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1 Results for Y (n)

1.1 Bounds

We start from Equation (4) of the manuscript. From this equation, it is

obvious that Ψ
(n)
ij > 0. Since u 7→ 1− e−2uλ is a strictly increasing function

of u and u 7→ 1− e−2[(n+1−u)]λ a strictly decreasing function of u, the term
in the square root is smaller than one for i < j and

Ψ
(n)
ij < e−(j−i)λ.

We therefore still have that pairwise correlation decreases exponentially with
distance.
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1.2 Limit

We can now provide the limit of Ψ
(n)
ij when n→∞. Still from Equation (4)

of the manuscript, we have

Ψ
(n)
ij

n→∞→ e−(j−i)λ

√
1− e−2iλ
1− e−2jλ

≡ Ψ
(∞)
ij . (1)

Note that, in this case, Ψ
(∞)
ij is a function of both i and j that cannot be

expressed as a function of j − i (the distance between i and j) only. An

upper bound for Ψ
(∞)
ij is given by

Ψ
(∞)
ij < e−(j−i)λ.

Also, still from Equation (4) of the manuscript, we have

Ψ
(n)
ij = Ψ

(∞)
ij

√
1− e−2(n+1−j)λ

1− e−2(n+1−i)λ . (2)

Since u 7→ 1 − e−2(n+1−u)λ is a strictly decreasing function of u, we obtain
for i < j √

1− e−2(n+1−j)λ

1− e−2(n+1−i)λ < 1,

so that
Ψ

(n)
ij < Ψ

(∞)
ij

for all n.

1.3 Asymptotic behavior

Using the Taylor expansion of Equation (7) of the manuscript, we can ex-

press Ψ
(n)
ij /Ψ

(∞)
ij as

Ψ
(n)
ij

Ψ
(∞)
ij

=
[
1− e−2(n+1−j)λ

] 1
2
[
1− e−2(n+1−i)λ

]− 1
2

=

{
1− 1

2
e−2(n+1−j)λ + o

[
e−2(n+1)λ

]}
×
{

1 +
1

2
e−2(n+1−i)λ + o

[
e−2(n+1)λ

]}
= 1− e2jλ − e2iλ

2
e−2(n+1)λ + o

[
e−2(n+1)λ

]
. (3)

This result directly entails that

Ψ
(n)
ij −Ψ

(∞)
ij = Ψ

(∞)
ij

[
Ψ

(n)
ij

Ψ
(∞)
ij

− 1

]
= O

[
e−2(n+1)λ

]
.
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1.4 General results

All previous results were proved for i < j. The case j < i is solved by using

the symmetry identity Ψ
(n)
ij = Ψ

(n)
ji , so that i, j and j − i are replaced with

min(i, j), max(i, j) and |j − i|, respectively. In the end, setting

Ψ
(∞)
ij = e−|j−i|λ

√
1− e−2min(i,j)λ

1− e−2max(i,j)λ
, (4)

we obtain the following results:

• Bounds: 0 < Ψ
(n)
ij < Ψ

(∞)
ij < e−|j−i|λ;

• Limit: Ψ
(n)
ij → Ψ

(∞)
ij as n→∞;

• Asymptotic expansion:

Ψ
(n)
ij

Ψ
(∞)
ij

= 1− 1

2

[
e2max(i,j)λ − e2min(i,j)λ

]
e−2(n+1)λ + o

[
e−2(n+1)λ

]
and

Ψ
(n)
ij −Ψ

(∞)
ij = O

[
e−2(n+1)λ

]
.

2 Circulant partial correlation matrix

2.1 Model

Assume that X(n) is a Gaussian graphical model with a conditional inde-
pendence graph given by Figure 3 of the manuscript. The corresponding
partial correlation matrix is then given by the following n-by-n symmetric
circulant matrix

Π
(n)
ij =


1 if i = j
τ if |j − i| ∈ {1, n− 1}
0 otherwise.

(5)

It can be expressed in the general form of circulant matrices as

Π(n) = circ
[
c
(n)
0 , c

(n)
1 , · · · , c(n)n−1

]
with c

(n)
0 = 1, c

(n)
1 = c

(n)
n−1 = τ and 0 otherwise.
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2.2 Pairwise correlation

In this case, Υ(n) = 2In−Π(n) is a symmetric circulant matrix as well with

Υ(n) = circ(1,−τ, 0, . . . , 0,−τ).

