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a b s t r a c t

We consider a generalization of information density to a partitioning into N ≥ 2
subvectors. We calculate its cumulant-generating function and its cumulants in the
particular case of a multivariate normal distribution, showing that these quantities are
only a function of all the regression coefficients associated with the partitioning.
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1. Introduction

Let X be a multivariate normal random variable with distribution f (x), and (X1,X2) a partitioning of X into 2 subvectors
with corresponding marginals f1(x1) and f2(x2). The information density relative to X and the partitioning (X1,X2) is the
random variable defined as (Polyanskiy and Wu, 2017, §17.1)

id(X;X1,X2) = ln
f (X1,X2)

f1(X1) f2(X2)
. (1)

One of the key features of information density is that its expectation yields mutual information (Kullback, 1968, Chap. 1,
§2; Polyanskiy and Wu, 2017, §17.1). In the present paper, we consider a partitioning of X into N ≥ 2 subvectors
(X1, . . . ,XN ) with corresponding marginals f1, . . . , fN and define multiinformation density as

id(X;X1, . . . ,XN ) = ln

[
f (X)∏N

n=1 fn(Xn)

]
.

The mean of this quantity

I(X;X1, . . . ,XN ) =

∫
f (x) ln

[
f (x)∏N

n=1 fn(xn)

]
dx
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is itself a generalization of mutual information known under different names: total correlation (Watanabe, 1960),
multivariate constraint (Garner, 1962), δ (Joe, 1989), or multiinformation (Studený and Vejnarová, 1998). Our interest
in id is driven by its close connection with mutual independence. Indeed, when the Xn’s are mutually independent,
multiinformation is classically equal to 0, but we also have id ≡ 0 and Var(id) = 0 (see online supplement, §1), yielding
other statistical markers of independence. By contrast, dependence between the Xn’s is a multivariate phenomenon
that multiinformation, as a one-dimensional measure, can only partially quantify. We expect id to give a more detailed
characterization of dependence, e.g., through its moments or cumulants.

We here focus on multivariate normal distributions. The family of multivariate normal distribution with given mean
µ can be parameterized by either a covariance matrix or a concentration/precision (i.e., inverse covariance) matrix.
Either parameterization shows multivariate distributions according to a certain perspective and emphasizes different
features (e.g., Markov properties for the concentration matrix). In this context, we wished to investigate the existence
of a natural way of parameterizing dependencies, i.e., a parameter that would emphasize the dependence properties of
the distribution.

The core of the present paper is the following theorem:

Theorem 1. Let X be a d-dimensional variable following a multivariate normal distribution with mean µ and covariance
matrix Σ. Partition X into N subvectors (X1, . . . ,XN ), and set id the corresponding multiinformation density. Then the
cumulant-generating function of id is given by

ln E
(
etid

)
= t I(X1; . . . ;XN ) −

1
2
ln |Id − tΓ|, (2)

where

Γ = Σ diag(Σ11, . . . ,ΣNN )−1
− Id

is the block matrix whose diagonal blocks are equal to 0 and where each off-diagonal block (m, n) is the matrix of regression
coefficients of Xm on xn

Γm|n = ΣmnΣ
−1
nn , m ̸= n. (3)

The cumulants of id are given by

κ1(id) = I(X1; . . . ,XN ) and κl(id) =
(l − 1)!

2
tr

(
Γl) , l ≥ 2.

This theorem is proved in Section 2. In Section 3, we investigate some consequences of this result. Section 3 is devoted
to the discussion.

2. Proof of theorem

2.1. Cumulant-generating function

We partition µ and Σ in accordance with the partitioning of X , so that µn is the expectation of Xn and Σmn the matrix
of covariances between Xm and Xn. Multiinformation between the Xn’s yields

I(X1; . . . ;XN ) =
1
2
ln

∏N
n=1 |Σnn|

|Σ|
.

From there, we can express multiinformation density as

id = I(X1; . . . ;XN ) + jd, (4)

where jd is defined as

jd =
1
2
(X − µ)tΦ(X − µ). (5)

and Φ as

Φ = diag(Σ11, . . . ,ΣNN )−1
− Σ−1.

Here, diag(Σ11, . . . ,ΣNN ) stands for the block-diagonal matrix with diagonal blocks equal to the Σnn’s. The moment-
generating function of jd yields

E
(
etjd

)
=

∫
(2π )−

d
2 |Σ|

−
1
2 e−

1
2 (x−µ)t

(
Σ−1

−tΦ
)
(x−µ) dx.
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Since it can be shown that Σ−1
− tΦ is positive definite at least in a neighborhood of t = 0 (see online supplement,

§2), the integrand is proportional to a multivariate normal distribution with mean µ and covariance matrix Σ−1
− tΦ.

