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a b s t r a c t

We consider a Gaussian graphical model associated with an equicorrelational and one-
dimensional conditional independence graph. We show that pairwise correlation decays
exponentially as a function of distance. We also provide a limit when the number of
variables tend to infinity and quantify the difference between the finite and infinite
cases.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Let X = (X1, . . . , Xn) be an n-dimensional variable. A conditional independence graph on X is a graphical representation
of X which emphasizes the relationships of conditional independence between the Xi’s (Whittaker, 1990). More precisely,
there is no link between nodes i and j if Xi and Xj are conditionally independent given X [n]\{i,j}, denoted as Xi |= Xj|X [n]\{i,j}.
In the particular case where X is a multivariate normal distribution, we refer to Gaussian graphical models (Uhler, 2017).
Let then X be a Gaussian graphical model characterized by its covariance matrix Σ = (Σij), or, equivalently, its precision
or concentration) matrix Υ = (Υij) = Σ−1. Two other key quantities are the pairwise correlation matrix Ω = (Ωij),
efined as Ωij = Σij/

√
ΣiiΣjj for i ̸= j and Ωii = 1, as well as the partial correlation matrix Π = (Πij), defined as

ij = −Υij/
√

ΥiiΥjj for i ̸= j and Πii = 1. Then, for i ̸= j, the relationship of conditional independence Xi |= Xj|X [n]\{i,j} is
equivalent to Υij = 0 and Πij = 0 (Whittaker, 1990, Chap. 6).

Our interest in Gaussian graphical models originates from statistical mechanics, where the Ising model and its various
extensions (Potts model, XY model, Heisenberg model, n-vector model, φ4 model) are used to investigate the behavior
of variables related through various connection patterns. One extension of the Ising model to continuous real variables
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Fig. 1. A conditional independence graph whose limit when n → ∞ yields the one-dimensional Gaussian free field.

ith noncompact support is the so-called Gaussian free field model (Friedli and Velenik, 2017, Chap. 8). In this case, each
ertex i ∈ Zd is associated with a real-valued variable xi and the corresponding Hamiltonian is of the form

β

4d

∑
i,j∈Zd:∥i−j∥2=1

(xi − xj)2 +
m2

2

∑
i∈Zd

x2i ,

where β ≥ 0 is the inverse temperature and m ≥ 0 is the mass. In massive models (m > 0), pairwise correlation is known
o decrease exponentially with distance (Friedli and Velenik, 2017, Prop. 8.30).

While this result is shown in the ‘‘thermodynamic limit’’, that is, for an infinite-dimensional variable (i.e., on Zd), we
re here interested in the finite case. The reason for this interest is twofold. First, a main way to approach statistical
echanics is through simulations, which only deal with finite case scenarios. It is therefore important to understand
hat the expected behavior of the system should be in such cases. Does pairwise correlation also decay exponentially?
lso, we would like to gain a sense of how convergence from the finite to the infinite case occurs through some results
egarding the speed of convergence.

In the present study, we focus on the unidimensional case (d = 1) and consider the particular case of a (finite)
aussian graphical model on X (n) with an equicorrelational one-dimensional connection pattern between the X (n)

i ’s, as
represented in Fig. 1. Such a conditional independence graph entails that the Gaussian graphical model has a tridiagonal
partial correlation matrix with an off-diagonal element τ that can be related to the parameters of the one-dimensional
Gaussian free field by

τ =

β

4d
2β
4d +

m2

2

. (1)

e here restrict ourselves to the case τ > 0 and only consider diagonally dominant matrices, leading to 0 ≤ τ < 1/2
(which corresponds to the massive case, m > 0). Under these assumptions, we show that Ω

(n)
ij , the pairwise correlation

between any two variables X (n)
i and X (n)

j , decreases exponentially with the distance |j − i| between variables, with a rate
given by

λ = arg cosh
(

1
2τ

)
. (2)

ore specifically, we show the following theorem.

heorem 1. Let X (n) be a Gaussian graphical model with conditional independence graph given by Fig. 1. Then the following
results yield:

• 0 < Ω
(n)
ij < e−|j−i|λ for all n;

• Ω
(n)
ij → e−|j−i|λ when n → ∞;

• The absolute error Ω
(n)
ij − e−|j−i|λ is O

[
e−2(n+1)λ

]
when n → ∞;

• The relative error Ω
(n)
ij e|j−i|λ

− 1 is equal to

− {sinh[2max(i, j)λ] − sinh[2min(i, j)λ]} e−2(n+1)λ
+ o

[
e−2(n+1)λ]

when n → ∞.

