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Abstract—Mutual independence is a key concept in statistics that characterizes the structural relationships between variables.

Existing methods to investigate mutual independence rely on the definition of two competing models, one being nested into the other

and used to generate a null distribution for a statistic of interest, usually under the asymptotic assumption of large sample size. As such,

these methods have a very restricted scope of application. In this article, we propose to change the investigation of mutual

independence from a hypothesis-driven task that can only be applied in very specific cases to a blind and automated search within

patterns of mutual independence. To this end, we treat the issue as one of model comparison that we solve in a Bayesian framework.

We show the relationship between such an approach and existing methods in the case of multivariate normal distributions as well as

cross-classified multinomial distributions. We propose a general Markov chain Monte Carlo (MCMC) algorithm to numerically

approximate the posterior distribution on the space of all patterns of mutual independence. The relevance of the method is

demonstrated on synthetic data as well as two real datasets, showing the unique insight provided by this approach.

Index Terms—Mutual independence, Bayesian analysis, model comparison, likelihood ratio criterion, minimum discrimination information

statistic, Markov chain Monte Carlo, Gibbs sampling, parallel tempering

Ç

1 INTRODUCTION

MUTUAL independence is a key concept in statistics
whose goal is to characterize the structural relation-

ships between variables. As a consequence, a fundamental
problem is to be able to determine from a sample of finite
size whether some subsets of variables are mutually inde-
pendent or not. To this end, several approaches have been
proposed in the literature. For two- and three-way contin-
gency tables, one can use the minimum discrimination
information statistic against the null hypothesis of indepen-
dence [1, Chap. 8, Sections 2 and 3.1]; in the multidimen-
sional case, there is the chi-squared test for independence
[2, Section 23.8]. For multivariate normal distributions, one
can resort to the likelihood ratio criterion [3, Chap. 9] or,
again, the minimum discrimination information statistic [1,
pp. 306–307] against the null hypothesis of independence.
Such approaches, however, have a major drawback, in that
one needs two and only two competing models, one being
nested into the other one and used to generate a null distri-
bution for a statistic of interest, usually under the asymp-
totic assumption of large sample size; if the statistic is
beyond a certain threshold, the null assumption is rejected,

but usually with no hint about the validity of the second
model, not to mention the true underlying structure of
dependence. In the case of several competing models, or
when there is no hint regarding the underlying structure
of mutual independence, the above-mentioned methods do
not provide any way to approach the problem. As a conse-
quence, these methods have a very restricted scope of
application.

In the present study, we propose to change the investiga-
tion of mutual independence from a hypothesis-driven task
that can only be applied in very specific cases to a blind and
automated search within patterns of mutual independence.
To this end, we develop a general framework for a data-
driven investigation of all potential patterns of mutual inde-
pendence. More specifically, we propose to treat the issue as
one of model comparison that we solve in a Bayesian frame-
work. A first step in this direction was proposed by [4], who
used Bayesian model comparison to quantify the probability
for two discrete variables to be independent. A second step
was performed by [5], who showed that a Bayes factor, com-
paring twomodelswith andwithout independence, provided
a relevant measure of similarity for agglomerative hierarchi-
cal clustering in the case of two subvectors of a multivariate
normal distribution. We here propose to go further and per-
form a full probabilistic exploration of the independence pat-
tern underlying the data. Such an approach heavily relies on
the one-to-one mapping that exists between a pattern of
mutual independence betweenD variables and a partition of
f1; . . . ;Dg. Comparing models of mutual independence is
then equivalent to comparing partitions, which can be seen as
a clustering problem and solved in the general framework of

� The authors are with the Laboratoire d’imagerie biom�edicale (LIB), Sorbonne
Universit�e, CNRS, INSERM, F-75006 Paris, France, and also with the Centre
de recherches et d’�etudes en sciences des interactions (CR�ESI) — Center for
Interaction Science (CIS), F-75006 Paris, France.
E-mail: {guillaume.marrelec, alain.giron}@inserm.fr.

Manuscript received 25 June 2019; revised 13 Jan. 2020; accepted 14 Jan.
2020. Date of publication 22 Jan. 2020; date of current version 3 June 2021.
(Corresponding author: Guillaume Marrelec.)
Recommended for acceptance by M. Sugiyama.
Digital Object Identifier no. 10.1109/TPAMI.2020.2968065

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 43, NO. 7, JULY 2021 2299

0162-8828 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: IEEE Customer Ops and Contact Center Staff. Downloaded on September 03,2021 at 12:48:36 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0003-1046-3562
https://orcid.org/0000-0003-1046-3562
https://orcid.org/0000-0003-1046-3562
https://orcid.org/0000-0003-1046-3562
https://orcid.org/0000-0003-1046-3562
https://orcid.org/0000-0003-0888-6312
https://orcid.org/0000-0003-0888-6312
https://orcid.org/0000-0003-0888-6312
https://orcid.org/0000-0003-0888-6312
https://orcid.org/0000-0003-0888-6312
mailto:guillaume.marrelec@inserm.fr
mailto:alain.giron@inserm.fr


Bayesian model-based clustering [6], [7], [8], [9]. The present
problem, however, can be solved by neither of the two main
classes of clustering methods, namely the clustering of mix-
ture models, e.g., [10], [11], [12], [13], [14], and the clustering
of functional data or curves, e.g., [15], [16], [17], [18], [19], [20],
but requires a class of its own. After specification of a model
of dependence, the Bayesian machinery makes it possible,
from a theoretical perspective, to calculate the posterior prob-
ability of any partition (corresponding to any pattern of
mutual independence) given some data. From a practical
point of view, it allows the resulting posterior distribution on
the set of all partitions (corresponding to the set of all patterns
of mutual independence) to be explicitly computed (if possi-
ble), or otherwise approximated through a numerical sam-
pling scheme.

The outline of the article is the following. We first expose
the problem and provide a theoretical treatment in the form
of Bayesian model comparison. We then investigate the par-
ticular cases of multivariate normal and discrete distribu-
tions, providing asymptotic expressions for the log posterior
distributions which turn out to be compatible with the Bayes
information criterion [21], the likelihood ratio criterion [3]
and the minimum discrimination information statistic [1].
We propose a general Markov chain Monte Carlo (MCMC)
algorithm to numerically approximate the posterior distribu-
tion on the space of all patterns of mutual independence. We
then demonstrate the interest of the method on synthetic
data as well as two real datasets, showing the unique insight
provided by this approach. The discussion sums it up and
rises some outstanding issues.

2 METHOD

We start by proposing a quick description of the problem
(Section 2.1) and its interpretation in a Bayesian framework
in terms of model comparison (Section 2.2). We consider the
special cases ofmultivariate normal distributions (Section 2.3)
and discrete distributions (Section 2.4). In Section 2.5, we
propose an efficient sampling scheme to explore the set of
all partitions.

2.1 Mutual Independence and Partitions

Let XX be a D-dimensional variate following a distribution g
with parameter uu. By definition, if XX can be decomposed
into K mutually independent subvectors XX1; . . . ; XXK , then
gðXXjuuÞ can be decomposed as the product

gðXXjuuÞ ¼
YK
k¼1

gkðXXkjuuÞ: (1)

The definition of a decomposition of XX into mutually inde-
pendent subvectors is equivalent to the choice of a partition
B ¼ fB1; . . . ; BKg of ½D� ¼ f1; . . . ; Dg, that is, disjoint and
non-empty subsets (or blocks) Bk’s of ½D� whose union is
equal to ½D�. A partition is denoted by concatenating the
subsets composing it separated by the sign “j”, e.g., 12j3 for
the partition of [3] into ff1; 2g; f3gg. Let CD be the set of all
partitions of ½D�. For instance, C2 ¼ f12; 1j2g has 2 elements,
while C3 ¼ f1j2j3; 12j3; 13j2; 23j1; 123g has 5. More generally,
the total number of partitions of a set with D elements is
given by theDth Bell number$D [22], [23], [24], [25], [26].

2.1.1 A Note on Notations

Consider the partition B ¼ fB1; . . . ; BKg of ½D� into K
blocks. Using the language of partitions, we should denote
by XXA the cardðAÞ-dimensional subvector of XX defined by
ðXaÞa2A, and, if XXB1

, ..., XXBK
are mutually independent,

then gðXXjuuÞ should be decomposed as the product

gðXXjuuÞ ¼
YK
k¼1

gBk
ðXXBk

juuÞ: (2)

For the sake of simplicity, we will stick to gk and XXk instead
of gBk

and XXBk
, respectively. Note however that these nota-

tions implicitly refer to a partition B ¼ fB1; . . .; BKg.

2.2 Model Comparison

Consider a partition B that decomposes XX into K mutually
independent subvectors XX1; . . .; XXK , XXk being of size Dk.
Given a realization xx of XX, we quantify the relevance of B
by its posterior probability PrðBjxxÞ. According to Bayes’
updating rule, this quantity yields

PrðBjxxÞ / PrðBÞ pðxxjBÞ: (3)

PrðBÞ is the prior probability for B; it characterizes what is
known about B before the data are available. In the follow-
ing, it will be set as uniform on CD; issues related to select-
ing the prior are discussed in Section 6.4. pðxxjBÞ is the
likelihood. It expresses how the data are related to the
model. In the present case, it is also called marginal model
likelihood, as it is obtained after removing the effect of the
model parameters (see below). Finally, PrðBjxxÞ is the poste-
rior probability of B. It summarizes all the information that
is available regarding B after acquisition of the data.

