Online supplement for manuscript "Exponential decay of pairwise correlation in Gaussian graphical models with an equicorrelational one-dimensional connection pattern"

Contents

1	Res	ults for $Y^{(n)}$	1
	1.1	Bounds	1
	1.2	Limit	2
	1.3	Asymptotic behavior	2
	1.4	General results	3
2	Circ	culant partial correlation matrix	3
2	Circ 2.1	culant partial correlation matrix Model	3 3
2	Cire 2.1 2.2	culant partial correlation matrixModelPairwise correlation	3 3 4
2	Circ 2.1 2.2 2.3	culant partial correlation matrixModelPairwise correlationRiemannian sum	3 3 4 5
2	Circ 2.1 2.2 2.3 2.4	culant partial correlation matrix Model Pairwise correlation Riemannian sum Computation of integral	3 3 4 5 5

1 Results for $\boldsymbol{Y}^{(n)}$

1.1 Bounds

We start from Equation (4) of the manuscript. From this equation, it is obvious that $\Psi_{ij}^{(n)} > 0$. Since $u \mapsto 1 - e^{-2u\lambda}$ is a strictly increasing function of u and $u \mapsto 1 - e^{-2[(n+1-u)]\lambda}$ a strictly decreasing function of u, the term in the square root is smaller than one for i < j and

$$\Psi_{ij}^{(n)} < e^{-(j-i)\lambda}$$

We therefore still have that pairwise correlation decreases exponentially with distance.

1.2 Limit

We can now provide the limit of $\Psi_{ij}^{(n)}$ when $n \to \infty$. Still from Equation (4) of the manuscript, we have

$$\Psi_{ij}^{(n)} \stackrel{n \to \infty}{\to} e^{-(j-i)\lambda} \sqrt{\frac{1 - e^{-2i\lambda}}{1 - e^{-2j\lambda}}} \equiv \Psi_{ij}^{(\infty)}.$$
 (1)

Note that, in this case, $\Psi_{ij}^{(\infty)}$ is a function of both *i* and *j* that cannot be expressed as a function of j - i (the distance between *i* and *j*) only. An upper bound for $\Psi_{ij}^{(\infty)}$ is given by

$$\Psi_{ij}^{(\infty)} < e^{-(j-i)\lambda}$$

Also, still from Equation (4) of the manuscript, we have

$$\Psi_{ij}^{(n)} = \Psi_{ij}^{(\infty)} \sqrt{\frac{1 - e^{-2(n+1-j)\lambda}}{1 - e^{-2(n+1-i)\lambda}}}.$$
(2)

Since $u \mapsto 1 - e^{-2(n+1-u)\lambda}$ is a strictly decreasing function of u, we obtain for i < j

$$\begin{split} \sqrt{\frac{1-e^{-2(n+1-j)\lambda}}{1-e^{-2(n+1-i)\lambda}}} < 1, \\ \Psi_{ij}^{(n)} < \Psi_{ij}^{(\infty)} \end{split}$$

so that

for all n.

1.3 Asymptotic behavior

Using the Taylor expansion of Equation (7) of the manuscript, we can express $\Psi_{ij}^{(n)}/\Psi_{ij}^{(\infty)}$ as

$$\frac{\Psi_{ij}^{(n)}}{\Psi_{ij}^{(\infty)}} = \left[1 - e^{-2(n+1-j)\lambda}\right]^{\frac{1}{2}} \left[1 - e^{-2(n+1-i)\lambda}\right]^{-\frac{1}{2}} \\
= \left\{1 - \frac{1}{2}e^{-2(n+1-j)\lambda} + o\left[e^{-2(n+1)\lambda}\right]\right\} \\
\times \left\{1 + \frac{1}{2}e^{-2(n+1-i)\lambda} + o\left[e^{-2(n+1)\lambda}\right]\right\} \\
= 1 - \frac{e^{2j\lambda} - e^{2i\lambda}}{2}e^{-2(n+1)\lambda} + o\left[e^{-2(n+1)\lambda}\right].$$
(3)

This result directly entails that

$$\Psi_{ij}^{(n)} - \Psi_{ij}^{(\infty)} = \Psi_{ij}^{(\infty)} \left[\frac{\Psi_{ij}^{(n)}}{\Psi_{ij}^{(\infty)}} - 1 \right] = O\left[e^{-2(n+1)\lambda} \right].$$

1.4 General results

All previous results were proved for i < j. The case j < i is solved by using the symmetry identity $\Psi_{ij}^{(n)} = \Psi_{ji}^{(n)}$, so that i, j and j - i are replaced with $\min(i, j), \max(i, j)$ and |j - i|, respectively. In the end, setting

$$\Psi_{ij}^{(\infty)} = e^{-|j-i|\lambda} \sqrt{\frac{1 - e^{-2\min(i,j)\lambda}}{1 - e^{-2\max(i,j)\lambda}}},\tag{4}$$

we obtain the following results:

