assuming that the covariance matrices of the different elements are independent given the
common underlying structure, then the resulting similarity measure is the sum of all individual
similarity measures s[e]’s.

Generalization to other types of distribution. Altogether, the Bayesian framework that we
used provides a principled way to generalize our approach to distributions other than multivari-
ate normal ones. Such generalization would potentially account for a wide variety of situations,
such as nonlinear dependencies or discrete distributions. This would widen the scope of possible
applications of the technique, e.g., genetics [4–7]. The issues related to this generalization are
twofold. First, one needs a model of dependence. In the discrete case, one could think of multino-
mial distributions, originating from categorical, i.e., generalized Bernoulli distributions ([55]
§3.4). In the continuous case, multivariate normal distributions are a first choice model beyond
which it is not clear what to use. Multivariate Student-t distributions could be considered, even
though our results on simulated data would tend to hint that the difference with multivariate nor-
mal distriubtions might not be that large. One could also consider using models where depen-
dence is controled independently of the marginal distributions, such as multivariate copulas [56,
57]. Another issue is the possibility to express the marginal posterior likelihood of the data given
the model selected. For multivariate discrete variables, we expect it to be feasible, albeit computa-
tionally very challenging and sensitive to the type of prior distribution. For other distributions,
obtaining a closed form might be out of reach. Nonetheless, the marginal posterior likelihood
could be approximated using various criteria, such as the AIC [58] or variants thereof—AICc
[59]; ([60] §2.3.1) or AICu ([60] §2.4.1)—, or the BIC [22], which naturally appeared in the pres-
ent derivation. In any case, any approach beyond multivariate normal distributions would drasti-
cally increase the complexity of our approach, both in terms of inference and computation.

Application to truly hierarchical data. In the present manuscript, we used a hierarchical
algorithm as a way to extract an underlying structure of dependence from data. Our assumption
was that there was one such structure. Such an approach provided a simple and efficient cluster-
ing algorithm with an interesting connection to mutual information. However, the method as
presented here is not able to deal with data that are truly organized hierarchically. Extending it to
deal with such data would improve the scope of the algorithm. One way to do would be to use
Dirichlet process mixtures [20, 61–65], together with a model of dependent variables.

Conclusion
In this paper, we proposed a procedure based on Bayesian model comparison to decide
whether or not to merge Gaussian multivariate variables in an agglomerative hierarchical clus-
tering procedure. The resulting similarity measure was found to be closely related to the stan-
dard mutual information, with some additional corrections for the dimensionality of the
datasets. These new Bayesian alternatives to mutual information turned out to be beneficial to
hierarchical clustering on simulations and real datasets alike. Because of the simplicity of its
implementation, its good practical performance and the potential generalizations to other
types of random variables, we believe that the approach presented here is a useful new tool in
the context of hierarchical clustering.
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