2.2.1 Marginal Model Likelihood

As the distribution g is assumed to be a function of some
parameter uu, the marginal model likelihood can be obtained
by marginalization of the usual model likelihood, yielding
in the assumption where B holds

pðxxjBÞ ¼
Z

pðxx; uujBÞ duu (4)

¼
Z

pðxxjB; uuÞ pðuujBÞ duu: (5)

In this expression, pðxxjB; uuÞ is equal to

pðxxjB; uuÞ ¼ gðxxjuuÞ (6)

¼
YK
k¼1

gkðxxkjuuÞ; (7)

leading to

pðxxjBÞ ¼
Z YK

k¼1

gkðxxkjuuÞ pðuujBÞ duu: (8)

If uu can itself be partitioned into subvectors, uu ¼ ðuukÞk¼1;...;K ,
each subvector uuk characterizing the parameters of gk, and
assuming prior independence of these parameters
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pðuujBÞ ¼
YK
k¼1

pðuukjBÞ; (9)

the marginal likelihood reads

pðxxjBÞ ¼
YK
k¼1

Z
gkðxxkjuukÞ pðuukjBÞ duuk: (10)

Often we are under the assumption that the data are com-
posed of N independent and identically distributed (i.i.d.)
realizations of XX, that is, fxx1; . . .; xxNg. While this assump-
tion does not simplify much the theoretical expression of
the posterior distribution, it usually provides key simpli-
fications in practical cases, as we will see in the next two
particular cases of multivariate normal distributions and
multivariate discrete distributions.

2.3 Multivariate Normal Distributions

We here consider the specific case where the data are multi-
variate normal. More specifically, let XX be a D-dimensional
multivariate normal variable with known mean mm and
unknown covariancematrix SS. Under B, SS is block-diagonal,
each block SSk corresponding to a subsetXXk of sizeDk. Given
a dataset yy ¼ fyy1; . . .; yyNg of i.i.d. realizations ofXX and SS the
corresponding sample sum-of-squarematrix

SS ¼
XN
n¼1

ðyyn � mmÞðyyn � mmÞt; (11)

and with conjugate (i.e., inverse-Wishart) prior for the
covariance matrix, pðSSjBÞ can be calculated in closed form
and yields [5]

pðSSjBÞ ¼ jSSjN�D�1
2

ZðD;NÞ
YK
k¼1

ZðDk;N þ nkÞ
ZðDk; nkÞ

jLLkj
nk
2

jLLk þ SSkj
Nþnk

2

;

(12)

where LL is the prior (diagonal) scale matrix, LLk its kth block,
j � j the determinant of a matrix, n � Dþ 1 the prior degree
of freedom, nk ¼ n�DþDk, and Zðd; nÞ the inverse of a
normalization constant

Zðd; nÞ ¼ 2
nd
2 p

dðd�1Þ
4

Yd
d0¼1

G
nþ 1� d0

2

� �
: (13)

Incorporating the expression of pðSSjBÞ from Eq. (12) into
Bayes’ rule, Eq. (3), and taking into account the fact that

jSSjN�D�1
2 =ZðD;NÞ does not depend on the model of depen-

dence, and so is part of the normalization constant, we

obtain for the posterior distribution

PrðBjSSÞ / PrðBÞ
YK
k¼1

ZðDk;N þ nkÞ
ZðDk; nkÞ

jLLkj
nk
2

jLLk þ SSkj
Nþnk

2

: (14)

Note that if the mean is unknown, this calculation is still
valid, with mm replaced by the sample mean

mm ¼ 1

N

XN
n¼1

yyn; (15)

and the degree of freedomN byN � 1.

2.3.1 Asymptotic Form

Let bSSk ¼ SSk=N be the sample covariance matrix correspond-
ing to block k. Asymptotically (N ! 1), the log of the mar-
ginal likelihood ln pðSSjBÞ can be expressed as [5]

�N

2

XK
k¼1

ln jbSSkj �
XK
k¼1

DkðDk þ 1Þ
4

" #
lnN; (16)

plus a term that is proportional to DN and, hence, does not
depend on B, and terms that are Oð1Þ. In this equation, the
first term corresponds to the part of the maximum-likelihood
that does depend on B (see Section 1.1 of online supplement,
which can be found on the Computer Society Digital Library
at http://doi.ieeecomputersociety.org/10.1109/TPAMI.2020
.2968065), while the second term is the BIC penalization for
the dimension of the problem [21], i.e., of the form

�#model parameters

2
lnN: (17)

In the case where we compare a model B1 of full depen-
dence with another nested model B0 with mutually inde-
pendent subvectors XX1; . . .; XXK , the log-ratio of marginal
model likelihoods yields

ln
pðSSjB1Þ
pðSSjB0Þ ¼

N

2
ln

QK
k¼1 jbSSkj
jbSSj

�DðDþ 1Þ
4

lnN

þ
XK
k¼1

DkðDk þ 1Þ
4

" #
lnN þOð1Þ:

(18)

The first term of the right-hand side corresponds to the mini-
mum discrimination information statistic against the null
hypothesis of independence in the case of a multivariate nor-
mal distribution [1, Chap. 12, Section 3.6] or, equivalently, to
the log of the likelihood ratio criterion for testing indepen-
dence between sets of variates [3, Chap. 9]. This result can eas-
ily be generalized to any pair of nestedmodels.

2.4 Cross-Classified Multinomial Distributions

We now consider the case of a D-dimensional discrete dis-
tribution, also coined cross-classified multinomial distribu-
tion [27, Section 7.1]. To this aim, let XX ¼ ðX1; . . .; XDÞ be a
D-dimensional discrete multivariate variable, such that
each Xd takes values in set Ed with cardinality Id. For
each block Bk, we also define the set EBk

¼ �d2Bk
Ed with

cardinality IBk
¼ Q

d2Bk
Id. Under B, XX can be decomposed

into K mutually independent variables ðXX1; . . .; XXKÞ, the
model is parameterized by K multidimensional parameters
uuk ¼ ðuxxkÞxxk2EBk

, and the likelihood reads

Prðxxjuu1; . . . ; uuKÞ ¼ Prðxx1; . . . ; xxK juu1; . . . ; uuKÞ (19)

¼
YK
k¼1

PrðxxkjuukÞ (20)
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¼
YK
k¼1

uxxk ; (21)

where uxxk is the probability to haveXXk ¼ xxk. Given a dataset
yy of N i.i.d. realizations of XX and under the usual assump-
tion of a Dirichlet prior with parameter ðaxxkÞxxk2EBk

for each
uuk, the marginal model likelihood has a simple expression
(see Section 2.1 of online supplement, available online),
leading to a posterior probability of

PrðBjyyÞ / PrðBÞ
YK
k¼1

G
P

xxk2EBk
axxk

� �
Q

xxk2EBk
GðaxxkÞ

�
Q

xxk2EBk
GðNxxk þ axxkÞ

G
P

xxk2EBk
Nxxk þ axxk

� � ;

(22)

where Nxxk is the number of times that we observe XXk ¼ xxk

for xxk 2 EBk
, and G the usual Gamma function.

2.4.1 Asymptotic Form

For k ¼ 1; . . .; K, let fxxk ¼ Nxxk=N , so that
P

xxk2EBk
fxxk ¼ 1.

Set also ffk ¼ ðfxxkÞxxk2EBk
. Then the log posterior can be

asymptotically expressed as (see Section 2.2 of online sup-
plement, available online)

ln PrðBjyyÞ ¼
XK
k¼1

"
�NHðffkÞ �

IBk
� 1

2
lnN

#
þOð1Þ;

(23)

where HðffkÞ is the classical entropy function associated
with ffk, that is

HðffkÞ ¼ �
X

xxk2EBk

fxxk lnðfxxkÞ: (24)

The first term in the asymptotic expression of ln PrðBjyyÞ,
Eq. (23), corresponds to the maximum-likelihood estimate,
while the second term is the BIC penalization for a model
with IBk

� 1 parameters (corresponding to the IBk
-dimen-

sional parameter uuk together with the additional constraintP
xxk2EBk

uxxk ¼ 1).

As we did for the multivariate normal distributions, con-
sider the case where we compare a model B1 of full depen-
dence with another nested model B0 with mutually
independent subvectors XX1; . . .; XXK . The log-ratio of mar-
ginal model likelihoods then yields

ln
PrðyyjB1Þ
PrðyyjB0Þ ¼ N

X
xx2�d2½D�Ed

fxx ln
fxxQK

k¼1 fxxk

�
Q

d2½D� Id � 1

2
lnN

þ
XK
k¼1

IBk
� 1

2
lnN

� �
þOð1Þ:

(25)

The first term of the right-hand side generalizes the mini-
mum discrimination information statistic against the null
hypothesis of independence in the case of discrete two- and

three- way contingency tables [1, Chap. 8, Sections 2 and
3.1]. This result can easily be generalized to any pair of
nested models.

2.5 Sampling Scheme

As mentioned above, the total number of partitions of a set
with D elements is given by the Dth Bell number $D. The
first six Bell numbers are 1, 2, 5, 15, 52, and 203. The growth
rate of $D is given by (see Section 3.1 of online supplement,
available online)

$D ¼ O
D

lnD

� �D
" #

; (26)

which is faster than exponential and slower than factorial.
For instance, we have $10 ¼ 115 975, while $20 is larger
than 5:17� 1013. As a consequence, exhaustive examination
of all potential partitions quickly becomes intractable. To
circumvent this issue, it is possible to resort to Markov chain
Monte Carlo (MCMC) sampling, a powerful tool that is
widely used in Monte Carlo integration but also in Bayesian
data analysis to generate samples that, under certain condi-
tions, will approximate a distributions of interest [28,
Chap. 5]. In our case, we use it to generate a sample of parti-
tions from our posterior distribution. Following [29, p. 322],
we proceed according to the following sampling scheme:

� Generate M partitions from the uniform distribution
[30].

� From these M partitions, use importance resampling
to draw C partitions (that is, sample C partitions
from the M partitions without replacement with a
probability of sampling each partition proportional
to its posterior probability, see [29, Section 10.5]).

� Use these C partitions as starting points to run C
independent parallel chains of J samples.