- Bounds: $0 < \Psi_{ij}^{(n)} < \Psi_{ij}^{(\infty)} < e^{-|j-i|\lambda}$;
- Limit: $\Psi_{ij}^{(n)} \to \Psi_{ij}^{(\infty)}$ as $n \to \infty$;
- Asymptotic expansion:

$$\frac{\Psi_{ij}^{(n)}}{\Psi_{ij}^{(\infty)}} = 1 - \frac{1}{2} \left[e^{2\max(i,j)\lambda} - e^{2\min(i,j)\lambda} \right] e^{-2(n+1)\lambda} + o \left[e^{-2(n+1)\lambda} \right]$$

and

$$\Psi_{ij}^{(n)} - \Psi_{ij}^{(\infty)} = O\left[e^{-2(n+1)\lambda}\right].$$

2 Circulant partial correlation matrix

2.1 Model

Assume that $X^{(n)}$ is a Gaussian graphical model with a conditional independence graph given by Figure 3 of the manuscript. The corresponding partial correlation matrix is then given by the following *n*-by-*n* symmetric circulant matrix

$$\Pi_{ij}^{(n)} = \begin{cases} 1 & \text{if } i = j \\ \tau & \text{if } |j - i| \in \{1, n - 1\} \\ 0 & \text{otherwise.} \end{cases}$$
(5)

It can be expressed in the general form of circulant matrices as

$$\mathbf{\Pi}^{(n)} = \operatorname{circ}\left[c_0^{(n)}, c_1^{(n)}, \cdots, c_{n-1}^{(n)}\right]$$

with $c_0^{(n)} = 1$, $c_1^{(n)} = c_{n-1}^{(n)} = \tau$ and 0 otherwise.

2.2 Pairwise correlation

In this case, $\mathbf{\Upsilon}^{(n)} = 2\mathbf{I}_n - \mathbf{\Pi}^{(n)}$ is a symmetric circulant matrix as well with

$$\mathbf{\Upsilon}^{(n)} = \operatorname{circ}(1, -\tau, 0, \dots, 0, -\tau).$$

For $n \geq 2$, the *n* eigenvalues of $\Upsilon^{(n)}$ are given by (Chen, 1987; Chao, 1988)

$$\mu_k^{(n)} = 1 - 2\tau \cos(k\theta_n), \qquad k = 0, \dots, n-1,$$
 (6)

where we set $\theta_n = 2\pi/n$. Note that we have $\mu_0^{(n)} = 1 - 2\tau$; for $k \ge 1$, $\mu_{n-k}^{(n)} = \mu_k^{(n)}$; for *n* even, we also have $\mu_{\frac{n}{2}}^{(n)} = 1 + 2\tau$. Let $\mathbf{Q}^{(n)} = n(\mathbf{\Upsilon}^{(n)})^{-1}$, so that $\mathbf{\Sigma}^{(n)} = (\mathbf{\Upsilon}^{(n)})^{-1} = \frac{1}{n}\mathbf{Q}^{(n)}$. Then $\mathbf{Q}^{(n)}$ is also a symmetric circulant matrix,

$$Q^{(n)} = \operatorname{circ} \left[q_0^{(n)}, q_1^{(n)}, \dots, q_{n-1}^{(n)} \right],$$

with (Chao, 1988)

$$q_k^{(n)} = \sum_{j=0}^{n-1} \frac{e^{-ijk\theta_n}}{\mu_j^{(n)}} = \sum_{j=0}^{n-1} \frac{e^{-ijk\theta_n}}{1 - 2\tau \cos(j\theta_n)}.$$
(7)

In particular, we have for the diagonal term (k = 0)

$$q_0^{(n)} = \sum_{j=0}^{n-1} \frac{1}{\mu_j^{(n)}} = \sum_{j=0}^{n-1} \frac{1}{1 - 2\tau \cos(j\theta_n)}.$$
(8)

Since $Q^{(n)}$ is a symmetric circulant matrix, so is $\Sigma^{(n)}$,

$$\Sigma^{(n)} = \operatorname{circ} \left[\sigma_0^{(n)}, \sigma_1^{(n)}, \dots, \sigma_{n-1}^{(n)} \right],$$
$$\sigma_k^{(n)} = \frac{q_k^{(n)}}{n}.$$
(9)

with

Finally, the correlation matrix $\mathbf{\Omega}^{(n)}$ is also a symmetric circulant matrix,

$$\mathbf{\Omega} = (\Omega_{ij}^{(n)}) = \operatorname{circ} \left[1, \omega_1^{(n)}, \dots, \omega_{n-1}^{(n)}\right]$$

with

$$\omega_k^{(n)} = \frac{\sigma_k^{(n)}}{\sqrt{[\sigma_0^{(n)}]^2}} = \frac{\sigma_k^{(n)}}{\sigma_0^{(n)}} = \frac{q_k^{(n)}}{q_0^{(n)}},\tag{10}$$

with $q_k^{(n)}$ and $q_0^{(n)}$ given by Equations (7) and (8), respectively.

