Online supplement for manuscript "Automated extraction of mutual independence patterns using Bayesian comparison of partition models"

Guillaume Marrelec and Alain Giron

Contents

1	Results for the multivariate normal distribution						
	1.1 Maximum likelihood						
	1.2 Bayesian inference with unknown mean and covariance						
	1.2.1 Marginal model likelihood	2					
	1.2.2 Posterior probability	4					
2	Results for the cross-classified multinomial distribution						
	2.1 Marginal model likelihood	4					
	2.2 Asymptotic approximation	5					
3	esults regarding partitions 6						
	3.1 Asymptotic approximation for Bell numbers	6					
	3.2 Partitioning a set in two blocs	$\overline{7}$					
	Patterns of mutual independence and exchangeability						
	3.4 Patterns of mutual independence and consistency	7					
4	Simulation study						
	4.1 Gaussian data	9					
	4.2 Non-Gaussian data	10					
5	HIV study data	14					

1 Results for the multivariate normal distribution

1.1 Maximum likelihood

Under the assumption of a partitioning into ${\cal K}$ independent components, the likelihood reads

$$p(\boldsymbol{S}|\boldsymbol{\mathcal{B}},\boldsymbol{\Sigma}_{1},\ldots,\boldsymbol{\Sigma}_{K}) = \frac{|\boldsymbol{S}|^{\frac{N-D-1}{2}}}{Z(D,N)} \prod_{k=1}^{K} |\boldsymbol{\Sigma}_{k}|^{-\frac{N}{2}} \exp\left[-\frac{1}{2} \operatorname{tr}\left(\boldsymbol{S}_{k}\boldsymbol{\Sigma}_{k}^{-1}\right)\right], \quad (1)$$

leading to a log-likelihood that is equal to

$$l(\boldsymbol{\Sigma}_1, \dots, \boldsymbol{\Sigma}_K) = \operatorname{cst} - \sum_{k=1}^K \frac{N}{2} \left[\ln |\boldsymbol{\Sigma}_k| - \frac{1}{2} \operatorname{tr} \left(\boldsymbol{S}_k \boldsymbol{\Sigma}_k^{-1} \right) \right].$$
(2)

It is the sum of K independent terms, each of which is maximal for $\widehat{\Sigma}_k = S_k/N$ [1, Th. 3.2.1]. The corresponding maximum of the log-likelihood is

$$l(\widehat{\Sigma}_1, \dots, \widehat{\Sigma}_K) = \operatorname{cst} - \sum_{k=1}^K \frac{N}{2} \ln |\widehat{\Sigma}_k| - \frac{ND}{2}.$$
 (3)

The only part of this expression that *does* depend on the partitioning induced by \mathcal{B} is

$$-\sum_{k=1}^{K} \frac{N}{2} \ln |\widehat{\boldsymbol{\Sigma}}_k|.$$
(4)

1.2 Bayesian inference with unknown mean and covariance

1.2.1 Marginal model likelihood

Case of one vector. Computation of the marginal model likelihood for the full dataset and i.i.d. multivariate normal distribution yields

$$p(\boldsymbol{x}|\boldsymbol{\mathcal{B}}) = \int p(\boldsymbol{x}, \boldsymbol{\mu}, \boldsymbol{\Sigma}|\boldsymbol{\mathcal{B}}) d\boldsymbol{\mu} d\boldsymbol{\Sigma}$$
$$= \int p(\boldsymbol{x}|\boldsymbol{\mathcal{B}}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) p(\boldsymbol{\mu}, \boldsymbol{\Sigma}|\boldsymbol{\mathcal{B}}) d\boldsymbol{\mu} d\boldsymbol{\Sigma}.$$
(5)

The likelihood for the whole dataset reads

$$p(\boldsymbol{\mu}, \boldsymbol{\Sigma} | \boldsymbol{\mathcal{B}}) = (2\pi)^{-\frac{ND}{2}} |\boldsymbol{\Sigma}|^{-\frac{N}{2}} \exp\left[-\frac{1}{2} \sum_{n} (\boldsymbol{x}_{n} - \boldsymbol{\mu})^{\mathsf{t}} \boldsymbol{\Sigma}^{-1} (\boldsymbol{x}_{n} - \boldsymbol{\mu})\right]. \quad (6)$$