For the sampling itself, [31] proposed a Gibbs sampling
approach (henceforth coined Gibbs) that sequentially scans
all the elements one by one and considers moves from the
current partition to any other partition differing from the
current one in only that one element. Such an algorithm has
the advantage of considering only a limited number of
potential partitions at each step. Each step scans through
the D variables and, for each variable, there are as many
options as there are partitions, which is limited by the num-
ber of variables; it is therefore OðDÞ, and the number of par-
titions considered is OðD2Þ. However, this algorithm, by
only moving one element at a time, is expected to generate
highly correlated states and preclude large changes. To
improve convergence, we also considered parallel temper-
ing (PT) and a sampling scheme that can be conceptualized
as an implementation of 2-way stochastic hierarchical clus-
tering (2wSHC).

2.5.1 Parallel Tempering

To allow for an exploration of the hypothesis space that is
less likely to get trapped in (or around) local maxima, we
can resort to parallel tempering [28, Section 10.4], see also
[32] or [33]. Parallel tempering is a sampling scheme that
runs several dependent sequences with different target
probabilities and allows state swaps between sequences
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with a certain probability. In our case, if the posterior proba-
bility for a model involving partition B is denoted by fðBÞ,
we set the target probabilities of the L sequences as

plðBÞ ¼ exp
lnfðBÞ

Tl

� �
; l ¼ 1; . . . ; L: (27)

We set T1 ¼ 1 < T2 < � � � < TL, so that p1 corresponds to
the original distribution, while the pl’s, l > 1, correspond to
increasingly flattened versions of it. In that sense, parallel
tempering is similar to simulated annealing, but with the
advantage of respecting the detailed balance equation and,
therefore, ensuring convergence towards the target distribu-
tions. At each step j 2 f1; . . .; J � 1g, the algorithm chooses
between swapping (with probability a1) and updating (with

probability 1� a1). Swapping is proposed between B½j�
l , the

current state of sequence l, and B½j�
lþ1, the current state of

sequence lþ 1, uniformly on f1; . . .; L� 1g and accepted

with probability

min 1;
plðB½j�

lþ1Þ
plðB½j�

l Þ
plþ1ðB½j�

l Þ
plþ1ðB½j�

lþ1Þ

" #

¼ min 1; exp lnfðB½j�
lþ1Þ � lnfðB½j�

l Þ
h i 1

Tl
� 1

Tlþ1

� �� 	� �
:

(28)

2.5.2 2-Way Stochastic Hierarchical Clustering

An alternative approach to [31] is to resort to a method that
also relies on MCMC but, at each step, considers as potential
new states the current partition as well as all partitions that
are obtained by either the merging of two blocks of the cur-
rent partition or the division of one block of the current par-
tition into two blocks. For a partition of ½D� into K blocks
fB1; . . .; BKg, there are KðK � 1Þ=2 partitions that can be
obtained by merging, and

X
k:#Bk�2

#Bk

2

� 	
(29)

that can be obtained by division, where a
b


 �
is the Stirling

number of the second kind, i.e., the number of partitions of
a set with a elements in b blocks. It can furthermore be
shown that a

2


 � ¼ 2a�1 � 1 (see Section 3.2 of online supple-
ment, available online). Such an algorithm can be seen as
the stochastic exploration of a hierarchy through a simulta-
neous combination of agglomerative (bottom-up) and divi-
sive (top-down) hierarchical clustering, by considering
moving up the current state (through merging) or down
(through division)—whence the term “2-way”, see also

Fig. 1. From an algorithmic perspective, all merged parti-
tions can be obtained in a straightforward manner, while
divided partitions can be obtained using an algorithm pro-
posed by [34], see also [26, Section 7.2.1.5]. This algorithm
has the advantage of allowing for larger moves compared
to [31]. However, it also has two downsides. First, the struc-
ture of the discrete space might still make it hard to escape
local maxima, all the more that their probabilities can
become very large with increasing D and N . Besides, the
number of potential partitions considered at each step
quickly increases with the number of variables and may
considerably slow down the sampling scheme.

2.5.3 Our Approach

Practically, we implemented a sampler based on parallel
tempering where swapping states is performed with proba-
bility a1, element-wise Gibbs sampling with probability a2,
and sampling with the 2-way stochastic hierarchical cluster-
ing with probability 1� a1 � a2. See Fig. 2 for an algorith-
mic description of the sampling scheme. As specified in
Table 1, this approach includes as special cases Gibbs

(L ¼ 1, a1 ¼ 0 and a2 ¼ 1), 2wSHC (L ¼ 1, a1 ¼ 0 and
a2 ¼ 0), Gibbs+2wSHC (L ¼ 1, a1 ¼ 0 and a2 < 1), Gibbs
+PT (L > 1, a1 > 0 and a2 ¼ 1� a1), 2wSHC+PT (L > 1,

Fig. 1. Example of 2w-SHC. Set D ¼ 6 and assume that the current state is partition 12j356j4. From this partition, an agglomerative clustering algo-

rithm would consider 3� 2=2 ¼ 3 potential states (1j2j356j4, 1j2j435j6, and 1j2j345j6j), and a divisive clustering algorithm 2
2


 �þ 3
2


 � ¼ 4 potential

states (1j2j356j4 from the division of 12; 12j3j4j56, 12j36j4j5, and 12j35j4j6 from the division of 356). In this particular case, 2w-SHC would then com-
pare the posterior probabilities of 8 states.

Fig. 2. Sampling scheme. General description of the MCMC sampling
scheme. Behavior of each of the C independent chains.
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a1 > 0 and a2 ¼ 0), and Gibbs+2wSHC+PT (L > 1, a1 > 0
and a2 < 1� a1). Note that, due to the parallel tempering
algorithm, each of the C independent parallel chain is itself
composed of L dependent sequences.

3 SIMULATION STUDY

We now consider a simulation study with D ¼ 6 variables,
corresponding to $6 ¼ 203 potential partitions. The low
dimension of the problem allows for an exhaustive calcula-
tion of all posterior probabilities on the solution space.

3.1 Data

For D ¼ 6, we considered partitions with an increasing
number of blocks K (1 � K � 6). For a given value of K, we
performed 500 simulations. For each simulation, the 6 varia-
bles were randomly partitioned into K clusters, all parti-
tions having equal probability of occurrence [35, Chap. 12],
[36]. For a given partition B ¼ fB1; . . .; BKg of ½6�, we gener-
ated 300 i.i.d. samples following a distribution gðxxÞ struc-
tured as in Eq. (1).

In a first batch of simulations (“Gaussian data”), each gk
was set to either a univariate (if the size Dk of Bk was equal
to 1) or multivariate (if Dk > 1) normal distribution with
mean 00 and covariance matrix SSk sampled according to an
inverse-Wishart distribution with Dk þ 1 degrees of free-
dom and scale matrix the identity matrix and then rescaled
to a correlation matrix. Such a sampling scheme on SSk gen-
erated correlation matrices with uniform marginal distribu-
tions for all correlation coefficients [37].

For the second batch of simulations (“non-Gaussian
data”), we kept all SSk’s generated in the first batch but set
each gk to a Student-t distribution with z degres of freedom,
location parameter 00 and scale matrix SSk [38]. z was set in
f1; 3; 5g (the normal case would correspond to z ! 1).

3.2 Analysis

We have to deal with multivariate normal distributions, and
the corresponding resolution method involves two hyper-
parameters, namely a degree of freedom n and a scale matrix
LL (see Section 2.3). We here considered three alternative
approaches to set these hyperparameters. The first approach,
BayesOptim, sets the degree of freedom to the lowest value
that still corresponds to a well-defined distribution, that is
n ¼ D, and a diagonal scalematrix that optimizes themarginal
model likelihood of Eq. (12) in the case of 6 mutually inde-
pendent variables [5]. An alternative approach, BayesCorr,

works with the sample correlation matrix instead of the sam-
ple covariancematrix. One can then set the number of degrees
of freedom to n ¼ Dþ 1 and the scale matrix to the identity
matrix. As mentioned in the previous paragraph, the corre-
sponding prior distribution yields uniformmarginal distribu-
tions for the correlation coefficients [37]. A third approach,
Bic, computes the posterior probability using the BIC approx-
imation, which does not involve hyperparameters and is also
insensitive to the fact that the input is the covariancematrix or
the correlationmatrix.

To assess the quality of the inference process, we consid-
ered three quantities: the posterior probability of the true
underlying partition, the ratio between this posterior proba-
bility and the probability of the maximum a posteriori
(MAP) partition, and the entropy of the posterior distribu-
tion in log 203. The posterior probability of the true underly-
ing partition gives an absolute sense of the quality of the
inference process as a consequence of both the information
contained in the data and the quality of the method used.
The two other quantities help to disentangle the relative
contribution of the two factors (information contained in the
data and method used). The entropy of the posterior distri-
bution in log 203 yields values ranging from 0 for a degener-
ate posterior distribution (one partition has a posterior
probability of 1, while all other partitions have a posterior
probability of 0) to 1 for a uniform posterior distribution (all
partitions have posterior probability of 1=203). It is an indi-
cator of the (lack) of information contained in the data. As
to the ratio between the posterior probability of the true
model and the probability of the MAP partition, it gives a
sense of how far away the inference process is from picking
the true model as the preferred model.

3.3 Results

3.3.1 Gaussian Data

We first compared the probability distributions obtained for
the three methods applied to the Gaussian data (see Fig. 3
or Section 4.1 of online supplement, available online). There
was a relative correspondence between values, with a rela-
tionship that varied depending on the number of blocks (K)
in the synthetic data.

The posterior probability of the true model increased
with the number of samples and decreased with the number
of clusters (Fig. 4, top left panel). Globally, the inference
process tended to detect the true model as one of the most
probable ones (Fig. 4, top right and bottom right panels).
The difference lay in the entropy of the posterior distribu-
tions (Fig. 4, bottom left panel). For K ¼ 1 cluster, it quickly
tended toward 0, indicating a very localized distribution
and, hence, a precise inference. By contrast, increasing K
led to both an increase in entropy for a given sample size,
but also a decrease in the speed at which entropy decreased
with the sample size.