For n ≥ 2, the n eigenvalues of Υ(n) are given by (Chen, 1987; Chao, 1988)

µ
(n)
k = 1− 2τ cos(kθn), k = 0, . . . , n− 1, (6)

where we set θn = 2π/n. Note that we have µ
(n)
0 = 1 − 2τ ; for k ≥ 1,

µ
(n)
n−k = µ

(n)
k ; for n even, we also have µ

(n)
n
2

= 1 + 2τ . Let Q(n) = n(Υ(n))−1,

so that Σ(n) = (Υ(n))−1 = 1
nQ

(n). Then Q(n) is also a symmetric circulant
matrix,

Q(n) = circ
[
q
(n)
0 , q

(n)
1 , . . . , q

(n)
n−1

]
,

with (Chao, 1988)

q
(n)
k =

n−1∑
j=0

e−ijkθn

µ
(n)
j

=

n−1∑
j=0

e−ijkθn

1− 2τ cos(jθn)
. (7)

In particular, we have for the diagonal term (k = 0)

q
(n)
0 =

n−1∑
j=0

1

µ
(n)
j

=
n−1∑
j=0

1

1− 2τ cos(jθn)
. (8)

Since Q(n) is a symmetric circulant matrix, so is Σ(n),

Σ(n) = circ
[
σ
(n)
0 , σ

(n)
1 , . . . , σ

(n)
n−1

]
,

with

σ
(n)
k =

q
(n)
k

n
. (9)

Finally, the correlation matrix Ω(n) is also a symmetric circulant matrix,

Ω = (Ω
(n)
ij ) = circ

[
1, ω

(n)
1 , . . . , ω

(n)
n−1

]
with

ω
(n)
k =

σ
(n)
k√

[σ
(n)
0 ]2

=
σ
(n)
k

σ
(n)
0

=
q
(n)
k

q
(n)
0

, (10)

with q
(n)
k and q

(n)
0 given by Equations (7) and (8), respectively.
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2.3 Riemannian sum

Let hk be the function that maps any x ∈ [0, 2π] to

hk(x) =
e−ikx

1− 2τ cos(x)
. (11)

Setting x
(n)
j = jθn for j = 0, . . . , n, we have

0 = x
(n)
0 < x

(n)
1 < · · · < x(n)n = 2π.

We now define

S
(n)
k =

n−1∑
j=0

hk[x
(n)
j ][x

(n)
j+1 − x

(n)
j ] = θn

n−1∑
j=0

e−ijkθn

1− 2τ cos(jθn)
= θnq

(n)
k . (12)

By construction, S
(n)
k is a left Riemann sum that converges to

S
(n)
k

n→∞→ Ik =

∫ 2π

0
hk(x) dx.

2.4 Computation of integral

We therefore need to compute Ik. Using Euler’s formula

eix = cos(x) + i sin(x),

we obtain

Ik =

∫ 2π

0

e−ikx

1− τ (eix + e−ix)
dx.

Performing the parameter change z = eix, we can now write this integral as
a contour integral on the unit circle

Ik =

∮
|z|=1

zk

1− τ(z + z−1)

dz

iz

=
1

i

∮
|z|=1

zk

−τz2 + z − τ
dz.

The roots of −τz2 + z − τ are given by

α =
1−
√

1− 4τ2

2τ

and 1/α. The integral therefore yields

Ik = − 1

iτ

∮
|z|=1

zk

(z − α)
(
z − 1

α

) dz.
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Factoring the fraction yields

1

(z − α)
(
z − 1

α

) =
u

z − α
− u

z − 1
α

with
u =

α

α2 − 1
= − τ√

1− 4τ2
.

We therefore have for the integral

Ik =
1

i
√

1− 4τ2

∮
|z|=1

(
zk

z − α
− zk

z − 1
α

)
dz.

1/α is outside the unit circle, so that∮
|z|=1

zk

z − 1
α

dz = 0.

For the other other integral, we need to compute the residual of f(z) =
zk/(z − α) at z = α. Since it is a simple pole, we have

Resz=αf(z) = lim
z→α

(z − α)f(z) = lim
z→α

zk = αk,

since α ∈ R. We are then then led to∮
|z|=1

zk

z − α
dz = 2iπαk

and, finally,

Ik =
2παk√
1− 4τ2

. (13)

In particular, we have for k = 0

I0 =
2π√

1− 4τ2
. (14)

2.5 Asymptotic approximation

Now that we computed Ik, we can go back to the pairwise correlation. Since

the sum S
(n)
k of Equation (12) converges toward the integral Ik, we have for

σ
(n)
k , using Equations (9) and (12),

σ
(n)
k =

q
(n)
k

n
=
S
(n)
k

nθn
=
S
(n)
k

2π

n→∞→ Ik
2π

=
αk√

1− 4τ2
(15)

and for ω
(n)
k , using Equations (10) and (12),

ω
(n)
k =

q
(n)
k

q
(n)
0

=
S
(n)
k

S
(n)
0

n→∞→ Ik
I0

= αk. (16)

Since k = |j − i|, we can conclude that

Ω
(n)
ij

n→∞→ α|j−i|.
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