Following [2, §3.6], we set conjugate priors for Σ and μ : Inverse-Wishart with ν degrees of freedom and inverse scale matrix Λ for Σ ; multivariate normal with mean λ and covariance matrix Σ/κ for μ :

$$p(\mathbf{\Sigma}|\mathcal{B}) = \frac{|\mathbf{\Lambda}|^{\frac{\nu}{2}}}{Z(D,\nu)} |\mathbf{\Sigma}|^{-\frac{\nu+D+1}{2}} \exp\left[-\frac{1}{2} \operatorname{tr}(\mathbf{\Sigma}^{-1}\mathbf{\Lambda})\right]$$
(7)

$$p(\boldsymbol{\mu}|\boldsymbol{\mathcal{B}},\boldsymbol{\Sigma}) = (2\pi)^{-\frac{D}{2}} \left| \frac{\boldsymbol{\Sigma}}{\kappa} \right|^{-\frac{1}{2}} \exp\left[-\frac{1}{2} (\boldsymbol{\mu} - \boldsymbol{\lambda})^{\mathsf{t}} \left(\frac{\boldsymbol{\Sigma}}{\kappa} \right)^{-1} (\boldsymbol{\mu} - \boldsymbol{\lambda}) \right].$$
(8)

The product $p(\boldsymbol{x}|\mathcal{B}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) p(\boldsymbol{\mu}, \boldsymbol{\Sigma}|\mathcal{B})$ can therefore be expressed as

$$(2\pi)^{-\frac{D(N+1)}{2}} |\mathbf{\Sigma}|^{-\frac{N+\nu+D+2}{2}} \kappa^{\frac{D}{2}} \frac{|\mathbf{\Lambda}|^{\frac{\tau}{2}}}{Z(D,\nu)} \times \exp\left\{-\frac{1}{2}\left[(N+\kappa)(\boldsymbol{\mu}-\widehat{\boldsymbol{\mu}})^{\mathsf{t}} \mathbf{\Sigma}^{-1}(\boldsymbol{\mu}-\widehat{\boldsymbol{\mu}}) + \operatorname{tr}\left\{\mathbf{\Sigma}^{-1}\left[\mathbf{S}+\mathbf{\Lambda}+\frac{N\kappa}{N+\kappa}(\boldsymbol{m}-\boldsymbol{\lambda})(\boldsymbol{m}-\boldsymbol{\lambda})^{\mathsf{t}}\right]\right\}\right\},$$
(9)

where \boldsymbol{m} is the sample mean. As a function of $\boldsymbol{\mu}$, this quantity is proportional to a multivariate normal distribution with mean $\hat{\boldsymbol{\mu}}$ and covariance matrix $\boldsymbol{\Sigma}/(N+\kappa)$. Integration with respect to $\boldsymbol{\mu}$ therefore involves multiplication by

$$(2\pi)^{\frac{D}{2}} \left| \frac{\mathbf{\Sigma}}{N+\kappa} \right|^{\frac{1}{2}},\tag{10}$$

yielding

$$(2\pi)^{-\frac{DN}{2}} |\mathbf{\Sigma}|^{-\frac{N+\nu+D+1}{2}} \left(\frac{\kappa}{N+\kappa}\right)^{\frac{D}{2}} \frac{|\mathbf{\Lambda}|^{\frac{\nu}{2}}}{Z(D,\nu)} \times \exp\left(-\frac{1}{2} \operatorname{tr}\left\{\mathbf{\Sigma}^{-1}\left[\mathbf{S}+\mathbf{\Lambda}+\frac{N\kappa}{N+\kappa}(\boldsymbol{m}-\boldsymbol{\lambda})(\boldsymbol{m}-\boldsymbol{\lambda})^{\mathsf{t}}\right]\right\}\right). (11)$$

As a function of Σ , this quantity is proportional to an inverse-Wishart distribution with $N + \nu$ degrees of freedom and inverse scale matrix

$$S + \Lambda + \frac{N\kappa}{N+\kappa} (\boldsymbol{m} - \boldsymbol{\lambda}) (\boldsymbol{m} - \boldsymbol{\lambda})^{\mathsf{t}}.$$
 (12)