All in all, we found that the number of clusters in the
simulated data had a dramatic influence on the inference
process, in that it was all the harder to confirm the existence
of a specific model that the given model had many blocks of
mutually independent variables. Such a behavior in disfa-
vor of models with sparse covariance matrices is further dis-
cussed in Section 6.6.

TABLE 1
Sampling Scheme

L a1 a2

Gibbs 1 0 1
2wSHC 1 0 0
Gibbs+2wSHC 1 0 < 1
Gibbs+PT > 1 > 0 1� a1

2wSHC+PT > 1 > 0 0
Gibbs+2wSHC+PT > 1 > 0 < 1� a1

Parameter values corresponding to specific sampling families. L is the number
of dependent sequences run in the parallel tempering; a1 is the probability to
swap states; a2 the probability to use a step of component-wise Gibbs sampling.
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3.3.2 Non-Gaussian Data

Analysis of the non-Gaussian data with the same methods
led to several changes (see Section 4.2 of online supplement,
available online). First, the relationship between probabili-
ties computed with BayesOptim and BayesCorr in the
non-Gaussian case remained similar to the Gaussian case
regardless of the degrees of freedom. By contrast, Bic

behaved quite differently from BayesOptim, with a differ-
ence that decreased when the degrees of freedom increased
to become quite similar to the Gaussian case for z ¼ 5.

Besides, the medians of the four quantities used to assess
the behavior of our approach were found to be quite similar
to the Gaussian case. However, they also exhibited much
more variability than in the Gaussian case, with again a var-
iability that decreased with increasing z to become quite
similar to the Gaussian case for z ¼ 5.

4 HIV STUDY DATA

In this section, we consider a toy example of mutual inde-
pendence extraction. The problem was already analyzed
elsewhere [5], [39], [40]. As in the case of the simulation
study, its low dimension (D ¼ 6 variables and $6 ¼ 203
potential partitions) allows for an exhaustive calculation of
all posterior probabilities on the solution space.

4.1 Data

The data originates from a study investigating early diagno-
sis of HIV infection in children from HIV positive mothers
[39]. The variables are related to various measures on blood
and its components: X1 and X2 immunoglobin G and A,
respectively; X4 the platelet count; X3, X5 lymphocyte B
and T4, respectively; and X6 the T4/T8 lymphocyte ratio.
The observed correlation matrix is given in Table 2. Accord-
ing to [39], discussion with experts suggested the existence
of a strong association between variables X1 and X2 as well
as between variables X3, X5, and X6. Using conditional
independence graphs, [39] found that the values of partial
correlation between X4 and other variables had probability
around zero, which led him to hypothesize that his original
model was over-parameterized. Still with conditional inde-
pendence graphs, [40] found that the links between X4 and
the five other variables had low probability of existence and
that no single graphical model was able to accurately
account for the data, hinting that models of conditional
independence graphs might be too refined for that specific
dataset. [5] found that various hierarchical clustering meth-
ods tended to cluster X3 and X5 as well as X1 and X2; vari-
able X6 tended to be cluster with ðX1; X2Þ or ðX3; X5Þ
depending on the clustering method.

4.2 Analysis

We first computed the exact probability distribution of all
potential partitions using the three variants BayesOptim,
BayesCorr, and Bic mentioned in the simulation study.
We then focused on BayesOptim. Regarding the quantities
of interest, we first computed the probabilities for all poten-
tial partitions. From there, we computed the relevances
associated to all subsets of ½D� [41]. For a subset B of ½D�, the
relevance of B is the probability to find B as a block in the
partitioning of ½D�; it is calculated as the sum of all probabil-
ities associated with partitions for which B is a block.
Finally, we computed the probability corresponding to the
following two expert statements:

� “There is a strong association between X1 and X2”:
posterior probability for X1 and X2 to be partitioned
in the same block regardless of the rest.

� “There is a strong association between X3, X5, and
X6”: posterior probability for X3, X5, and X6 to be
partitioned in the same block regardless of the rest.

4.3 Results

The three methods (BayesOptim, BayesCorr, and Bic)
yielded similar results. The four most probable patterns of
mutual independence were found to be the same in the same
order (12356j4, 12j356j4, 126j35j4, and 124j356) with a good
agreement as to the weight of these models (see Table 3).
These four models accounted for more than 99 percent of
the probability distribution. Importantly, these four models
are not all nested in one another (e.g., 12356j4 and 124j356;
12j356j4 and 126j35j4). The fact that some of themwere found
to be nested in one another (12j356j4 nested in 124j356 and
12356j4; 126j35j4 nested in 12356j4) was extracted by the
analysis and not imposed a priori.

Relevances were computed for all subsets of ½D� in the
case of BayesOptim (see Section 5 of online supplement,

Fig. 3. Simulation study. Comparison of probability obtained for Baye-
sOptim and either BayesCorr (top) or Bic (bottom) as a function of
the number of clustersK in the simulated data.
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available online). The most important features were that;
4 had a relevance of 0.994 and 12j356 a relevance of
0.852. This means that the probability to find 4 in a block
all by itself was equal to 0.994, while the probability to
find block 12j356 was equal to 0.852. The fact that the
relevance of 4 was found to be larger than that of 12j356
means that in some cases we found a partition with a
block containing 4 alone but where 12j356 was split, e.g.,
12j356j4 and 126j35j4.

The probability forX1 andX2 to be found in the same block
was found to be very close to 1 (its negation had probability
3:20� 10�15), decomposed as follows for the most probable
cases: within block 12356 with probability 0.852, as block 12
with probability 0.134, within block 126 with probability
8:86� 10�3, andwithin block 124with probability 3:82� 10�3.
The probability for X3, X5 and X6 to be found in the same
block was equal to 0.989, decomposed as: within 12356 with
probability 0.852, and as 356with probability 0.136.

Fig. 4. Simulation study. For BayesOptim, boxplot (median and ½25%; 75%� probability interval) of posterior probability for the true model (top left),
entropy of posterior distribution (bottom left), rank of true model when ranking potential models by decreasing posterior probability (top right), and
ratio of posterior probability of true model to posterior probability of maximum a posteriori (bottom right).

TABLE 2
HIV Study Data

X1 X2 X3 X4 X5 X6

X1 8:8374 0.479 �0.040 �0.033 0.356 �0.236
X2 0.483 0:1919 0.068 �0.084 �0.224 �0.110
X3 0.220 0.057 8924231:9 0.085 0.552 �0.330
X4 �0:040 �0:133 0.149 20392:4 0.091 0.013
X5 0.253 �0:124 0.523 0.179 1952795:2 0.384
X6 �0:276 �0:314 �0:183 0.064 0.213 1:378

Summary statistics for the HIV data. Sample variances (main diagonal, bold),
correlations (lower triangle) and partial correlations (upper triangle, italic).
Data from [39].

TABLE 3
HIV Study Data

Rank Model Posterior probability

BayesOptim BayesCorr Bic

# 1 12356j4 0.852 0.648 0.912
# 2 12j356j4 0.132 0.320 7:90� 10�2

# 3 126j35j4 8:21� 10�3 1:94� 10�2 4:51� 10�3

# 4 124j356 3:80� 10�3 4:77� 10�3 2:00� 10�3

Total 0.996 0.992 0.998

Comparison of variants. Posterior probabilities for the four most probable pat-
terns of mutual independence as computed using BayesOptim, Bayes-
Corr, and Bic.
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5 FMRI FUNCTIONAL CONNECTIVITY ANALYSIS

5.1 Materials and Methods

5.1.1 Data

Functional magnetic resonance imaging (fMRI) is an imag-
ing modality that makes it possible to dynamically and non-
invasively follow metabolic and hemodynamic consequen-
ces of brain activity. fMRI functional connectivity analysis is
a field that investigates the organization of brain networks
in resting-state fMRI data by extracting clusters of brain
regions whose spontaneous activities are highly correlated
[42], [43], [44]. We applied our approach to a real resting-
state fMRI data composed of 205 time samples recorded
for 82 brain regions in a young healthy subject (subject #1
of [5]). Since both assumptions of variables following a mul-
tivariate normal distribution and of i.i.d. realizations are
quite common in the field, we resorted to the results of
Section 2.3; to speed up the process, we used the BIC
approximation of Eq. (16). We ran the analyses with Matlab
on a desktop PC with Intel Xeon Silver 4114, 2.2 GHz,
10 cores and 64 GB RAM.

5.1.2 Numerical Sampling

A system with D ¼ 82 variables can be associated with
$82 	 6:2439� 1089 different partitions, preventing explicit
computation of all the corresponding posterior probabili-
ties. We therefore resorted to the approximate sampling
scheme discussed in Section 2.5. More specifically, we ran 5
distinct sampling schemes: Gibbs, 2wSHC, Gibbs+2wSHC
(with a2 ¼ 0:8), Gibbs+PT (with L ¼ 7 and a1 ¼ 0:5),
2wSHC+PT (with L ¼ 7 and a1 ¼ 0:5), and Gibbs+2wSHC

+PT (with L ¼ 7, a1 ¼ 0:5 and a2 ¼ 0:4). All sampling
schemes were run with M ¼ 104 initial samples according
to a uniform distribution, C ¼ 4 parallel chains, and
J1 ¼ 105 samples for each chain. To account for burn-in, we
discarded the first half of the samples and computed our
quantities of interest on the second half.

We observed that 2wSHC tended to visit a limited num-
ber of states, but each visited state was associated with
many proposal states. To speed up the calculation, we kept
a database of states associated with more than 103 proposal
states that were visited in the last 200 steps. At each itera-
tion, the procedure checked if the current state was in the
database; if so, it used the values already computed instead
of computing them over. This significantly sped up the pro-
cess, but also increased the memory load.

To assess algorithmic variability, all sampling schemes
were run 10 times, for a total of 50 runs.