Here, O(·) and o(·) are the usual big-O and little-o Bachmann–Landau notations, respectively, with

un = O(vn) ⇔ ∃n0, c |un|< c |vn| ∀n > n0

and

un = o(vn) ⇔
un

vn

n→∞
→ 0.

2. Proof of theorem

We start by expressing pairwise correlation in the case of the simpler model of an n-dimensional Gaussian graphical
odel Y (n) with conditional independence graph given by Fig. 2. We then relate the pairwise correlations for both models
nd derive the results for X (n).
2
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Fig. 2. Conditional independence graph of the Gaussian graphical model Y (n) .

.1. Partial correlation matrix

Assume that Y (n) is a Gaussian graphical model with conditional independence graph given by Fig. 2. The corresponding
artial correlation matrix is then given by the following n-by-n symmetric tridiagonal matrix

Π
(n)
ij =

⎧⎨⎩
1 if i = j
τ if |j − i| = 1
0 otherwise.

(3)

.2. From partial to pairwise correlation

Letting In be the n-by-n identity matrix and setting Υ (n)
= 2In −Π (n), the (pairwise) correlation matrix Ψ (n)

= (Ψ (n)
ij )

corresponding to the distribution can be obtained in two steps:

1. Invert Υ (n) to obtain Σ (n)
= Υ (n)−1

;
2. Decompose Σ (n)

= (Σ (n)
ij ) using the correlation transform:

Σ (n)
= ∆(n)Ψ (n)∆(n),

where ∆(n)
= (∆(n)

ij ) is a diagonal matrix with ∆
(n)
ii =

√
Σ

(n)
ii .

.3. Expression of Ψ
(n)
ij

If Π (n) has the form of Eq. (3), then Υ (n) is also a tridiagonal matrix with off-diagonal element equal to −τ . Defining
as in Eq. (2) and applying results from Hu and O’Connell (1996), we obtain that

Σ
(n)
ij =

1
τ

cosh[(n + 1 − |j − i|)λ] − cosh[(n + 1 − i − j)λ]

2 sinh(λ) sinh[(n + 1)λ]
.

sing a basic identity of hyperbolic functions (Gradshteryn and Ryzhik, 2007, §1.314),

cosh(x) − cosh(y) = 2 sinh
(
x + y
2

)
sinh

(
x − y
2

)
,

we obtain

Σ
(n)
ij =

1
τ

sinh
[ 2(n+1)−i−j−|j−i|

2 λ
]
sinh

[ i+j−|j−i|
2 λ

]
sinh(λ) sinh[(n + 1)λ]

.

In particular, the diagonal elements read

Σ
(n)
ii =

1
τ

sinh [(n + 1 − i)λ] sinh (iλ)

sinh(λ) sinh[(n + 1)λ]
.

This leads to the following expression for the correlation coefficient

Ψ
(n)
ij =

sinh
[ 2(n+1)−i−j−|j−i|

2 λ
]
sinh

[ i+j−|j−i|
2 λ

]
√
sinh [(n + 1 − i)λ] sinh (iλ)

√
sinh [(n + 1 − j)λ] sinh (jλ)

.

n the following, we will restrict our attention to i < j without loss of generality. For j < i, we can then use the symmetry
identity Ψ

(n)
ij = Ψ

(n)
ji . So, if j > i, the previous result can be simplified to yield

Ψ
(n)
ij =

sinh [(n + 1 − j)λ] sinh (iλ)
√
sinh [(n + 1 − i)λ] sinh (iλ)

√
sinh [(n + 1 − j)λ] sinh (jλ)