Integration with respect to Σ therefore involves multiplication by

$$Z(D, N+\nu) \left| \boldsymbol{S} + \boldsymbol{\Lambda} + \frac{N\kappa}{N+\kappa} (\boldsymbol{m} - \boldsymbol{\lambda}) (\boldsymbol{m} - \boldsymbol{\lambda})^{\mathsf{t}} \right|^{-\frac{N+\nu}{2}}, \qquad (13)$$

finally yielding

$$p(\boldsymbol{x}|\mathcal{B}) = (2\pi)^{-\frac{DN}{2}} \left(\frac{\kappa}{N+\kappa}\right)^{\frac{D}{2}} \frac{Z(D,N+\nu)}{Z(D,\nu)} \frac{|\boldsymbol{\Lambda}|^{\frac{\nu}{2}}}{\left|\boldsymbol{S}+\boldsymbol{\Lambda}+\frac{N\kappa}{N+\kappa}(\boldsymbol{m}-\boldsymbol{\lambda})(\boldsymbol{m}-\boldsymbol{\lambda})^{\mathsf{t}}\right|^{\frac{N+\nu}{2}}}$$
(14)

Case of several independent subvectors. If we have several independent subvectors instead, a similar calculation can be performed, leading to

$$p(\boldsymbol{x}|\boldsymbol{\mathcal{B}}) = (2\pi)^{-\frac{DN}{2}} \left(\frac{\kappa}{N+\kappa}\right)^{\frac{D}{2}} \times \prod_{k=1}^{K} \frac{Z(D_k, N+\nu_k)}{Z(D_k, \nu_k)} \frac{|\boldsymbol{\Lambda}_k|^{\frac{\nu_k}{2}}}{\left|\boldsymbol{S}_k + \boldsymbol{\Lambda}_k + \frac{N\kappa}{N+\kappa}(\boldsymbol{m}_k - \boldsymbol{\lambda}_k)(\boldsymbol{m}_k - \boldsymbol{\lambda}_k)^{\mathsf{t}}\right|^{\frac{N+\nu_k}{2}}}.$$
(15)

1.2.2 Posterior probability

The posterior distribution for a given model of dependence can then be obtained by application of Bayes' theorem, yielding

$$\Pr(\boldsymbol{\mathcal{B}}|\boldsymbol{x}) \propto \Pr(\boldsymbol{\mathcal{B}}) \operatorname{p}(\boldsymbol{x}|\boldsymbol{\mathcal{B}}).$$
 (16)

Since

$$(2\pi)^{-\frac{DN}{2}} \left(\frac{\kappa}{N+\kappa}\right)^{\frac{D}{2}} \tag{17}$$

does not depend on \mathcal{B} , this quantity does not change when h changes. It therefore disappears in the normalization constant and we have

$$\Pr(\mathcal{B}|\boldsymbol{x}) \propto \Pr(\mathcal{B}) \prod_{k=1}^{K} \frac{Z(D_k, N + \nu_k)}{Z(D_k, \nu_k)} \frac{|\boldsymbol{\Lambda}_k|^{\frac{\nu_k}{2}}}{\left|\boldsymbol{S}_k + \boldsymbol{\Lambda}_k + \frac{N\kappa}{N+\kappa} (\boldsymbol{m}_k - \boldsymbol{\lambda}_k) (\boldsymbol{m}_k - \boldsymbol{\lambda}_k)^{\mathsf{t}}\right|^{\frac{N+\nu_k}{2}}}.$$
(18)

Setting $\kappa \to 0$, we obtain the result of Equation (14).

2 Results for the cross-classified multinomial distribution

2.1 Marginal model likelihood

The marginalization formula yields

$$\Pr(\boldsymbol{y}|\mathcal{B}) = \int p(\boldsymbol{\theta}_1, \dots, \boldsymbol{\theta}_K) \Pr(\boldsymbol{y}|\boldsymbol{\theta}_1, \dots, \boldsymbol{\theta}_K) \prod_{k=1}^K d\boldsymbol{\theta}_k.$$
 (19)

