Online supplement for manuscript "Exponential decay of pairwise correlation in Gaussian graphical models with an equicorrelational one-dimensional connection pattern"

Contents

1 Results for $\boldsymbol{Y}^{(n)}$ 1
1.1 Bounds 1
1.2 Limit 2
1.3 Asymptotic behavior 2
1.4 General results 3
2 Circulant partial correlation matrix 3
2.1 Model 3
2.2 Pairwise correlation 4
2.3 Riemannian sum 5
2.4 Computation of integral 5
2.5 Asymptotic approximation 6

1 Results for $\boldsymbol{Y}^{(n)}$

1.1 Bounds

We start from Equation (4) of the manuscript. From this equation, it is obvious that $\Psi_{i j}^{(n)}>0$. Since $u \mapsto 1-e^{-2 u \lambda}$ is a strictly increasing function of u and $u \mapsto 1-e^{-2[(n+1-u)] \lambda}$ a strictly decreasing function of u, the term in the square root is smaller than one for $i<j$ and

$$
\Psi_{i j}^{(n)}<e^{-(j-i) \lambda} .
$$

We therefore still have that pairwise correlation decreases exponentially with distance.

1.2 Limit

We can now provide the limit of $\Psi_{i j}^{(n)}$ when $n \rightarrow \infty$. Still from Equation (4) of the manuscript, we have

$$
\begin{equation*}
\Psi_{i j}^{(n)} \xrightarrow{n \rightarrow \infty} e^{-(j-i) \lambda} \sqrt{\frac{1-e^{-2 i \lambda}}{1-e^{-2 j \lambda}}} \equiv \Psi_{i j}^{(\infty)} . \tag{1}
\end{equation*}
$$

Note that, in this case, $\Psi_{i j}^{(\infty)}$ is a function of both i and j that cannot be expressed as a function of $j-i$ (the distance between i and j) only. An upper bound for $\Psi_{i j}^{(\infty)}$ is given by

$$
\Psi_{i j}^{(\infty)}<e^{-(j-i) \lambda} .
$$

Also, still from Equation (4) of the manuscript, we have

$$
\begin{equation*}
\Psi_{i j}^{(n)}=\Psi_{i j}^{(\infty)} \sqrt{\frac{1-e^{-2(n+1-j) \lambda}}{1-e^{-2(n+1-i) \lambda}}} \tag{2}
\end{equation*}
$$

Since $u \mapsto 1-e^{-2(n+1-u) \lambda}$ is a strictly decreasing function of u, we obtain for $i<j$

$$
\sqrt{\frac{1-e^{-2(n+1-j) \lambda}}{1-e^{-2(n+1-i) \lambda}}}<1
$$

so that

$$
\Psi_{i j}^{(n)}<\Psi_{i j}^{(\infty)}
$$

for all n.

1.3 Asymptotic behavior

Using the Taylor expansion of Equation (7) of the manuscript, we can express $\Psi_{i j}^{(n)} / \Psi_{i j}^{(\infty)}$ as

$$
\begin{align*}
\frac{\Psi_{i j}^{(n)}}{\Psi_{i j}^{(\infty)}}= & {\left[1-e^{-2(n+1-j) \lambda}\right]^{\frac{1}{2}}\left[1-e^{-2(n+1-i) \lambda}\right]^{-\frac{1}{2}} } \\
= & \left\{1-\frac{1}{2} e^{-2(n+1-j) \lambda}+o\left[e^{-2(n+1) \lambda}\right]\right\} \\
& \times\left\{1+\frac{1}{2} e^{-2(n+1-i) \lambda}+o\left[e^{-2(n+1) \lambda}\right]\right\} \\
= & 1-\frac{e^{2 j \lambda}-e^{2 i \lambda}}{2} e^{-2(n+1) \lambda}+o\left[e^{-2(n+1) \lambda}\right] \tag{3}
\end{align*}
$$

This result directly entails that

$$
\Psi_{i j}^{(n)}-\Psi_{i j}^{(\infty)}=\Psi_{i j}^{(\infty)}\left[\frac{\Psi_{i j}^{(n)}}{\Psi_{i j}^{(\infty)}}-1\right]=O\left[e^{-2(n+1) \lambda}\right]
$$