Integration with respect to x therefore yields

E
(
etjd

)
=

|Σ−1
|
1
2

|Σ−1 − tΦ|
1
2

= |Id − tΓ|
−

1
2

and

ln E
(
etjd

)
= −

1
2
ln |Id − tΓ|, (6)

where Id is the d-by-d unit matrix and Γ = ΣΦ the block matrix whose diagonal blocks are equal to 0 and where each
nondiagonal block (m, n) is the matrix of regression coefficients of Xm on xn given by (Anderson, 2003, Definition 2.5.1)

Γm|n = ΣmnΣ
−1
nn , m ̸= n. (7)

2.2. Cumulants

The cumulants of id can be calculated in closed form from those of jd and Eq. (4) by noting that the first cumulant,
κ1(id), is shift-equivariant, while the others, κi(id) for i ≥ 2, are shift invariant (Kendall, 1945, §3.13). This leads to{

κ1(id) = I(X1; . . . ;XN ) + κ1(jd)
κl(id) = κl(jd), l ≥ 2. (8)

Now, the cumulants of jd can be easily computed as follows. Using the fact that |A| = etr[ln(A)] (Higham, 2007), which, for
a positive definite matrix, can be expressed as ln |A| = tr[ln(A)], we have from Eq. (6)

ln E
(
etjd

)
= −

1
2
tr [ln(Id − tΓ)] .

For t sufficiently small, we can perform a Taylor expansion of the log function around Id (Abramowitz and Stegun, 1972,
Eq. 4.1.24), leading to

ln E
(
etjd

)
=

1
2
tr

[
∞∑
il=1

(tΓ)l

l

]

=

∞∑
l=1

t l

2l
tr(Γl).

Identification with the decomposition of the same function in terms of cumulants (Kendall, 1945, §3.12)

ln E
(
etjd

)
=

∞∑
l=1

κl
t l

l!
,

yields for the cumulants of jd

κl(jd) =
(l − 1)!

2
tr(Γl). (9)

The same result could have been reached by using the fact that jd is a quadratic function of a multidimensional normal
variate x, as evidenced in Eq. (5), together with the expression of the cumulants of such functions (Magnus, 1986,
Lemma 2).

The cumulants of id therefore yield

κ1(id) = I(X1; . . . ,XN ),

as expected, since the first cumulant is also the mean (Kendall, 1945, §3.14), and, for l ≥ 2,

κl(id) =
(l − 1)!

2
tr

(
Γl) .

In particular, the variance, which is equal to the second cumulant (Kendall, 1945, §3.14) is given by

Var(id) = κ2(id) =

∑
1≤m<n≤N

tr
(
ΣmnΣ

−1
mmΣmnΣ

−1
nn

)
. (10)

In the even more particular case where all subvectors are 1-dimensional, we have

Var(id) =

∑
1≤m<n≤N

ρ2
mn,

where ρmn is the usual correlation coefficient between Xm and Xn.
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3. Consequences

We here investigate some consequences of the previous results: the particular case of partitioning into two subvectors,
the irrelevance of the variances, and a graphical interpretation.

3.1. Partitioning into two subvectors

In the particular case where N = 2, multiinformation boils down to mutual information. The various powers of Γ can
easily be calculated, yielding

Γl
=

(
0 χl
Υl 0

)
for l odd

and

Γl
=

(
χl 0
0 Υl

)
for l even,

where we set⎧⎪⎨⎪⎩
χl = Γ1|2Γ2|1 . . .  

l factors
Υl =

  
Γ2|1Γ1|2 . . .,

with the relationship that χl = Γ1|2Υl−1 and Υl = Γ2|1χl−1. For l odd, the trace of Γl is equal to 0; for l even, it is equal
to tr(χl) + tr(Υl), which can alternatively be expressed as

2 tr(χl) = 2 tr
[
(Γ1|2 Γ2|1)

l
2

]
or

2 tr(Υl) = 2 tr
[
(Γ2|1 Γ1|2)

l
2

]
.

In particular, the variance of id is equal to

Var(id) = κ2(id) = tr
(
Σ12Σ

−1
22 Σ21Σ

−1
11

)
. (11)

This quantity, which is a particular case of Eq. (10), was introduced by Jupp and Mardia (1980) as an extension of the
classical correlation coefficient in the case of multidimensional variates, with application to directed data (Mardia and
Jupp, 2000, §11.2). It is the sum of the squared canonical correlation coefficients between X1 and X2 (Anderson, 2003,
Chap. 12; Jupp and Mardia, 1980).