Assuming that the different parameters are a priori independent, the prior distribution reads $_{\nu}$

$$p(\boldsymbol{\theta}_1, \dots, \boldsymbol{\theta}_K) = \prod_{k=1}^K p(\boldsymbol{\theta}_k), \qquad (20)$$

where, for each $p(\theta_k)$, we set a Dirichlet distribution with parameters a_{x_k} for $x_k \in E_{B_k}$

$$p(\boldsymbol{\theta}_k) = \frac{\Gamma\left(\sum_{\boldsymbol{x}_k \in E_{B_k}} a_{\boldsymbol{x}_k}\right)}{\prod_{\boldsymbol{x}_k \in E_{B_k}} \Gamma(a_{\boldsymbol{x}_k})} \prod_{\boldsymbol{x}_k \in E_{B_k}} \theta_{\boldsymbol{x}_k}^{a_{\boldsymbol{x}_k}}.$$
(21)

According to the assumption of mutual independence, we have for the likelihood

$$\Pr(\boldsymbol{y}|\boldsymbol{\theta}_1,\ldots,\boldsymbol{\theta}_K) = \prod_{k=1}^K \Pr(\boldsymbol{y}_k|\boldsymbol{\theta}_k), \qquad (22)$$

with

$$\Pr(\boldsymbol{y}_k|\boldsymbol{\theta}_k) = \prod_{\boldsymbol{x}_k \in E_{B_k}} \theta_{\boldsymbol{x}_k}^{N_{\boldsymbol{x}_k}}, \qquad (23)$$

where $N_{\boldsymbol{x}_k}$ is the number of time that we observe \boldsymbol{x}_k . Putting the prior and likelihood together into Bayes' theorem yields for the marginal model likelihood

$$\Pr(\boldsymbol{y}|\mathcal{B}) = \prod_{k=1}^{K} \frac{\Gamma\left(\sum_{\boldsymbol{x}_{k} \in E_{B_{k}}} a_{\boldsymbol{x}_{k}}\right)}{\prod_{\boldsymbol{x}_{k} \in E_{B_{k}}} \Gamma(a_{\boldsymbol{x}_{k}})} \int \prod_{\boldsymbol{x}_{k} \in E_{B_{k}}} \theta_{\boldsymbol{x}_{k}}^{N_{\boldsymbol{x}_{k}} + a_{\boldsymbol{x}_{k}}} \,\mathrm{d}\boldsymbol{\theta}_{k}.$$
(24)

As a function of $\boldsymbol{\theta}_k$, this expression is proportional to a Dirichlet distribution with parameters $N_{\boldsymbol{x}_k} + a_{\boldsymbol{x}_k}$ for $\boldsymbol{x}_k \in E_{B_k}$. Integration with respect to $\boldsymbol{\theta}_k$ therefore yields

$$\Pr(\boldsymbol{y}|\mathcal{B}) = \prod_{k=1}^{K} \frac{\Gamma\left(\sum_{\boldsymbol{x}_{k} \in E_{B_{k}}} a_{\boldsymbol{x}_{k}}\right)}{\prod_{\boldsymbol{x}_{k} \in E_{B_{k}}} \Gamma(a_{\boldsymbol{x}_{k}})} \frac{\prod_{\boldsymbol{x}_{k} \in E_{B_{k}}} \Gamma(N_{\boldsymbol{x}_{k}} + a_{\boldsymbol{x}_{k}})}{\Gamma\left(\sum_{\boldsymbol{x}_{k} \in E_{B_{k}}} N_{\boldsymbol{x}_{k}} + a_{\boldsymbol{x}_{k}}\right)}.$$
 (25)

2.2 Asymptotic approximation

From the previous equation, we have

$$\ln \Pr(\boldsymbol{y}|\mathcal{B}) = \sum_{k=1}^{K} \left[\sum_{\boldsymbol{x}_k \in E_{B_k}} \ln \Gamma(N_{\boldsymbol{x}_k} + a_{\boldsymbol{x}_k}) - \ln \Gamma \left(\sum_{\boldsymbol{x}_k \in E_{B_k}} N_{\boldsymbol{x}_k} + a_{\boldsymbol{x}_k} \right) \right] + \text{cst},$$
(26)

where "cst" is a term that does not depend on the data. Set

$$a_k = \sum_{oldsymbol{x}_k \in E_{B_k}} a_{oldsymbol{x}_k}$$

and $f_{\boldsymbol{x}_k} = N_{\boldsymbol{x}_k}/N$, so that $\sum_{\boldsymbol{x}_k \in E_{B_k}} f_{\boldsymbol{x}_k} = 1$. In the following, we assume large data set, $N \to \infty$ and use the following approximation for the Gamma function [3, p. 257]

$$\ln \Gamma(z) = \left(z - \frac{1}{2}\right) \ln z - z + O(1). \tag{27}$$

We have

$$\ln \Gamma(N+a_k) = \left(N+a_k - \frac{1}{2}\right) \ln(N+a_k) - (N+a_k) + O(1)$$