=

√
sinh [(n + 1 − j)λ] sinh (iλ)

sinh [(n + 1 − i)λ] sinh (jλ)

= e−λ(j−i)

√
1 − e−2[(n+1−j)]λ

1 − e−2[(n+1−i)]λ

1 − e−2iλ

1 − e−2jλ . (4)
3
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2.4. Connection between Y (n) and X (n)

Gaussian free fields can be obtained as the limit when n → ∞ of a (2n + 1)-dimensional variables X (n)
=

(X−n, . . . , X−1, X0, X1, . . . , Xn) with a conditional independence graph given by Fig. 1. Results regarding this model can
be derived from the previous model and calculations by replacing n with 2n+ 1 and considering pairwise correlations of
the form Ω

(n)
ij ≡ Ψ

(2n+1)
n+1+i,n+1+j. In this perspective, Eq. (4) leads to, for i < j,

Ω
(n)
ij = e−(j−i)λ

√
1 − e−2[(n+1−j)]λ

1 − e−2[(n+1−i)]λ

1 − e−2(n+1+i)λ

1 − e−2(n+1+j)λ . (5)

2.5. Bounds

From Eq. (5), it is straightforward to see that Ω
(n)
ij is always strictly positive. Also, since u ↦→ 1−e−2(n+1−u)λ is a strictly

increasing function of u, and u ↦→ 1 − e−2(n+1−u)λ a strictly decreasing function of u, we obtain for i < j√
1 − e−2[(n+1−j)]λ

1 − e−2[(n+1−i)]λ < 1 and

√
1 − e−2(n+1+i)λ

1 − e−2(n+1+j)λ < 1,

so that

0 < Ω
(n)
ij < e−(j−i)λ

for all n.

2.6. Asymptotics

We can now provide the limit of Ω
(n)
ij when n → ∞. Using the fact that 1 − e−2[(n+1−u)]λ tends to 1 when n → ∞ for

a given u, Eq. (5) leads to

Ω
(n)
ij

n→∞
→ e−(j−i)λ. (6)

Besides, using the following Taylor expansion for u → 0,

(1 + u)k = 1 + ku + o(u), (7)

we can express Ω
(n)
ij /e−(j−i)λ as

Ω
(n)
ij e(j−i)λ

=
[
1 − e−2(n+1−j)λ] 1

2
[
1 − e−2(n+1−i)λ]−

1
2
[
1 − e−2(n+1+i)λ] 1

2
[
1 − e−2(n+1+j)λ]−

1
2

=

{
1 −

1
2
e−2(n+1−j)λ

+ o
[
e−2(n+1)λ]}{

1 +
1
2
e−2(n+1−i)λ

+ o
[
e−2(n+1)λ]}

×

{
1 −

1
2
e−2(n+1+i)λ

+ o
[
e−2(n+1)λ]}{

1 +
1
2
e−2(n+1+j)λ

+ o
[
e−2(n+1)λ]}

= 1 −
1
2

[
e2jλ − e2iλ + e−2iλ

− e−2jλ] e−2(n+1)λ
+ o

[
e−2(n+1)λ]

= 1 − [sinh(2jλ) − sinh(2iλ)] e−2(n+1)λ
+ o

[
e−2(n+1)λ] .

We therefore have that

Ω
(n)
ij e(j−i)λ

= 1 + O
[
e−2(n+1)λ] ,

so that

Ω
(n)
ij − e−(j−i)λ

= e−(j−i)λ
[
Ω

(n)
ij e(j−i)λ

− 1
]

= O
[
e−2(n+1)λ] .

2.7. General results

All results were proved for i < j. As mentioned earlier, the case j < i can be solved by using the symmetry identity
Ω

(n)
ij = Ω

(n)
ji . The most general results can therefore be expressed by replacing i with min(i, j), j with max(i, j), and j − i

with |j − i|, leading to

• Bounds: 0 < Ω
(n)
ij < e−|j−i|λ for all n;

• Limit: Ω
(n)

→ e−|j−i|λ when n → ∞;
ij

4
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Fig. 3. Another instance of conditional independence graph whose limit when n → ∞ yields the one-dimensional Gaussian free field. Such graph
orresponds to a symmetric circulant partial correlation matrix.