If we furthermore assume that X1 is a 1-dimensional vector, the cumulant-generating function yields

ln E
(
etid

)
= −

t
2
ln(1 − R

2
) − ln(1 − t2R

2
),

where R is the multiple correlation coefficient (Anderson, 2003, § 2.5.2)

R
2

=
Σ12Σ

−1
22 Σ

t
12

σ 2
1

.

The cumulants are equal to 0 for l odd and to κl(id) = (l−1)! (R
2
)

l
2 for l even. In particular, the variance reads Var(id) = R

2
.

Finally, if both X1 and X2 are assumed to be 1-dimensional vectors with correlation coefficient ρ, the cumulant-
generating function reads

ln E
(
etid

)
= −

t
2
ln(1 − ρ2) − ln(1 − t2ρ2),

with cumulants equal to 0 for l odd and κl(id) = (l − 1)! |ρ|
l for l even. In particular, the variance yields Var(id) = ρ2.

3.2. Irrelevance of variances

Mutual information and multiinformation are both quantities that do not depend on the variance coefficients Σkk’s. This
result can be generalized to the cumulant-generating function of id, and hence, its distribution, moments and cumulants.
Indeed, let

Σ = ∆R∆
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be the decomposition of the covariance matrix Σ such that ∆ = (∆kl) is a diagonal matrix with ∆kk =
√

Σkk and R = (Rkl)
is the correlation matrix with Rkl = Σkl/

√
ΣkkΣll. Block multiplication of ∆R∆ shows that we have Σmn = ∆mmRmn∆nn

for any block Σmn of Σ. Using the fact that (AB)−1
= B−1A−1 for any two invertible square matrices A and B, we have

Γm|n = ∆mmRmnR−1
nn ∆

−1
nn = ∆mmΓ̃m|n∆

−1
nn ,

where Γ̃m|n is the matrix of regression coefficients obtained by application of Eq. (7) to the correlation matrix R instead
of the covariance matrix Σ. This result shows that Γ = (Γm|n) can be factorized into

Γ = ∆Γ̃∆−1,

where we set Γ̃ = (Γ̃m|n). This takes us to

|Id − tΓ| = |∆(Id − tΓ̃)∆−1
|

= |Id − tΓ̃|.

As a conclusion, we have that the cumulant-generating function of a multivariate distribution with covariance matrix Σ

is the same as the cumulant-generating function of a multivariate distribution with covariance matrix R, where R is the
correlation matrix associated with Σ. This is a translation of the fact that id does not depend on the variance coefficients.

3.3. Graphical interpretation

While simplification of the expression for the cumulants through the explicit calculation of Γl is challenging in the
general case, one can resort to a graphical interpretation of this matrix. Note first that the block (n,m) of Γl is given by

(Γl)mn =

∑
q1,...,ql−1

Γmq1 . . .Γql−1n  
l terms

and tr(Γl) by

tr(Γl) =

N∑
n=1

tr
[
(Γl)nn

]
=

N∑
n=1

tr

⎛⎝ ∑
q1,...,ql−1

Γnql−1 . . .Γq1n

⎞⎠ .

Consider then the directed and fully connected graph with N nodes {1, . . . ,N}, an arrow from any m to any n ̸= m (no
self-connections), and corresponding (potentially matrix) weight Γn|m. In this graph, a directed loop is a directed path
that begins and starts at the same node. It is a k-loop if the directed path is composed of exactly k arrows. For any node
n and integer k, let L→

k (n) be the set of all directed k-loops starting and ending at node n and L→

k the set of all k-loops.
For any directed path p = (q1 → . . . → qk), define τ (p) as the trace of the product of the weights along p

τ (p) = tr
(
Γqk|qk−1 . . .Γq2|q1

)
.

With these notations, tr(Γl) can be interpreted as the sum of the values taken by τ along all directed l-loops starting and
ending at every node of the graph

tr
(
Γl)

=

N∑
n=1

∑
p∈L→

l (n)

τ (p).

It can also be seen as the sum of the values taken by τ along all directed l-loops

tr
(
Γl)

=

∑
p∈L→

l

τ (p).

See Fig. 1 for an illustration of this interpretation. Note that the fact that 1-loops do not exist is interpreted as tr(Γ) = 0.
This graphical interpretation is in particular compatible with a partitioning into two subvectors. In that case, the

corresponding directed graph only has two nodes and two arrows, and L→

l = ∅ for l odd, which is in agreement with the
fact that all cumulants of odd order are equal to zero.

