Online supplement for article "Cumulants of multiinformation density in the case of a multivariate normal distribution"

1 Mutual independence, i_{d} and multiinformation

We here show the equivalence between the following

1. The \boldsymbol{X}_{n} 's are mutually independent;
2. $i_{d} \equiv 0$;
3. $I\left(\boldsymbol{X}_{1} ; \ldots ; \boldsymbol{X}_{N}\right)=0$;
4. $\operatorname{Var}\left(i_{d}\right)=0$.

The equivalence between (1) and (2) is straightforward by definition of i_{d}. If $i_{d} \equiv 0$, then all its moments of i_{d} are equal to 0 , including its expectation (multiinformation) and its variance, leading to $I\left(\boldsymbol{X}_{1} ; \ldots ; \boldsymbol{X}_{N}\right)=0$ and $\operatorname{Var}\left(i_{d}\right)=0$.

Since multiinformation is a Kullback-Leibler divergence, $I\left(\boldsymbol{X}_{1} ; \ldots ; \boldsymbol{X}_{N}\right)=$ 0 entails that we have

$$
f(\boldsymbol{x})=\prod_{n=1}^{N} f_{n}\left(\boldsymbol{x}_{n}\right)
$$

for all \boldsymbol{x}, i.e., the \boldsymbol{X}_{n} 's are mutually independent.
Finally, if $\operatorname{Var}\left(i_{d}\right)=0$, then i_{d} is a constant, that is,

$$
f(\boldsymbol{X})=k \prod_{n=1}^{N} f_{n}\left(\boldsymbol{x}_{n}\right) .
$$

The fact that f and the f_{n} 's are distributions, and therefore must norm to 1 , entails that we must have $k=1$, that is, $i_{d} \equiv 0$.

2 Positive-definiteness of $\Sigma^{-1}-t \Phi$

We need to show that $\boldsymbol{\Sigma}^{-1}-t \boldsymbol{\Phi}$ is a symmetric positive definite matrix in a neighborhood of $t=0$. This matrix can be expressed as

$$
\boldsymbol{\Sigma}^{-1}-t \boldsymbol{\Phi}=(1+t) \boldsymbol{\Sigma}^{-1}-t \operatorname{diag}\left(\boldsymbol{\Sigma}_{11}, \ldots, \boldsymbol{\Sigma}_{N N}\right)^{-1}
$$

As a difference of two symmetric matrices, it is also symmetric. Furthermore, since the two matrices in the right-hand side of the equation are positive definite they are diagonalizable in the same basis, i.e., there exists a nonsingular matrix \boldsymbol{F} such that (Anderson, 2003, Theorem A.2.2)

$$
\boldsymbol{F}^{\mathbf{t}} \boldsymbol{\Sigma}^{-1} \boldsymbol{F}=\left(\begin{array}{ccc}
\lambda_{1}^{2} & & \\
& \ddots & \\
& & \lambda_{d}^{2}
\end{array}\right)
$$

and

$$
\boldsymbol{F}^{\mathrm{t}} \operatorname{diag}\left(\boldsymbol{\Sigma}_{11}, \ldots, \boldsymbol{\Sigma}_{N N}\right)^{-1} \boldsymbol{F}=\boldsymbol{I}
$$

Since $\boldsymbol{\Sigma}^{-1}$ is positive definite, we furthermore have $\lambda_{i}^{2}>0 . \boldsymbol{\Sigma}^{-1}-t \boldsymbol{\Phi}$ is therefore diagonalizable as well, with eigenvalues given by $(1+t) \lambda_{i}^{2}-t=$ $\left(\lambda_{i}^{2}-1\right) t+\lambda_{i}^{2}$, which is positive in a neighborhood of $t=0 . \boldsymbol{\Sigma}^{-1}-t \boldsymbol{\Phi}$ is therefore positive definite in a neighborhood of $t=0$.