5.1.3 Comparing Algorithms

We assessed convergence of each of the 50 runs by quantify-
ing between-chain heterogeneity with the average L1 dis-
tance between estimated probabilities. More specifically,
assume that Q partitions appeared during the sampling
regardless of the chain. Let fcq be the frequency of the qth
partition in chain c, f�q the frequency of the qth partition
when all chains are pooled, ffc ¼ ðfc1; . . .; fcQÞt the vector of
frequency estimates for chain c, and ff ¼ ðf�1; . . .; f�QÞt the
vector of frequency estimates from the whole sample.
Between-chain heterogeneity was measured as the average

of the L1 distances between the frequencies observed in
each chain and the frequencies observed in the whole
sample, that is

1

C

XC
c¼1

kffc � ffkL1
¼ 1

C

XC
c¼1

XQ
q¼1

jfcq � f�qj: (30)

This quantity is greater than 0, and equal to 0 only when all
chains yield the same estimates. To assess within- and
between-algorithm variability, we also computed the L1 dis-
tance between probability estimates obtained from the 50 runs.

5.2 Results

All algorithms were quite computationally demanding.
Gibbs, Gibbs+2wSHC, and Gibbs+PT ran smoothly for all
10 repetitions with the above parameters. 2wSHC failed
twice out of ten repetitions. Gibbs+2wSHC+PT failed 10
times out of 10 with the original parameters; with a reduced
chain length of J2 ¼ 104, it failed once out of 10. As to
2wSHC+PT, we were not able to run it, even for a chain
length as low as J3 ¼ 103. All failures were due to insuffi-
cient memory to store the database of previous states visited
and corresponding probabilities (see Section 5.1.2), either
because the current state was related to too many potential
states through 2wSHC, or because the global database was
too large.

Computational times are summarized in Fig. 5. Gibbs
was the fastest algorithm. Allowing for steps of 2wSHC

added an extra burden. Running parallel tempering had
two opposite effects. First, 7 parallel steps were run for each
chain, adding computational burden in terms of time and
memory load. However, about half of the time, a step only
consisted of testing if two states could be swapped, which is
faster than computing several probabilities. The two effect
made that Gibbs+PT had the fastest steps and Gibbs

+2wSHC+PT the longest steps.
The level of convergence varied quite widely between

algorithms, as summarized in Fig. 6. Gibbs and 2wSHC per-
formed quite badly, as all chains of a given algorithm con-
verged to different states (characterized by a heterogeneity
of 3=2). Convergence of Gibbs was improved by adding

Fig. 5. Real data. Comparison of total computation time (top) and time
per step (bottom) for Gibbs, 2wSHC, Gibbs+2wSHC, Gibbs+PT, and
Gibbs+2wSHC+PT. Computational time was obtained by running
J1 ¼ 105 samples for Gibbs, 2wSHC, Gibbs+2wSHC, and Gibbs+PT,
and J2 ¼ 104 samples for Gibbs+2wSHC+PT.
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steps of 2wSHC and parallel tempering. After J2 ¼ 104 sam-
ples, Gibbs+2wSHC+PT was the algorithm that provided
chains with the best convergence level. However, taking
time into account, Gibbs+PT was able to provide a better
convergence level with J1 ¼ 105 in less time.

These differences in convergence were confirmed when
considering the probabilities estimated from the 50 runs (see
Fig. 7 and Table 4). The 10 repetitions of Gibbs and 2wSHC

essentially converged to different partitions, leading to dis-
tance values close to 2. The estimates given by Gibbs+2wSHC

were less dissimilar to one another. Gibbs+PT and Gibbs

+2wSHC+PT generated estimates that were consistent across
repetitions, and relatively similar between algorithms.

6 DISCUSSION

In the present manuscript, we first exposed the problem of
extracting patterns of mutual independence, translated it in
terms of comparing partitions, and proposed a theoretical
treatment in the form of Bayesian model comparison. We
investigated two particular cases: multivariate normal dis-
tributions and cross-classified multinomial distributions,
showing that the Bayesian solutions relate to the likelihood
ratio criterion, the minimum discrimination information cri-
terion and the Bayes information criterion in the asymptotic
case of large sample size. We proposed a general sampling
scheme on the set of all partitions which combines Gibbs
sampling, a stochastic 2-way exploration of a hierarchy, and

parallel tempering. We finally demonstrated the interest of
the method on synthetic data as well as two real datasets,
showing the unique insights provided by this approach.

From a theoretical perspective, we believe that the pres-
ent approach opens a new avenue for the investigation of
mutual independence. Compared to existing tools (likeli-
hood ratio criterion, minimum discrimination information
statistic), the main advantage of our method is that it does
not require to restate the problem in the form of two com-
peting nested models to be compared in the asymptotic case
of large sample size, but allows for a full data-driven explo-
ration of the patterns of mutual independence. It also allows
for a variety of questions to be formulated regarding any
feature induced by the potential pattern of mutual indepen-
dence, such as the number of blocks, the specific relation-
ship between two variables, or the relationship of one
variable to all other variables.

6.1 Mutual Independence Extraction and Clustering

As mentioned in the introduction, the problem faced in the
present study belongs to the general area of clustering, but
does not fall into either of two of the main subareas that are
the clustering of mixture models and the clustering of func-
tional data and curves. For instance, a classical way to per-
form cluster analysis of the HIV data would be to consider
the children as objects and the six variables as features. One
could then want to cluster the 107 objects (children) into
subgroups of objects that share similar profiles in terms of
the 6 features. In this context, a common assumption is that

Fig. 6. Real data. Comparison of convergence (mean 
 standard devia-
tion of L1 distance) as a function of chain length. When the four chains
of a given algorithm converged to four different states, the corresponding
heterogeneity was 3=2. The curves are slightly shifted along the x-axis to
avoid superposition. Gibbs and 2wSHC obtained very similar results and
cannot be distinguished on the plot.

Fig. 7. Real data. Comparison of L1 distances between estimated proba-
bilities. Two sets of estimated probabilities with different supports have a
distance of 2.

TABLE 4
Real Data

Gibbs 2wSHC Gibbs+2wSHC Gibbs+PT Gibbs+2wSHC+PT

Gibbs 1:996
 0:024 2
 0 2
 0 2
 0 2
 0
2wSHC 1:982
 0:094 1:948
 0:112 2
 0 2
 0
Gibbs+2wSHC 1:323
 0:436 1:300
 0:387 1:239
 0:429
Gibbs+PT 0:275
 0:086 0:521
 0:107
Gibbs+2wSHC+PT 0:335
 0:103

Comparison of L1 distances between estimated probabilities from different runs grouped by algorithm (average 
 standard deviation).
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(i) each observation in the sample may arise from any of a
small number of different distributions (one per cluster), (ii)
the objects to be classified (children) are independent from
one another given the cluster they belong to, and (iii) the
distribution corresponding to each cluster is characterized
by a set of parameters whose dimension is fixed (and, in
particular, does not depend on the number of elements in
the corresponding class). This is not the issue that the cur-
rent study tried to address. Instead, it considered the 6 vari-
ables as objects, each object having 107 features (the
realizations over children), and tried to classify them
according to their relationships with one another. In this
respect, our problem shares similarities with the clustering
of functional data or curves, e.g., [15], [16], [17], [18], [19],
[20]. However, while curve clustering usually assumes a
certain form of temporal dependence, we here assumed
independent and identically distributed realizations of a
variable. This is the reason why the clustering of variables
based on their pattern of independence belongs to neither
class mentioned above and defines a class of its own.

Another possibility would be to consider biclustering
[45]. Biclustering has a natural translation in terms of parti-
tions and Bayesian model comparison, but these models
usually relate the values taken by the variables across exam-
ples. We are therefore not quite sure how it would apply to
models of mutual independence.

6.2 Bayesian Analysis, Asymptotic Approximation
and Model Selection Criteria

In two common cases—multivariate normal distributions
(Section 2.3) and cross-classified multinomial distributions
(Section 2.4)—we showed that the log of the posterior distri-
bution could be asymptotically approximated by a criterion
that is the sum of a maximum-likelihood ratio and a BIC
correction for model complexity. In the simulation study
(Section 3), we showed that the method based on the
asymptotic approximation (coined Bic) gave results that
were similar to the posterior distribution (see in particular
Fig. 3, bottom). Similar results were found in the HIV study
data (Section 4; see in particular Table 3). Retrospectively,
one could have thought of the BIC criterion as a valid
approach to perform blind extraction of mutual indepen-
dence patterns. Yet, we are not aware of any reference advo-
cating such an approach. It is only after the full Bayesian
analysis we conducted in a general case, its application to
multivariate normal distributions, and an investigation of
the asymptotic behavior that the BIC appeared as a potential
solution to the problem. As a matter of fact, we believe that
considering extraction of mutual independence patterns as
one of model comparison is a major contribution of the pres-
ent manuscript.

6.3 Sampling Scheme

From a practical point of view, the sampling scheme is a key
factor for a full exploration of all potential patterns of
mutual independence. In the present study, we combined
a Gibbs sampling scheme that sequentially scans elem-
ents (Gibbs), a stochastic 2-way algorithm for hierarchical
clustering (2wSHC), and parallel tempering (PT). We obser-
ved that an algorithm solely based on Gibbs or 2wSHC

generated chains that were slow to converge and had very
limited mixing. By contrast, mixing Gibbs and 2wSHC as
well as introduction of PT allowed for a better exploration of
the state space (quantified in terms of between-chain
heterogeneity).

Our algorithm could be modified by completing the ini-
tial (uniform) random sampling in the set of all partitions
with a step consisting of running the agglomerative hierar-
chical clustering on the data [5] and then basing the impor-
tance resampling step on the visited states. This potential
improvement was not carried through in the present study
for the following reason. We used mixing of the chains as a
measure of convergence. The validity of such a monitoring
could be challenged in the case of chains starting from seeds
that are close to one another from the algorithm’s perspec-
tive. Indeed, by construction, the various states of the hier-
archical clustering are rather close to one another from the
perspective of 2wSHC (at most D steps). As a consequence,
using seeds from the agglomerative hierarchical clustering
might have artificially accelerated convergence for 2wSHC

and biased our convergence analysis in favor of 2wSHC. By
contrast, we hoped that feeding the chains with seeds sam-
pled uniformly would make between-chain similarity a
good indicator of convergence.