1.4 General results

All previous results were proved for $i<j$. The case $j<i$ is solved by using the symmetry identity $\Psi_{i j}^{(n)}=\Psi_{j i}^{(n)}$, so that i, j and $j-i$ are replaced with $\min (i, j), \max (i, j)$ and $|j-i|$, respectively. In the end, setting

$$
\begin{equation*}
\Psi_{i j}^{(\infty)}=e^{-|j-i| \lambda} \sqrt{\frac{1-e^{-2 \min (i, j) \lambda}}{1-e^{-2 \max (i, j) \lambda}}} \tag{4}
\end{equation*}
$$

we obtain the following results:

- Bounds: $0<\Psi_{i j}^{(n)}<\Psi_{i j}^{(\infty)}<e^{-|j-i| \lambda}$;
- Limit: $\Psi_{i j}^{(n)} \rightarrow \Psi_{i j}^{(\infty)}$ as $n \rightarrow \infty$;
- Asymptotic expansion:

$$
\frac{\Psi_{i j}^{(n)}}{\Psi_{i j}^{(\infty)}}=1-\frac{1}{2}\left[e^{2 \max (i, j) \lambda}-e^{2 \min (i, j) \lambda}\right] e^{-2(n+1) \lambda}+o\left[e^{-2(n+1) \lambda}\right]
$$

and

$$
\Psi_{i j}^{(n)}-\Psi_{i j}^{(\infty)}=O\left[e^{-2(n+1) \lambda}\right] .
$$

2 Circulant partial correlation matrix

2.1 Model

Assume that $\boldsymbol{X}^{(n)}$ is a Gaussian graphical model with a conditional independence graph given by Figure 3 of the manuscript. The corresponding partial correlation matrix is then given by the following n-by- n symmetric circulant matrix

$$
\Pi_{i j}^{(n)}= \begin{cases}1 & \text { if } i=j \tag{5}\\ \tau & \text { if }|j-i| \in\{1, n-1\} \\ 0 & \text { otherwise }\end{cases}
$$

It can be expressed in the general form of circulant matrices as

$$
\boldsymbol{\Pi}^{(n)}=\operatorname{circ}\left[c_{0}^{(n)}, c_{1}^{(n)}, \cdots, c_{n-1}^{(n)}\right]
$$

with $c_{0}^{(n)}=1, c_{1}^{(n)}=c_{n-1}^{(n)}=\tau$ and 0 otherwise.

2.2 Pairwise correlation

In this case, $\boldsymbol{\Upsilon}^{(n)}=2 \boldsymbol{I}_{n}-\boldsymbol{\Pi}^{(n)}$ is a symmetric circulant matrix as well with

$$
\mathbf{\Upsilon}^{(n)}=\operatorname{circ}(1,-\tau, 0, \ldots, 0,-\tau)
$$

For $n \geq 2$, the n eigenvalues of $\boldsymbol{\Upsilon}^{(n)}$ are given by Chen, 1987, Chao, 1988

$$
\begin{equation*}
\mu_{k}^{(n)}=1-2 \tau \cos \left(k \theta_{n}\right), \quad k=0, \ldots, n-1, \tag{6}
\end{equation*}
$$

where we set $\theta_{n}=2 \pi / n$. Note that we have $\mu_{0}^{(n)}=1-2 \tau ;$ for $k \geq 1$, $\mu_{n-k}^{(n)}=\mu_{k}^{(n)} ;$ for n even, we also have $\mu_{\frac{n}{2}}^{(n)}=1+2 \tau$. Let $\boldsymbol{Q}^{(n)}=n\left(\mathbf{\Upsilon}^{(n)}\right)^{-1}$, so that $\boldsymbol{\Sigma}^{(n)}=\left(\boldsymbol{\Upsilon}^{(n)}\right)^{-1}=\frac{1}{n} \boldsymbol{Q}^{(n)}$. Then $\boldsymbol{Q}^{(n)}$ is also a symmetric circulant matrix,

$$
\boldsymbol{Q}^{(n)}=\operatorname{circ}\left[q_{0}^{(n)}, q_{1}^{(n)}, \ldots, q_{n-1}^{(n)}\right],
$$

with (Chao, 1988)

$$
\begin{equation*}
q_{k}^{(n)}=\sum_{j=0}^{n-1} \frac{e^{-i j k \theta_{n}}}{\mu_{j}^{(n)}}=\sum_{j=0}^{n-1} \frac{e^{-i j k \theta_{n}}}{1-2 \tau \cos \left(j \theta_{n}\right)} \tag{7}
\end{equation*}
$$