3 Alternative expression of multiinformation

For a decomposition of a multidimensional normal variable into several subvectors, multiinformation reads

$$
I\left(\boldsymbol{X}_{1} ; \ldots ; \boldsymbol{X}_{N}\right)=\frac{1}{2} \ln \frac{\prod_{n=1}^{N}\left|\boldsymbol{\Sigma}_{n n}\right|}{|\boldsymbol{\Sigma}|} .
$$

By comparison, we calculate

$$
\begin{aligned}
\boldsymbol{I}_{d}+\boldsymbol{\Gamma} & =\boldsymbol{I}_{d}+\boldsymbol{\Sigma} \boldsymbol{\Phi} \\
& =\boldsymbol{I}_{d}+\boldsymbol{\Sigma}\left[\operatorname{diag}\left(\boldsymbol{\Sigma}_{11}, \ldots, \boldsymbol{\Sigma}_{N N}\right)^{-1}-\boldsymbol{\Sigma}^{-1}\right] \\
& =\boldsymbol{\Sigma} \operatorname{diag}\left(\boldsymbol{\Sigma}_{11}, \ldots, \boldsymbol{\Sigma}_{N N}\right)^{-1}
\end{aligned}
$$

leading to

$$
\begin{aligned}
\left|\boldsymbol{I}_{d}+\boldsymbol{\Gamma}\right| & =\left|\boldsymbol{\Sigma} \operatorname{diag}\left(\boldsymbol{\Sigma}_{11}, \ldots, \boldsymbol{\Sigma}_{N N}\right)^{-1}\right| \\
& =\frac{|\boldsymbol{\Sigma}|}{\prod_{n=1}^{N}\left|\boldsymbol{\Sigma}_{n n}\right|},
\end{aligned}
$$

and, finally,

$$
-\frac{1}{2} \ln \left|\boldsymbol{I}_{d}+\boldsymbol{\Gamma}\right|=\frac{1}{2} \ln \frac{\prod_{n=1}^{N}\left|\boldsymbol{\Sigma}_{n n}\right|}{|\boldsymbol{\Sigma}|} .
$$

4 Checking asymptotic normality

Let the correlation matrix \boldsymbol{R}_{d} be a d-by- d homogeneous matrix with parameter ρ, i.e., a matrix with 1 s on the diagonal and all off-diagonal elements equal to ρ. such a matrix has two eigenvalues: $1+(d-1) \rho$ with multiplicity 1 (associated with the vector composed only of 1 s) and $1-\rho$ with multiplicity $d-1$ (associated with the subspace of vectors with a zero mean). Such a matrix is positive definite for

$$
-\frac{1}{d-1} \leq \rho<1
$$

The expectation of i_{d} is given by

$$
-\frac{1}{2}\{(d-1) \ln (1-\rho)+\ln [1+(d-1) \rho]\}
$$

To compute the higher cumulants of i_{d}, let \boldsymbol{U}_{d} the d-by- d matrix with all elements equal to 1 . Using the fact that $\boldsymbol{\Gamma}=\rho\left(\boldsymbol{U}_{d}-\boldsymbol{I}_{d}\right)$ together with $\boldsymbol{U}_{d}^{l}=d^{l-1} \boldsymbol{U}_{d}$ for $l \geq 2$, we obtain

$$
\begin{aligned}
\boldsymbol{\Gamma}^{l} & =\rho^{l}\left[(-1)^{l} \boldsymbol{I}_{d}+\frac{(d-1)^{l}-(-1)^{l}}{d} \boldsymbol{U}_{d}\right] \\
\operatorname{tr}\left(\boldsymbol{\Gamma}^{l}\right) & =\rho^{l}\left[(-1)^{l} d+(d-1)^{l}-(-1)^{l}\right] \\
\kappa_{l}\left(i_{d}\right) & =\frac{(l-1)!}{2} \rho^{l}\left[(-1)^{l} d+(d-1)^{l}-(-1)^{l}\right] .
\end{aligned}
$$

In particular, we have $\operatorname{Var}\left(i_{d}\right)=\rho^{2} d(d-1) / 2$. For large d, we have $\kappa_{l}\left(i_{d}\right) \sim$ $\frac{(l-1)!}{2} \rho^{l} d^{l}$ for $l \geq 2$ and, in particular, $\operatorname{Var}\left(i_{d}\right) \sim \rho^{2} d^{2} / 2$. To investigate the asymptotic normality of i_{d}, we classically consider $u=\left[i_{d}-\mathrm{E}\left(i_{d}\right)\right] / \sqrt{\operatorname{Var}\left(i_{d}\right)}$. Using the fact that the cumulant of order l is homogeneous of degree l, we obtain $\kappa_{l}(u) \sim 2^{l / 2-1}(l-1)!=$ cste. If u were asymptotically normal, $\kappa_{l}(u)$ for $l \geq 3$ would tend to 0 as $d \rightarrow \infty$, which is not the case. As a consequence, u is not asymptotically normal.

References

Anderson, T.W., 2003. An Introduction to Multivariate Statistical Analysis. Wiley Series in Probability and Mathematical Statistics. 3rd ed., John Wiley and Sons, New York.