4. Discussion

In the present manuscript, we introduced multiinformation density, a random variable that generalizes information
density and whose expectation defines multiinformation. We focused on the case of a multivariate normal distribution
and derived a closed form for its cumulant-generating function as well as its cumulants. We showed that the cumulant-
generating function does not depend on the values taken by the variance coefficients of the covariance matrix, and that
the computations required have a simple graphical interpretation. We also considered the special case of a partitioning
into two subvectors, showing the relationship between our results and existing quantities.
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Fig. 1. Graphical interpretation of tr(Γl). We consider the case N = 4 and l = 3. The directed 3-loop lp = (1 → 2 → 3 → 1) is represented with
dark arrows. The value of τ on this loop is equal to τ (l) = tr(Γ1|3Γ3|2Γ2|1). tr(Γ3) is obtained by summing τ (p) over all 3-loops.

Interestingly, the results show that the cumulant-generating function of multiinformation density is a function of a
specific quantity, namely the block matrix Γ composed of all matrices of regression coefficients corresponding to the
partitioning of X into (X1, . . . ,XN ) as defined in Eq. (7). This entails that the probability distribution of multiinformation
density as well as all its moments are fully defined by Γ. In particular, it can be shown that mutual information and
multiinformation themselves, as expectations, are functions of Γ only, namely (see online supplement, §3)

I(X1; . . . ;XN ) = −
1
2
ln |Id + Γ|.

Going back to our question of knowing whether the multivariate normal distribution family could be parameterized in a
natural way with emphasis on its dependence properties, it can be argued that Γ is a good candidate to this aim.

Generalization. The expression of the cumulant-generating function of multiinformation in the case of multivariate normal
distributions is quite simple. This simplicity is mostly a consequence of the stability of the multivariate normal family to
most operations performed here: (i) the product of the marginals is also a multivariate normal distribution (this is strongly
related to the fact that independence and uncorrelatedness are equivalent for multivariate normal distributions); (ii) the
ratio of the joint distribution to its marginals takes a simple form that is again closely related to the multivariate normal
family; and (iii) the exponentiation of t times the log of this ratio still has the form of a multivariate normal distribution.
It would be of interest to determine such a simplicity would still hold in more general settings such as more general
distribution families and more general functions of the ratio f (x)/

∏
fi(xi).

Regarding the type of family considered, a first step could be to consider the family of multivariate t distributions (Kotz
and Nadarajah, 2004). In this case, f1(x1) and f2(x2) are both multivariate t distributions (Kotz and Nadarajah, 2004, §1.10)
but f1(x1) f2(x2) itself is not a multivariate t distribution, and the cumulant-generating function of the log of the resulting
ratio does not have a simple closed form. Another, further step would be to consider elliptically contoured distributions
(Anderson, 2003, §2.7), but again no simplification seems to occur.

Another potential generalization would be obtained by replacing the log function of multiinformation density with a
quantity of the form

g
[

f (X)∏
fi(X i)

]
,

in the spirit of f -divergences (Csiszár, 1963, 1967; Ali and Silvey, 1966; Vajda, 1972). However, by replacing g(t) = ln(t)
with another, more general form, we lose the key property that the log is the inverse of the exponentiation taken to
compute the cumulant-generating function, which also simplifies calculations.

Future work. Investigating the level of dependence between variables is still a thorny issue. Such an issue is usually tackled
by investigating the properties of mutual information or multiinformation. We believe that considering multiinformation
density instead of multiinformation (i.e., the random variable instead of its expectation) could contribute to a better
characterization of dependence. For instance, the variance of id, given in Eq. (10), could be considered, in addition to or
instead of multiinformation, to quantify the presence or absence of dependence. An important point to advance in this
direction would be to provide estimators for the quantities obtained here. In the case of two variables, an estimator of this
quantity, expressed in Eq. (11), is readily available (Jupp and Mardia, 1980). Its generalization to more than two variables
could yield a new tool to investigate mutual independence.

Another point of interest is the investigation of the behavior of multiinformation density in the case of large dimension.
For instance, the asymptotic normality of this measure could be of interest. A quick derivation (see online supplement,
§4) shows that, in the simple case of a homogeneous correlation matrix and a partitioning into 1-dimensional vectors,
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id is not asymptotically normal. We hope that tackling this issue in the more general case will help better understand
dependences within systems composed of many variables.

Appendix A. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.spl.2019.108587.
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