In particular, we have for the diagonal term $(k=0)$

$$
\begin{equation*}
q_{0}^{(n)}=\sum_{j=0}^{n-1} \frac{1}{\mu_{j}^{(n)}}=\sum_{j=0}^{n-1} \frac{1}{1-2 \tau \cos \left(j \theta_{n}\right)} \tag{8}
\end{equation*}
$$

Since $\boldsymbol{Q}^{(n)}$ is a symmetric circulant matrix, so is $\boldsymbol{\Sigma}^{(n)}$,

$$
\mathbf{\Sigma}^{(n)}=\operatorname{circ}\left[\sigma_{0}^{(n)}, \sigma_{1}^{(n)}, \ldots, \sigma_{n-1}^{(n)}\right]
$$

with

$$
\begin{equation*}
\sigma_{k}^{(n)}=\frac{q_{k}^{(n)}}{n} \tag{9}
\end{equation*}
$$

Finally, the correlation matrix $\boldsymbol{\Omega}^{(n)}$ is also a symmetric circulant matrix,

$$
\boldsymbol{\Omega}=\left(\Omega_{i j}^{(n)}\right)=\operatorname{circ}\left[1, \omega_{1}^{(n)}, \ldots, \omega_{n-1}^{(n)}\right]
$$

with

$$
\begin{equation*}
\omega_{k}^{(n)}=\frac{\sigma_{k}^{(n)}}{\sqrt{\left[\sigma_{0}^{(n)}\right]^{2}}}=\frac{\sigma_{k}^{(n)}}{\sigma_{0}^{(n)}}=\frac{q_{k}^{(n)}}{q_{0}^{(n)}}, \tag{10}
\end{equation*}
$$

with $q_{k}^{(n)}$ and $q_{0}^{(n)}$ given by Equations $\sqrt{7}$ and (8), respectively.

2.3 Riemannian sum

Let h_{k} be the function that maps any $x \in[0,2 \pi]$ to

$$
\begin{equation*}
h_{k}(x)=\frac{e^{-i k x}}{1-2 \tau \cos (x)} . \tag{11}
\end{equation*}
$$

Setting $x_{j}^{(n)}=j \theta_{n}$ for $j=0, \ldots, n$, we have

$$
0=x_{0}^{(n)}<x_{1}^{(n)}<\cdots<x_{n}^{(n)}=2 \pi .
$$

We now define

$$
\begin{equation*}
S_{k}^{(n)}=\sum_{j=0}^{n-1} h_{k}\left[x_{j}^{(n)}\right]\left[x_{j+1}^{(n)}-x_{j}^{(n)}\right]=\theta_{n} \sum_{j=0}^{n-1} \frac{e^{-i j k \theta_{n}}}{1-2 \tau \cos \left(j \theta_{n}\right)}=\theta_{n} q_{k}^{(n)} . \tag{12}
\end{equation*}
$$

By construction, $S_{k}^{(n)}$ is a left Riemann sum that converges to

$$
S_{k}^{(n)} \xrightarrow{n \rightarrow \infty} I_{k}=\int_{0}^{2 \pi} h_{k}(x) \mathrm{d} x .
$$

2.4 Computation of integral

We therefore need to compute I_{k}. Using Euler's formula

$$
e^{i x}=\cos (x)+i \sin (x)
$$

we obtain

$$
I_{k}=\int_{0}^{2 \pi} \frac{e^{-i k x}}{1-\tau\left(e^{i x}+e^{-i x}\right)} \mathrm{d} x
$$

Performing the parameter change $z=e^{i x}$, we can now write this integral as a contour integral on the unit circle

$$
\begin{aligned}
I_{k} & =\oint_{|z|=1} \frac{\bar{z}^{k}}{1-\tau\left(z+z^{-1}\right)} \frac{\mathrm{d} z}{i z} \\
& =\frac{1}{i} \oint_{|z|=1} \frac{\bar{z}^{k}}{-\tau z^{2}+z-\tau} \mathrm{d} z .
\end{aligned}
$$