Besides the sampling algorithm proposed here, another
approach might be to use the generalized Swendsen–Wang
sampler (SWC) or generalized Gibbs sampler [46], even
though such approaches are expected to work best on rela-
tively sparse connectivity graphs—by contrast, in our case,
the graph would be fully connected.

In the cases that we considered, the problem was simpli-
fied by the fact that all parameters could be integrated out
and the marginal likelihood computed explicitly. When this
is not possible, one has to deal with a joint posterior distri-
bution of the partition and corresponding parameters,
whose dimensions vary depending on the partition. To per-
form numerical sampling of such a distribution, one could
consider resorting to reversible jump MCMC (RJ-MCMC)
and, more precisely, split-and-merge [47], [48], [49], which
would have to be adapted to deal with the specificity of the
problem at hand.

6.4 Prior Distributions

Setting prior distributions is a key and touchy issue that one
usually has to deal with when performing a Bayesian analy-
sis. Here, we faced the problem at two different levels: for
the competing models of mutual independence, pðBÞ, and
for the model parameters, e.g., pðSSjBÞ for the multivariate
normal distribution and pðuujBÞ for the cross-classified multi-
nomial distribution.

In the present manuscript, the priors for the parameters
were set as conjugate priors for the sake of convenience.While
this choice is not fully satisfying, it has the advantage of allow-
ing for closed form expressions for the marginal model likeli-
hoods. The choice of a prior for SS is further discussed in [5].
More generally, consistency requires that parameters found
in different models be assigned the same prior. Oneway to do
this is to define the parameter’s prior distribution for the
modelwith nomutual independence and thenderive all other
distributions throughmarginalization (see again discussion of
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[5]). In any case, the importance of the prior distributions
decreases when the data size increases. In the limiting case of
large sample size, the asymptotic expressions do not depend
on the priors set for the model parameters, as we found for
multivariate normal distributions and cross-classified multi-
nomial distributions.

Regarding the prior probabilities for the competingmodels
of mutual independence, we set them to a uniform prior. The
consequences of setting such a uniform prior on the set of all
partitions need to be investigated, for the structure of this set
and its size might induce undesired properties. For instance,
in the simulation study and the HIV study data, setting a uni-
form prior entailed that the probability to have a partition
with 1, 2, 3, 4, 5, or 6 blocks was given by 4:93� 10�3, 0.153,
0.443, 0.3202, 7:39� 10�2, and 4:93� 10�3, respectively. With
increasing D, the difference in probability increases dramati-
cally. ForD ¼ 100, the prior probability for a partition to have
a number of blocks in the range ½21; 40� is given by
1� 1:12� 10�4, see also [26].

Now, depending on the information available for a given
problem, one might wish to set different priors. Various
models have been proposed for partitions. A general family
of priors is the so-called product partition models [31], [41].
Also, specific features might be desirable for the prior distri-
bution. For instance, in the case where the assignment of the
labels ½D� to the D variables is arbitrary, it would make
sense to require the prior distribution to be exchangeable
[50, Section 2]—see also Section 3.3 of online supplement,
available online. By contrast, other features might be
rejected, such as consistency as defined in [13]—see also
Section 3.4 of online supplement, available online.

Finally, it might be of interest to incorporate expert
knowledge into the analysis. In a Bayesian framework,
expert statements can easily be incorporated in the form of
prior information, that is, by selecting a prior distribution
over potential partition models that respects the prior
knowledge. Information regarding the number of blocks as
well as preferred or forbidden partitions may be relatively
easily to model. In other cases (e.g., preferential connectivity
patterns in the case of brain networks observed in fMRI,
Section 5), translating specific information into prior proba-
bility might turn out to be a real challenge.

6.5 Dimension of the Problem

The previous discussion on priors shows that the complex-
ity of the model, and, hence, the ease with which it can be
solved, is influenced by two factors: the set of all potential
patterns of mutual independence and the model parameters
corresponding to each pattern of mutual independence. For
D variables, the set of all potential partitions of a given set
of variables into mutually independent components is of
size $D, which is a function of D only. As to the dimension
of the model parameter space, it depends on the underlying
model of mutual independence. For instance, in the case of
multivariate normal distributions, a covariance matrix is
fully specified by DðDþ 1Þ=2 parameters; of these, one
could argue that only DðD� 1Þ=2 (correlation coefficients)
have a decisive influence on the pattern of mutual indepen-
dence. Patterns of mutual independence, by setting some
correlation coefficients to 0, reduce this number. In the case

of a cross-classified multinomial distribution, the maximal
number of parameters is given by

QD
d¼1 Id � 1. For instance,

for binary variables (Id ¼ 2), we have a maximum of 2D � 1
parameters, which is OðeDÞ, but grows slower than $D

according to Eq. (26). For a given data size, the number of
model parameters has an influence on how well these
parameters can be estimated and, as a consequence, our
capacity to discriminate between models.

6.6 The Difficulty to Extract Sparse Models

In the simulation study (Section 3), we observed that the
number of clusters underlying the data had a dramatic influ-
ence on the inference process, in that it was all the harder to
confirm the existence of a specific model that the given
model had many groups of mutually independent variables.
An explanation for such a behavior, which can be related to
the common issue of overfitting in statistics and machine
learning, can be seen in the BIC approximation. Consider
for instance the multivariate normal case (Section 2.3). The
Bayes factor between a “reference” partition B1 and another
model B0 associated with a sparser covariance matrix
(henceforth shortened as “sparser model”), Eq. (18), can be
expressed as

ln
pðSSjB1Þ
pðSSjB0Þ 	

N

2
bIðB1 : B0Þ

�#paramðB1Þ �#paramðB0Þ
2

lnN:

(31)

bIðB1 : B0Þ is positive and tends to its theoretical counterpart d,
which is a multivariate generalization of mutual information
[51], [52]. When the data originate from B1, d > 0 and the
Bayes factor is positive, tending toþ1 asOðNÞ, a clear indica-
tion that B1 is to be preferred over B0. By contrast, when the
data originate from B0, bIðB1 : B0Þ will tend to d ¼ 0. In the
most favorable case, where bIðB1 : B0Þ is indeed equal to 0
(which is actually of probability 0 on real data), the Bayes fac-
tor will be negative, but going to �1 at the much slower rate
ofOðlnNÞ. We suspect that this behaviormight not be specific
to the simulation performed butmore general, making extrac-
tion of sparsemodels particularly challenging.

6.7 Mutually Exclusive and Exhaustive Models

In a Bayesian analysis, a key strategy when comparing com-
peting hypotheses is the use of mutually exclusive and
exhaustive propositions or models [53, Section 2.4]. This is
the case for our competing patterns of mutual indepen-
dence. In particular, the set of all partitions with the finer-
than relationship forming a lattice [54, p. 15], we have to
explicitly state that selection of one model precludes the
selection of another, nested model to ensure mutual exclu-
sion. This should be contrasted to the classical definition of
mutual independence where such exclusion is not men-
tioned. For instance, for the simulation study and the HIV
study data analyzed in the present manuscript with D ¼ 6,
assuming a pattern of mutual independence of 12356j4
means that the distribution for ðX1; X2; X3; X4; X5; X6Þ can
be decomposed as

gðX1; X2; X3; X4; X5; X6Þ ¼ gðX1; X2; X3; X5; X6Þ gðX4Þ;
(32)
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but does not specify anything regarding gðX1; X2; X3; X5;
X6Þ. In particular, we could further have

gðX1; X2; X3; X5; X6Þ ¼ gðX1; X2Þ gðX3; X5; X6Þ; (33)

which would entail a pattern of mutual independence of
12j356j4. This standard definition of mutual independence
is in line with the prior distributions set on the model
parameters, which theoretically do not prevent such situa-
tions to occur. In the example above, the prior probability
distribution for all correlation coefficients between ðX1; X2Þ
and ðX3; X5; X6Þ to be equal to 0 is not equal to 0. To achieve
mutual exclusion of models, we should exclude for each
prior distribution parameter values that are compatible
with a more refined model. Such an approach is rarely car-
ried out. Instead, many analyses using Bayesian model com-
parison (e.g., polynomial approximations of increasing
degree) rely on parameter spaces that are embedded in one
another. A theoretical justification of this approach can be
found in [55]. Practically, the consequence of this issue is
rather limited. In the above example, the probability to
obtain 12j356 with a full correlation matrix on
ðX1; X2; X3; X5; X6Þ is equal to 0. Therefore, a model with a
full correlation matrix exhibits almost surely no pattern of
mutual independence.

6.8 Covariance Matrix versus Full Dataset

In the special case of multivariate normal distributions
(Section 2.3), we performed our inference based solely on the
sample covariance matrix. The rationale for this is that, from a
theoretical point of view, mutual independence is a property
of the covariance matrix, which has to be block diagonal. As a
consequence, it is often thought that the sole statistic of interest
is the sample covariance matrix (see for instance the HIV
study, Section 4), and we wanted our approach to be applica-
ble to such cases. Note however that, to do so, we used a for-
mula that is only valid when the number of samples is larger
than the dimension of the problem, N � D. When this is not
the case, we need to use the whole data set yy and perform
Bayesian inference on pðBjyyÞ instead of pðBjSSÞ as was done
here. This implies, for instance, using non-degenerate prior
distributions for mm and SS, e.g., conjugate priors [29, Section
3.6]. The corresponding analysis was performed in Section 1.2
of online supplement, available online, yielding a posterior
probability that tends to the one found in Section 2.3 when a
hyperparameter tends to 0.