• Asymptotic expansion: the absolute error Ω
(n)
ij − e−|j−i|λ is O

[
e−2(n+1)λ

]
, and the relative error is given by

Ω
(n)
ij e(j−i)λ

− 1 = − {sinh[2max(i, j)λ] − sinh[2min(i, j)λ]} e−2(n+1)λ
+ o

[
e−2(n+1)λ] .

3. Discussion

In the present manuscript, we considered a (finite-dimensional) Gaussian graphical model with the conditional
independence graph depicted in Fig. 1. We proved that the pairwise correlation decays exponentially at a rate given
by λ of Eq. (2). We also provided bounds for pairwise correlation as well as asymptotic expansions of the absolute and
relative errors.

These results are in line with what is known about the one-dimensional Gaussian free field. Indeed, setting β = 1,
pairwise correlation is known to be of the form exp(−ξm|j − i|) with (Friedli and Velenik, 2017, Th. 8.33)

ξm = ln(1 + m2
+

√
2m2 + m4).

sing the relationship between τ and (β,m) of Eq. (1) as well as the expression of arg cosh in terms of logarithm
(Gradshteryn and Ryzhik, 2007, §1.622), it can be shown that ξm corresponds to our λ.

Another quantity of interest is α = e−λ, which can be expressed using again the expression of arg cosh in terms of
logarithm (Gradshteryn and Ryzhik, 2007, §1.622), leading to

1
α

=
1 +

√
1 − 4τ 2

2τ
,

or equivalently

α =
1 −

√
1 − 4τ 2

2τ
. (8)

From the definition, it is obvious that α ∈ [0, 1), and that pairwise correlation decreases as α|j−i|. α appears naturally in
he case where the Gaussian graphical model has a partial correlation matrix that is circulant instead of tridiagonal (see
elow).
One could wonder what the results are for the Gaussian graphical model Y (n) with conditional independence graph of

ig. 2 that was used to derive our main results. The corresponding results are given in §1 of the online supplement. They
re more complex due to the proximity of the boundary point 0 to i and j.
Another finite pattern of conditional independence that would lead to one-dimensional Gaussian free fields is the one

iven in Fig. 3. In this case, the partial correlation matrix is symmetric circulant and it can be shown that the pairwise
orrelation still decays exponentially with the same rate λ (see online supplement, §2). However, we were able to provide
either bounds nor an asymptotic expansion in that particular case.
Our results show that pairwise correlation in (finite-dimensional) Gaussian graphical models behaves in a manner

ery similar to one-dimensional (infinite-dimensional) Gaussian free fields, the difference between both cases decreasing
xponentially with n. As a consequence, computer simulations can be trusted to provide precise approximations for the
ehavior of one-dimensional Gaussian free fields.
Beyond pairwise correlation, a measure that we think would be relevant to quantify the global level of dependence

ithin the system is a multivariate generalization of mutual information known as total correlation (Watanabe, 1960),
ultivariate constraint (Garner, 1962), δ (Joe, 1989), or multiinformation (Studeny, 1998). In the case of multivariate
ormal distributions, this measure has a simple expression in terms of the covariance matrix. While we were able to
rovide neither the closed form expression in the case of tridiagonal nor circulant partial correlation matrices, we believe

hat such expressions might be helpful to understand the global behavior of the system.

5
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Now that we have solved the case d = 1, we would like to investigate more general cases with more complex
onnectivity patterns, still in the case of a finite n. Note that a major advantage of multivariate normal distributions is that
heir structures of conditional independence can be read off their precision matrices. For instance, moving from a one-
imensional to a two-dimensional model simply implies to change from a tridiagonal partial correlation matrix to a partial
orrelation matrix with more non-zero bands. More complex connectivity patterns with specific features (e.g., random
r small world) simply translate into different patterns in the precision matrix which can then be investigated either
nalytically or through computer simulations. And, again, multiinformation could provide interesting insight into the
lobal behavior of the system.

ppendix A. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.spl.2020.109016.
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