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1 Mutual independence, id and multiinformation

We here show the equivalence between the following

1. The Xn’s are mutually independent;

2. id ≡ 0;

3. I(X1; . . . ;XN ) = 0;

4. Var(id) = 0.

The equivalence between (1) and (2) is straightforward by definition of id.
If id ≡ 0, then all its moments of id are equal to 0, including its expectation
(multiinformation) and its variance, leading to I(X1; . . . ;XN ) = 0 and
Var(id) = 0.

Since multiinformation is a Kullback-Leibler divergence, I(X1; . . . ;XN ) =
0 entails that we have

f(x) =

N∏
n=1

fn(xn)

for all x, i.e., the Xn’s are mutually independent.
Finally, if Var(id) = 0, then id is a constant, that is,

f(X) = k
N∏

n=1

fn(xn).

The fact that f and the fn’s are distributions, and therefore must norm to
1, entails that we must have k = 1, that is, id ≡ 0.

1



2 Positive-definiteness of Σ−1 − tΦ

We need to show that Σ−1 − tΦ is a symmetric positive definite matrix in
a neighborhood of t = 0. This matrix can be expressed as

Σ−1 − tΦ = (1 + t)Σ−1 − t diag(Σ11, . . . ,ΣNN )−1.

As a difference of two symmetric matrices, it is also symmetric. Further-
more, since the two matrices in the right-hand side of the equation are
positive definite they are diagonalizable in the same basis, i.e., there exists
a nonsingular matrix F such that (Anderson, 2003, Theorem A.2.2)

F tΣ−1F =

λ
2
1

. . .

λ2d


and

F tdiag(Σ11, . . . ,ΣNN )−1F = I.

Since Σ−1 is positive definite, we furthermore have λ2i > 0. Σ−1 − tΦ is
therefore diagonalizable as well, with eigenvalues given by (1 + t)λ2i − t =
(λ2i − 1)t + λ2i , which is positive in a neighborhood of t = 0. Σ−1 − tΦ is
therefore positive definite in a neighborhood of t = 0.

3 Alternative expression of multiinformation

For a decomposition of a multidimensional normal variable into several sub-
vectors, multiinformation reads

I(X1; . . . ;XN ) =
1

2
ln

∏N
n=1 |Σnn|
|Σ|

.

By comparison, we calculate

Id + Γ = Id + ΣΦ

= Id + Σ
[
diag(Σ11, . . . ,ΣNN )−1 −Σ−1

]
= Σdiag(Σ11, . . . ,ΣNN )−1,

leading to

|Id + Γ| = |Σdiag(Σ11, . . . ,ΣNN )−1|

=
|Σ|∏N

n=1 |Σnn|
,

and, finally,

−1

2
ln |Id + Γ| = 1

2
ln

∏N
n=1 |Σnn|
|Σ|

.
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4 Checking asymptotic normality

Let the correlation matrix Rd be a d-by-d homogeneous matrix with param-
eter ρ, i.e., a matrix with 1s on the diagonal and all off-diagonal elements
equal to ρ. such a matrix has two eigenvalues: 1+(d−1)ρ with multiplicity 1
(associated with the vector composed only of 1s) and 1−ρ with multiplicity
d − 1 (associated with the subspace of vectors with a zero mean). Such a
matrix is positive definite for

− 1

d− 1
≤ ρ < 1.

The expectation of id is given by

−1

2
{(d− 1) ln(1− ρ) + ln[1 + (d− 1)ρ]}

To compute the higher cumulants of id, let Ud the d-by-d matrix with all
elements equal to 1. Using the fact that Γ = ρ(Ud − Id) together with
U l

d = dl−1Ud for l ≥ 2, we obtain

Γl = ρl
[
(−1)lId +

(d− 1)l − (−1)l

d
Ud

]
tr(Γl) = ρl

[
(−1)ld+ (d− 1)l − (−1)l

]
κl(id) =

(l − 1)!

2
ρl
[
(−1)ld+ (d− 1)l − (−1)l

]
.

In particular, we have Var(id) = ρ2d(d− 1)/2. For large d, we have κl(id) ∼
(l−1)!

2 ρldl for l ≥ 2 and, in particular, Var(id) ∼ ρ2d2/2. To investigate the

asymptotic normality of id, we classically consider u = [id−E(id)]/
√

Var(id).
Using the fact that the cumulant of order l is homogeneous of degree l, we
obtain κl(u) ∼ 2l/2−1(l − 1)! = cste. If u were asymptotically normal, κl(u)
for l ≥ 3 would tend to 0 as d→∞, which is not the case. As a consequence,
u is not asymptotically normal.
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