6.9 Mutual Independence Extraction and Graphical
Models

A point to discuss is the relationship between the extraction
of patterns of independence and graphical models. Graphi-
cal models are graphical representations of variables that
conveniently encode relations of dependence and indepen-
dence between variables. There are for instance conditional
independence graphs [27] and covariance graphs [56]. Con-
ditional independence graphs are usually considered in the
context of multivariate normal distributions (graphical
Gaussian models) or discrete distributions (graphical log-
linear models), while covariance graphs are mostly used in
the context of multivariate normal distributions. Condi-
tional independence graphs are more refined than models

of mutual independence. For instance, for D variables, there
are $D potential models of mutual independence but
2DðD�1Þ=2 models of conditional independence graphs, with
ln$D ¼ OðD lnDÞ and ln 2DðD�1Þ=2 ¼ OðD2Þ. In conditional
independence graphs, mutual independence has a natural
translation: mutually independent clusters of variables are
disjoint maximal connected components of the graph. But
conditional independence graphs can code for much more
than connected components. As such, conditional indepen-
dence graphs are much more flexible models. One could
therefore contemplate using tools from the field of graphical
models to estimate the patterns of mutual independence.
However, we do not expect this direction to provide effi-
cient solutions. First, the problem of inferring the pattern of
a graphical model is itself challenging, generally requiring
specific assumptions and numerical approximations. For
instance, in the simplest case of multivariate normal distri-
butions, the structure of conditional independence is
strongly related to that of the precision (or concentration)
matrix, that is, the inverse of the covariance matrix. Such a
matrix is particularly complex to estimate, as it involves a
matrix inversion. The maximum-likelihood is complex to
obtain under constraint of a given conditional indepen-
dence graph (e.g., using the iterative proportional fitting
algorithm); nondecomposable graphical models are particu-
larly hard to deal with. Then, once performed, such an anal-
ysis provides information regarding the underlying pattern
of conditional independence, a large part of which is irrele-
vant for mutual independence and would have to be dis-
carded by marginalization. We therefore expect mutual
independence extraction to be more robust than graphical
model procedures. Also, one could think of cases (e.g., mul-
tivariate Student-t distributions) where models of mutual
independence could be compared, whereas graphical mod-
els would be more problematic to define. Finally, from a
practical point of view, [5] showed that some such tools
(spectral clustering and graphical lasso) performed worse
than Bayesian model-based hierarchical clustering. Also,
the HIV example was analyzed using conditional indepen-
dence graphs in [39] and [40]. The results are rather complex
to interpret in terms of mutual independence. [39] found that
the values of partial correlation between X4 and other varia-
bles had probability around zero, which led him to hypothe-
size that his original model was over-parameterized. [40]
found that links between X4 and other variables had low
probability of existence. The (approximate) multivariate anal-
ysis found that the data could only poorly be accounted for by
a single graph, as no graph had a probability over 6:60� 10�2.
Among the 8most probable graphs, ranging inposterior prob-
ability from 6:60� 10�2 to 2:00� 10�2, the first and thirdmost
probable graphs (with posterior probabilities of 6:60� 10�2

and 3:20� 10�2, respectively, for a total of 9:80� 10�2) found
X4 isolated from the other 5 variables, while the 6 others
found X4 connected (with posterior probabilities of 4:73 �
10�2, 2:93� 10�2, 2:73� 10�2, 2:66� 10�2, 2:20� 10�2,
2:00� 10�2, and a total probability of 0.173). These 8 models
accounted for only 27 percent of the total probability, and
73 percent remained to be explained. This is a typical example
where the level of refinement carried by conditional indepen-
dence graphs is counter-productive when one is only looking
for the simpler information ofmutual independence.
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6.10 Dealing With Non-Gaussian Data

To deal with continuous data, we assumed an underlying
model of multivariate normal distributions. Such a model
has the advantage of simplicity, as it makes it possible to
derive a closed form expression for the marginal model like-
lihood (Section 2.3). In the simulation study (Section 3), we
investigated how this assumption fared when dealing with
data generated according to independent multivariate Stu-
dent-t distributions. Multivariate Student-t distributions
have heavier tails than multivariate normal distributions
and provide a general yet simple and flexible parametric
framework to assess the robustness of our approach to non-
normal data. Unlike what happens for multivariate normal
distributions, the product of multivariate Student-t distribu-
tions is in general not a multivariate Student-t distribution,
and a block-diagonal scale matrix in a multivariate Student-t
distribution is not a sign of mutually independent variables.
Therefore, a product of multivariate Student-t distributions
has no reason to be a multivariate Student-t distribution
itself. We found that our approach fared decently with
such data, with two limits: an increased variability, and a
Bic approximation diverging from the other two methods
BayesOptim and BayesCorr. How this result can be
extended to variables of larger dimension remains to be
investigated. In this perspective, a particular question that is
not clear to us is the relationship between the dimensions
of the independent variables, the degrees of freedom of
their respective distributions, and how non-Gaussian the
resulting data are.

Going beyond the multivariate normal model and explic-
itly dealing with multivariate Student-t data would defi-
nitely broaden the scope of our approach and allow for a
more robust inference of mutual independence patterns.
Obtaining the closed form expression for the marginal
model likelihood in this case is likely to be a real challenge.
Still, one could maybe consider using the BIC approxima-
tion of the correct model, with a maximum likelihood that
would be computed numerically and a correction for the
number of parameters that would be straightforward to
obtain. Whether such a method has any practical interest
has yet to be tested.

7 CONCLUSION AND FUTURE WORK

In the present manuscript, we advocated that the problem
of extracting patterns of mutual independence could effi-
ciently be considered as a Bayesian model comparison. For
multivariate normal distributions and cross-classified multi-
nomial distributions, we showed that the Bayesian solution
provides a principled yet efficient and flexible generaliza-
tion of existing approaches. We proposed a general sam-
pling scheme to perform a blind exploration of the posterior
distribution on the set of all partitions. Finally, we demon-
strated the interest of the method, showing the unique
insights provided by this approach.

7.1 Effective Selection of Sparse Models

In the simulation study, we found that sparse models
tended to require large datasets to be successfully extracted.
This result first need to be confirmed in other situations. If
this finding happens to be general, more research would be

warranted to find ways to counter this trend. Directions of
research may include incorporating prior information favor-
ing sparse models.

7.2 Further Investigation of the Relationship
Between Our Method and Existing Approaches

In the manuscript, we emphasized the relationship
between the Bayes factor and minimum discrimination
information in the case of multivariate normal distribu-
tions, Eq. (16), and cross-classified multinomial distribu-
tions, Eq. (25). This result was also used to understand the
difficulty to extract simple models that we observed on
simulated data (see Sections 3 and 6.6). We believe that
this relationship goes much deeper and deserves an in-
depth investigation. We hope to be able to propose a first
step in that direction in the near future.

7.3 Efficient Representation of Results

A key issue in the investigation of patterns of mutual inde-
pendence is our (in)ability to represent the results of proba-
bilistic inference in a synthetic manner. Indeed, while a
pattern of mutual independence between D variables can
be summarized as a partition of ½D� (as was done in the
present manuscript), we are not aware of any method to
represent a probability distribution over the set of all pat-
terns of mutual independence. For small D (practically,
D � 4), one could think of representing the lattice structure
of all such patterns together with a color coding for the
probability of each pattern. But the growth rate of $D pre-
vents to use this method for even moderate values of D. For
subsets of cardinality 1 or 2, relevances could be repre-
sented, e.g., in the form of graphs. For statistics of order 3,
we would need a 3d space, and statistics of higher order
could not be represented. We believe that being able to effi-
ciently represent patterns of mutul independence would
greatly help in the investigation of mutual independence.

ACKNOWLEDGMENTS

The authors would like to thank the three anonymous
reviewers, whose comments helped significantly improve
the quality of this article.

REFERENCES

[1] S. Kullback, Information Theory and Statistics. Mineola, NY, USA:
Dover, 1968.

[2] J. H. Zar, Biostatistical Analysis, 5th ed. Upper Saddle River, NJ,
USA: Prentice Hall, 2010.

[3] T. W. Anderson, An Introduction to Multivariate Statistical Analysis.
New York, NY, USA: Wiley, 1958.

[4] D. R. Wolf, “Mutual information as a Bayesian measure of
independence,” 1994. [Online]. Available: https://arxiv.org/abs/
comp-gas/9511002

[5] G. Marrelec, A. Mess�e, and P. Bellec, “A Bayesian alternative
to mutual information for the hierarchical clustering of depen-
dent random variables,” PLoS One, vol. 10, no. 9, 2015,
Art. no. e0137278.

[6] J. D. Banfield and A. E. Raftery, “Model-based Gaussian and non-
Gaussian clustering,” Biometrics, vol. 49, no. 3, pp. 803–821, 1993.

[7] C. Fraley and A. E. Raftery, “Model-based clustering, discriminant
analysis, and density estimation,” J. Amer. Statist. Assoc., vol. 97,
no. 458, pp. 611–631, 2002.

[8] J. W. Lau and P. J. Green, “Bayesian model-based clustering
procedures,” J. Comput. Graphical Statist., vol. 16, no. 3, pp. 526–558,
2007.

2312 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 43, NO. 7, JULY 2021

Authorized licensed use limited to: IEEE Customer Ops and Contact Center Staff. Downloaded on September 03,2021 at 12:48:36 UTC from IEEE Xplore.  Restrictions apply. 

https://arxiv.org/abs/comp-gas/9511002
https://arxiv.org/abs/comp-gas/9511002


[9] A. K. Jain, “Data clustering: 50 years beyond K-means,” Pattern
Recognit. Lett., vol. 31, no. 8, pp. 651–666, 2010.

[10] C. E. Rasmussen, “The infinite Gaussian mixture model,” in Proc.
Int. Conf. Neural Inf. Process. Syst., 2000, pp. 554–560.