The roots of $-\tau z^{2}+z-\tau$ are given by

$$
\alpha=\frac{1-\sqrt{1-4 \tau^{2}}}{2 \tau}
$$

and $1 / \alpha$. The integral therefore yields

$$
I_{k}=-\frac{1}{i \tau} \oint_{|z|=1} \frac{\bar{z}^{k}}{(z-\alpha)\left(z-\frac{1}{\alpha}\right)} \mathrm{d} z .
$$

Factoring the fraction yields

$$
\frac{1}{(z-\alpha)\left(z-\frac{1}{\alpha}\right)}=\frac{u}{z-\alpha}-\frac{u}{z-\frac{1}{\alpha}}
$$

with

$$
u=\frac{\alpha}{\alpha^{2}-1}=-\frac{\tau}{\sqrt{1-4 \tau^{2}}}
$$

We therefore have for the integral

$$
I_{k}=\frac{1}{i \sqrt{1-4 \tau^{2}}} \oint_{|z|=1}\left(\frac{\bar{z}^{k}}{z-\alpha}-\frac{\bar{z}^{k}}{z-\frac{1}{\alpha}}\right) \mathrm{d} z
$$

$1 / \alpha$ is outside the unit circle, so that

$$
\oint_{|z|=1} \frac{\bar{z}^{k}}{z-\frac{1}{\alpha}} \mathrm{~d} z=0
$$

For the other other integral, we need to compute the residual of $f(z)=$ $\bar{z}^{k} /(z-\alpha)$ at $z=\alpha$. Since it is a simple pole, we have

$$
\operatorname{Res}_{z=\alpha} f(z)=\lim _{z \rightarrow \alpha}(z-\alpha) f(z)=\lim _{z \rightarrow \alpha} \bar{z}^{k}=\alpha^{k}
$$

since $\alpha \in \mathbb{R}$. We are then then led to

$$
\oint_{|z|=1} \frac{\bar{z}^{k}}{z-\alpha} \mathrm{d} z=2 i \pi \alpha^{k}
$$

and, finally,

$$
\begin{equation*}
I_{k}=\frac{2 \pi \alpha^{k}}{\sqrt{1-4 \tau^{2}}} \tag{13}
\end{equation*}
$$

In particular, we have for $k=0$

$$
\begin{equation*}
I_{0}=\frac{2 \pi}{\sqrt{1-4 \tau^{2}}} \tag{14}
\end{equation*}
$$

2.5 Asymptotic approximation

Now that we computed I_{k}, we can go back to the pairwise correlation. Since the sum $S_{k}^{(n)}$ of Equation 12 converges toward the integral I_{k}, we have for $\sigma_{k}^{(n)}$, using Equations (9) and 12 ,

$$
\begin{equation*}
\sigma_{k}^{(n)}=\frac{q_{k}^{(n)}}{n}=\frac{S_{k}^{(n)}}{n \theta_{n}}=\frac{S_{k}^{(n)}}{2 \pi} \xrightarrow{n \rightarrow \infty} \frac{I_{k}}{2 \pi}=\frac{\alpha^{k}}{\sqrt{1-4 \tau^{2}}} \tag{15}
\end{equation*}
$$

and for $\omega_{k}^{(n)}$, using Equations 10 and 12 ,

$$
\begin{equation*}
\omega_{k}^{(n)}=\frac{q_{k}^{(n)}}{q_{0}^{(n)}}=\frac{S_{k}^{(n)}}{S_{0}^{(n)}} \stackrel{n \rightarrow \infty}{\rightarrow} \frac{I_{k}}{I_{0}}=\alpha^{k} \tag{16}
\end{equation*}
$$

Since $k=|j-i|$, we can conclude that

$$
\Omega_{i j}^{(n)} \xrightarrow{n \rightarrow \infty} \alpha^{|j-i|}
$$

References

Chao, C.-Y., 1988. A remark on symmetric circulant matrices. Linear Algebra and its Applications 103, 133-148.

Chen, M., 1987. On the solution of circulant lilnear systems. SIAM Journal on Numerical Analysis 24 (3), 668-683.