2.3 Riemannian sum

Let h_k be the function that maps any $x \in [0, 2\pi]$ to

$$h_k(x) = \frac{e^{-ikx}}{1 - 2\tau \cos(x)}.$$
 (11)

Setting $x_j^{(n)} = j\theta_n$ for j = 0, ..., n, we have

$$0 = x_0^{(n)} < x_1^{(n)} < \dots < x_n^{(n)} = 2\pi.$$

We now define

$$S_k^{(n)} = \sum_{j=0}^{n-1} h_k[x_j^{(n)}][x_{j+1}^{(n)} - x_j^{(n)}] = \theta_n \sum_{j=0}^{n-1} \frac{e^{-ijk\theta_n}}{1 - 2\tau \cos(j\theta_n)} = \theta_n q_k^{(n)}.$$
 (12)

By construction, $S_k^{(n)}$ is a left Riemann sum that converges to

$$S_k^{(n)} \stackrel{n \to \infty}{\to} I_k = \int_0^{2\pi} h_k(x) \,\mathrm{d}x.$$

2.4 Computation of integral

We therefore need to compute I_k . Using Euler's formula

$$e^{ix} = \cos(x) + i\sin(x),$$

we obtain

$$I_k = \int_0^{2\pi} \frac{e^{-ikx}}{1 - \tau \left(e^{ix} + e^{-ix}\right)} \, \mathrm{d}x.$$

Performing the parameter change $z = e^{ix}$, we can now write this integral as a contour integral on the unit circle

$$I_k = \oint_{|z|=1} \frac{\overline{z}^k}{1 - \tau(z + z^{-1})} \frac{\mathrm{d}z}{iz}$$
$$= \frac{1}{i} \oint_{|z|=1} \frac{\overline{z}^k}{-\tau z^2 + z - \tau} \,\mathrm{d}z$$

The roots of $-\tau z^2 + z - \tau$ are given by

$$\alpha = \frac{1 - \sqrt{1 - 4\tau^2}}{2\tau}$$

and $1/\alpha$. The integral therefore yields

$$I_k = -\frac{1}{i\tau} \oint_{|z|=1} \frac{\overline{z}^k}{(z-\alpha)\left(z-\frac{1}{\alpha}\right)} \,\mathrm{d}z.$$

Factoring the fraction yields

$$\frac{1}{\left(z-\alpha\right)\left(z-\frac{1}{\alpha}\right)} = \frac{u}{z-\alpha} - \frac{u}{z-\frac{1}{\alpha}}$$

with

$$u = \frac{\alpha}{\alpha^2 - 1} = -\frac{\tau}{\sqrt{1 - 4\tau^2}}.$$

We therefore have for the integral

$$I_k = \frac{1}{i\sqrt{1-4\tau^2}} \oint_{|z|=1} \left(\frac{\overline{z}^k}{z-\alpha} - \frac{\overline{z}^k}{z-\frac{1}{\alpha}}\right) dz$$

 $1/\alpha$ is outside the unit circle, so that

$$\oint_{|z|=1} \frac{\overline{z}^k}{z - \frac{1}{\alpha}} \, \mathrm{d}z = 0.$$

For the other other integral, we need to compute the residual of $f(z) = \overline{z}^k/(z-\alpha)$ at $z = \alpha$. Since it is a simple pole, we have

$$\operatorname{Res}_{z=\alpha} f(z) = \lim_{z \to \alpha} (z - \alpha) f(z) = \lim_{z \to \alpha} \overline{z}^k = \alpha^k,$$

since $\alpha \in \mathbb{R}$. We are then then led to

$$\oint_{|z|=1} \frac{\overline{z}^k}{z-\alpha} \,\mathrm{d}z = 2i\pi\alpha^k$$

and, finally,

$$I_k = \frac{2\pi\alpha^k}{\sqrt{1 - 4\tau^2}}.$$
(13)

In particular, we have for k = 0

$$I_0 = \frac{2\pi}{\sqrt{1 - 4\tau^2}}.$$
 (14)

2.5 Asymptotic approximation

Now that we computed I_k , we can go back to the pairwise correlation. Since the sum $S_k^{(n)}$ of Equation (12) converges toward the integral I_k , we have for $\sigma_k^{(n)}$, using Equations (9) and (12),

$$\sigma_k^{(n)} = \frac{q_k^{(n)}}{n} = \frac{S_k^{(n)}}{n\theta_n} = \frac{S_k^{(n)}}{2\pi} \xrightarrow{n \to \infty} \frac{I_k}{2\pi} = \frac{\alpha^k}{\sqrt{1 - 4\tau^2}}$$
(15)

and for $\omega_k^{(n)}$, using Equations (10) and (12),

$$\omega_k^{(n)} = \frac{q_k^{(n)}}{q_0^{(n)}} = \frac{S_k^{(n)}}{S_0^{(n)}} \xrightarrow{n \to \infty} \frac{I_k}{I_0} = \alpha^k.$$
 (16)

Since k = |j - i|, we can conclude that

$$\Omega_{ij}^{(n)} \stackrel{n \to \infty}{\to} \alpha^{|j-i|}.$$

References

- Chao, C.-Y., 1988. A remark on symmetric circulant matrices. Linear Algebra and its Applications 103, 133–148.
- Chen, M., 1987. On the solution of circulant lilnear systems. SIAM Journal on Numerical Analysis 24 (3), 668–683.