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1 Results for Y

1.1 Bounds

We start from Equation (4) of the manuscript. From this equation, it is
obvious that \IJE?) > 0. Since u — 1 — e~ 2"} is a strictly increasing function

of u and u s 1 — e 2 H1=WIX 4 gtrictly decreasing function of u, the term
in the square root is smaller than one for ¢ < j and

\Ilgl) < e U9

We therefore still have that pairwise correlation decreases exponentially with
distance.



1.2 Limit
(n)

We can now provide the limit of ‘IIZ?
of the manuscript, we have

() nogo G (L= €PN oo

Note that, in this case, \IIE;O) is a function of both ¢ and j that cannot be

expressed as a function of j — i (the distance between i and j) only. An
(c0)
]

when n — oo. Still from Equation (4)

upper bound for ¥ is given by

\Ifgjo) < e U=,
Also, still from Equation (4) of the manuscript, we have

_ o—2(nt1—j)A
\1/@):\1;(‘?")\/1 ‘ . (2)

1] vj 1 — e—2(n+1-9)A

Since u = 1 — e~ 2= 5 5 strictly decreasing function of u, we obtain

fori < j
1 — e—2(n+1—5)A
\/1 — e 2(n+1-9)A <1
so that
v < g
for all n.

1.3 Asymptotic behavior

Using the Taylor expansion of Equation (7) of the manuscript, we can ex-
press W7 /W, as

‘I’(z(?)) _ [1_6—2(n+1—j)x}
5ed

ij

[NIES

[1 _ e—2(n+1—i))\:| ~3

= {1 _ 36_2(”+1_j))‘ +o [6—2(71-',-1))\] }

o {1+ 36—2(n+1—i)>\+0 |:e—2(n+1))\:|}

e2IA _ p2iA

= 18 O e [e—z(nﬂ)x} . (3)
2
This result directly entails that
(n)
(n) _ y(o0) _ y(c0) i 4| —2(n+1)A
e S Rl [e ] .
ij



1.4 General results

All previous results were proved for ¢ < j. The case j < i is solved by using
the symmetry identity \I’z@ = \Ifg?), so that 7, j and j — ¢ are replaced with
min(4, j), max(i, j) and |j — 7|, respectively. In the end, setting

o _ p—2min(z,j)A
WE?)=6'Jl'A\/ e ()

1 — e—2max(i )X’
we obtain the following results:
e Bounds: 0 < \IJS;) < \IIE;)O) < e =i,
e Limit: \I/gb) — \IIEJOO) as n — oo;

e Asymptotic expansion:

\Il(’.l) 1
(u = 1— 5 p2max(if)A _ €2min(i,j)/\:| e~2n A 4 |:672(n+1))\}
P
ij
and

‘111(7) _ ‘I’ijo) -0 [6—2(n+1)/\] '

2 Circulant partial correlation matrix

2.1 Model

Assume that X is a Gaussian graphical model with a conditional inde-
pendence graph given by Figure 3 of the manuscript. The corresponding
partial correlation matrix is then given by the following n-by-n symmetric
circulant matrix
1 ifi=y
Y =9 7 if|j—il € {L,n—1} (5)
0 otherwise.

It can be expressed in the general form of circulant matrices as
"™ = circ [c(()n), c(ln), e ,cﬁf_)l}

with cén) =1, an) = cfln_)l = 7 and 0 otherwise.



2.2 Pairwise correlation

In this case, Y™ = 2I,, — TI™ is a symmetric circulant matrix as well with
Y™ = circ(1, —7,0,...,0,—7).

For n > 2, the n eigenvalues of Y™ are given by (Chen, 1987: |Chao, 1988)

,u,(gn) =1—27cos(kb,), k=0,...,n—1, (6)

where we set 0, = 27/n. Note that we have ,u(()n) =1-27; for k > 1,

ugln_)k = u,gn) ; for n even, we also have ,u(ﬁn) =1427. Let Q™ = n(T("))*1
2

so that £ = (Y™)~1 = %Q(”). Then Q™ is also a symmetric circulant

matrix,

Q(n) — cire [qé ), qgn), ... ,(J?(IN)J

with (Chao, 1988])

n—1__;ik6, n—1 17kO
(n) e
q, = = (7)
k = M§”) ]Z; 1 — 27 cos(j6y)

) DI B — ®)
= u 5 = — 27 cos(j6y,)

with )
ny G
() 1k . (9)

g
k n

Finally, the correlation matrix Q™ is also a symmetric circulant matrix,

Q= (Q(T.L)) = circ [l,wgn), . ,w(n)

1] n—1

with m o m
C e A

with q,gn) and q((]n) given by Equations and @i respectively.



2.3 Riemannian sum

Let hy be the function that maps any z € [0, 27] to

e—ik’x
h = 11
k(@) 1 — 27 cos(x) (11)
Setting xg.n) = 40, for j =0,...,n, we have
0=a{" <2< .. <2l =2

We now define

n—1 2jk9 (n)
hi| (n) -n =60, =0,q,". (12
Z el J‘H i Z 1-— 27‘COS (j60n) G (12)

Q

n)

By construction, S,i is a left Riemann sum that converges to

2
S 20 = / hi(z) dz.
0

2.4 Computation of integral

We therefore need to compute I. Using Fuler’s formula

" = cos(x) + isin(x),

2 e—ika:
I, = . —d
K /0 1 —7 (e 4 e7i7) .

Performing the parameter change z = €', we can now write this integral as
a contour integral on the unit circle

?{ zF dz
I = =721 iz
=1 L= 7(2+271) iz

1 <k
- 7
U= TR 2T

The roots of —72% + z — 7 are given by

1—+1—472
2T

we obtain

o=

and 1/a. The integral therefore yields
1 sk
Ik _ — i 1
=1 (= =) (2 = 3)

5

dz.




Factoring the fraction yields

with

Ta?-1 142
We therefore have for the integral
1 sk sk
I, = j{ SO T | dz.
il—4r?2 Jy=1 \z - z—2

1/« is outside the unit circle, so that

|Z‘_1

«

For the other other integral, we need to compute the residual of f(z) =
Z¥/(z — a) at z = a. Since it is a simple pole, we have
IERT . — lign 5k — A F
Res,—a f(2) = Zlgl(ll(z a)f(z) ;%z a”,

since o« € R. We are then then led to
sk
7{ dz = 2iraF
|

Z|:1 Zz—
and, finally,
2rak
In particular, we have for k =0
2
= (14)

Ip= —r .
O VI
2.5 Asymptotic approximation

Now that we computed I, we can go back to the pairwise correlation. Since

the sum S,(fn) of Equation 1) converges toward the integral Iy, we have for

a,(cn), using Equations @ and ,

(n)

o _ 4 _ S _ S woe I ot

=2k "k _ Tk - 1
Tk n nb, 2m 2r N1 — 472 (15)
and for w,gn), using Equations and ,
(n) (n)
n q S n—00 Ik
! == =t (16)
90 So 0

Since k = |j — i|, we can conclude that

Q) "° olivil
v]
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