[11] K. A. Heller and Z. Ghahramani, “Bayesian hierarchical clustering,”
Gatsby Unit Tech. Rep. GCNU-TR 2005-002, 2005. Online.
[Available]: http://mlg.eng.cam.ac.uk/zoubin/clustering.html

[12] C. Fraley and A. E. Raftery, “Bayesian regularization for normal
mixture estimation and model-based clustering,” J. Classification,
vol. 24, pp. 155–181, 2007.

[13] J. G. Booth, G. Casella, and J. P. Hobert, “Clustering using objec-
tive functions and stochastic search,” J. Roy. Statist. Soc. Ser. Statist.
Methodol., vol. 70, pp. 119–139, 2008.

[14] K. Sirinukunwattana, R. S. Savage, M. F. Bari, D. R. J. Snead, and
N. M. Rajpoot, “Bayesian hierarchical clustering for studying
cancer gene expression data with unknown statistics,” PLoS One,
vol. 8, no. 10, 2013, Art. no. e75748.

[15] J. C. Wakefield, C. Zhou, and S. G. Self, “Modelling gene expres-
sion data over time: Curve clustering with informative prior
distributions,” Bayesian Anal., vol. 7, pp. 721–732, 2003.

[16] J. O. Ramsay and B. W. Silverman, Functional Data Analysis, 2nd
ed. New York, NY, USA: Springer, 2005.

[17] N. Serban and L. Wasserman, “CATS: Clustering after transfor-
mation and smoothing,” J. Amer. Statist. Assoc., vol. 100, no. 471,
pp. 990–999, 2005.

[18] N. A. Heard, C. C. Holmes, and D. A. Stephens, “A quantitative
study of gene regulation involved in the immune response of
anopheline mosquitoes: An application of Bayesian hierarchical
clustering of curves,” J. Amer. Statist. Assoc., vol. 101, pp. 18–29,
2006.

[19] L. Ferreira and D. B. Hitchcock, “A comparison of hierarchical
methods for clustering functional data,” Commun. Statist. – Simul.
Comput., vol. 38, no. 9, pp. 1935–1949, 2009.

[20] J. Jacques and C. Preda, “Functional data clustering: A survey,”
Inria, Rocquencourt, France, Tech. Rep. 8198, 2013.

[21] G. Schwarz, “Estimating the dimension of a model,” Ann. Statist.,
vol. 6, no. 2, pp. 461–464, 1978.

[22] E. T. Bell, “Exponential numbers,” Amer. Math. Monthly, vol. 41,
no. 7, pp. 411–419, 1934.

[23] E. T. Bell, “Exponential polynomials,” Ann. Math., vol. 35, no. 2,
pp. 258–277, 1934.

[24] E. T. Bell, “The iterated exponential integers,” Ann. Math., vol. 39,
no. 3, pp. 539–557, 1938.

[25] G.-C. Rota, “The number of partitions of a set,” Amer. Math.
Monthly, vol. 71, pp. 498–504, 1964.

[26] D. E. Knuth, The Art of Computer Programming, vol. 4, Fascicle 3B.
Boston, MA, USA: Addison-Wesley, 2005.

[27] J. Whittaker, Graphical Models in Applied Multivariate Statistics.
Hoboken, NJ, USA: Wiley, 1990.

[28] J. Liu, Monte Carlo Strategies in Scientific Computing. New York,
NY, USA: Springer, 2002.

[29] A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin, Bayesian Data
Analysis. London, U.K.: Chapman & Hall, 1998.

[30] J. Pitman, “Some probabilistic aspects of set partitions,” Amer.
Math. Monthly, vol. 104, pp. 201–209, 1997.

[31] E. M. Crowley, “Product partition models for normal means,”
J. Amer. Statist. Assoc., vol. 92, no. 437, pp. 192–198, 1997.

[32] R. M. Neal, “Sampling from multimodal distributions using tem-
pered transitions,” Statist. Comput., vol. 6, no. 4, pp. 353–366, 1996.

[33] D. J. Earl and M. W. Deem, “Parallel tempering: Theory, applica-
tions, and new perspectives,” Phys. Chem. Chem. Phys., vol. 7,
2005, Art. no. 3910.

[34] F. Ruskey, “Simple combinatorial gray codes constructed by
reversing sublists,” in Proc. 4th Int. Symp. Algorithms Comput.,
1993, pp. 201–208.

[35] A. Nijenhuis and H. Wilf, Combinatorial Algorithms for Computers
and Calculators, 2nd ed. Orlando, FL, USA: Academic, 1978.

[36] H. S. Wilf, “East side, west side,” 1999. [Online]. Available:
http://www.math.upenn.edu/wilf/lecnotes.html

[37] J. Barnard, R. McCulloch, and X.-L. Meng, “Modeling covari-
ance matrices in terms of standard deviations and correlations,
with application to shrinkage,” Statistica Sinica, vol. 10, no. 4,
pp. 1281–1311, 2000.

[38] S. Kotz and S. Nadarajah, Multivariate t Distributions and Their
Applications. Cambridge, U.K.: Cambridge Univ. Press, 2004.

[39] A. Roverato, “Asymptotic prior to posterior analysis for graphical
gaussian models,” in Classification and Data Analysis, M. Vichi and
O. Opitz, Eds. Berlin, Germany: Springer, 1999, pp. 335–342.

[40] G. Marrelec and H. Benali, “Asymptotic Bayesian structure
learning using graph supports for Gaussian graphical models,”
J. Multivariate Anal., vol. 97, pp. 1451–1466, 2006.

[41] J. A. Hartigan, “Partition models,” Commun. Statist. Theory
Methods, vol. 19, pp. 2745–2756, 1990.

[42] B. T. T. Yeo et al., “The organization of the human cerebral cortex
estimated by intrinsic functional connectivity,” J. Neurophysiol.,
vol. 106, pp. 1125–1165, 2011.

[43] C. Kelly et al., “A convergent functional architecture of the insula
emerges across imaging modalities,” NeuroImage, vol. 61, no. 4,
pp. 1129–1142, 2012.

[44] O. Sporns, “Cerebral cartography and connectomics,” Philosoph.
Trans. Roy. Soc. London Ser. Biol. Sci., vol. 370, no. 1668, 2015,
Art. no. 20140173.

[45] J. A. Hartigan, “Direct clustering of a data matrix,” J. Amer. Statist.
Assoc., vol. 67, no. 337, pp. 123–129, 1972.

[46] A. Barbu and S.-C. Zhu, “Generalizing Swendsen-Wang to sam-
pling arbitrary posterior probabilities,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 27, no. 8, pp. 1239–1253, Aug. 2005.

[47] P. J. Green, “Reversible jump Markov chain Monte Carlo compu-
tation and Bayesian model determination,” Biometrika, vol. 82,
no. 4, pp. 711–732, 1995.

[48] S. Richardson and P. J. Green, “On Bayesian analysis of mixtures
with unknown number of components,” J. Roy. Statist. Soc. Ser.
Statist. Methodol., vol. 59, pp. 731–792, 1997.

[49] D. I. Hastie and P. J. Green, “Model choice using reversible jump
Markov chain Monte Carlo,” Statistica Neerlandica, vol. 66, no. 3,
pp. 309–338, 2012.

[50] J. Pitman, “Combinatorial stochastic processes,” Dept. Statist.,
Univ. California, CA, USA. Tech. Rep. 621, 2002. [Online]. Avail-
able: https://statistics.berkeley.edu/tech-reports?page=6

[51] H. Joe, “Relative entropy measures of multivariate dependence,”
J. Amer. Statist. Assoc., vol. 84, pp. 157–164, 1989.

[52] M. Studeny, “Complexity of structural models,” in Proc. Joint Ses-
sion 6th Prague Conf. Asymptotic Statist. 13th Prague Conf. Inf. Theory
Statist. Decis. Functions Random Processes, 1998, pp. 23–28.

[53] E. T. Jaynes, Probability Theory: The Logic of Science. Cambridge,
U.K.: Cambridge Univ. Press, 2003.

[54] G. Birkhoff, Lattice Theory, 3rd ed. Providence, RI, USA: American
Mathematical Society, 1973.

[55] J. O. Berger and M. Delampady, “Testing precise hypotheses,”
Statist. Sci., vol. 2, no. 3, pp. 317–335, 1987.

[56] D. Edwards, Introduction to Graphical Modelling, 2nd ed. New York,
NY, USA: Springer, 2000.

Guillaume Marrelec received the MS degree in engineering and applied
mathematics jointly from the �Ecole Centrale Paris, Gif-sur-Yvette, France
and the Universit€at Stuttgart, Stuttgart, Germany, in 1999, and the PhD
degree in medical imaging from the Universit�e Paris XI, Orsay, France, in
2003. He is currently a senior research scientist with the Institut National
de la Sant�e et de la Recherche M�edicale (INSERM) and works with the
Laboratoire d’imagerie Biom�edicale (LIB). His research interests include
brain imaging, functional magnetic resonance imaging, functional connec-
tivity, information theory, Bayesian analysis, and interactions.

Alain Giron received the PhD degree in biomedical engineering from
the Universit�e de Technologie de Compi�egne (UTC), Compi�egne,
France, in 1990. He is currently a senior research engineer with the
Institut National de la Sant�e et de la Recherche M�edicale (INSERM)
and works with the Laboratoire d’imagerie Biom�edicale (LIB). His
research interests include medical imaging, statistics, and artificial
intelligence.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

MARRELEC AND GIRON: AUTOMATED EXTRACTION OF MUTUAL INDEPENDENCE PATTERNS USING BAYESIAN COMPARISON OF... 2313

Authorized licensed use limited to: IEEE Customer Ops and Contact Center Staff. Downloaded on September 03,2021 at 12:48:36 UTC from IEEE Xplore.  Restrictions apply. 

http://mlg.eng.cam.ac.uk/zoubin/clustering.html
http://www.math.upenn.edu/wilf/lecnotes.html
https://statistics.berkeley.edu/tech-reports?page=6


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