= $N \ln N - N + \left(a_k - \frac{1}{2}\right) \ln N + O(1)$ (28)

and, similarly,

$$\ln \Gamma(N_{\boldsymbol{x}_{k}} + a_{\boldsymbol{x}_{k}}) = \ln \Gamma(f_{\boldsymbol{x}_{k}}N + a_{\boldsymbol{x}_{k}})$$

$$= \left(f_{\boldsymbol{x}_{k}}N + a_{\boldsymbol{x}_{k}} - \frac{1}{2}\right) \ln(f_{\boldsymbol{x}_{k}}N + a_{\boldsymbol{x}_{k}}) - (f_{\boldsymbol{x}_{k}}N + a_{\boldsymbol{x}_{k}}) + O(1)$$

$$= f_{\boldsymbol{x}_{k}}N \ln N + N(f_{\boldsymbol{x}_{k}}\ln f_{\boldsymbol{x}_{k}} - f_{\boldsymbol{x}_{k}}) + \left(a_{\boldsymbol{x}_{k}} - \frac{1}{2}\right) \ln N + O(1).$$
(29)

Putting these two results together yields for the log marginal model likelihood

$$\ln \Pr(\boldsymbol{y}|\boldsymbol{\mathcal{B}}) = \sum_{k=1}^{K} \left[N \sum_{\boldsymbol{x}_k \in E_{B_k}} f_{\boldsymbol{x}_k} \ln f_{\boldsymbol{x}_k} - \frac{I_{B_k} - 1}{2} \ln N \right] + O(1).$$
(30)

Considering the log posterior distribution instead of the marginal model likelihood only adds the log prior which is itself O(1).

Maximum-likelihood estimate. For model H and block k, the maximum-likelihood estimate is given by

$$\widehat{\theta}_{\boldsymbol{x}_k} = \frac{N_{\boldsymbol{x}_k}}{N} = f_{\boldsymbol{x}_k}.$$
(31)

The corresponding maximum of the log-likelihood is then equal to

$$\ln \Pr(\boldsymbol{y}|\widehat{\boldsymbol{\theta}}_{1},\ldots,\widehat{\boldsymbol{\theta}}_{K}) = \sum_{k=1}^{K} N \sum_{\boldsymbol{x}_{k} \in E_{B_{k}}} f_{\boldsymbol{x}_{k}} \ln f_{\boldsymbol{x}_{k}}, \qquad (32)$$

which corresponds to the first term in the right-hand side of the above approximation.

3 Results regarding partitions

3.1 Asymptotic approximation for Bell numbers

We have the following asymptotic approximation $[4, \S 6.2]$

$$\frac{\ln \varpi_D}{D} = \ln D - \ln \ln D - 1 + O\left(\frac{\ln \ln D}{\ln D}\right),\tag{33}$$

showing that

$$\varpi_D = O\left[\left(\frac{D}{\ln D}\right)^D\right],\tag{34}$$

see also [5, §7.2.1.5].

3.2 Partitioning a set in two blocs

We here prove that ${\binom{d}{2}} = 2^{d-1} - 1$. First, there is a one-to-one mapping between the set of functions $\phi : [d] \to \{0,1\}^d$ and the set of partitioning of [d] into two subsets A and B (for instance, by translating $\phi(i) = 0$ to $i \in A$ and $\phi(i) = 1$ to $i \in B$). There are 2^d such functions. Among these functions, two correspond to a partitioning of [d] into only one block: $\phi([d]) = \{0\}^d$ (corresponding to A = [d] and $B = \emptyset$) and $\phi([d]) = \{1\}^d$ (corresponding to $A = \emptyset$ and B = [d]), which we remove, leaving ony $2^d - 2$ functions. Finally, each function ϕ can be uniquely associated to a different function ψ that only switches labels A and B, for instance, by defining ψ such that $\psi(i) = 1 - \phi(i)$. Since the labels do not interest us for partitioning, we are left with $(2^d - 2)/2 = 2^{d-1} - 1$ distinct cases.

3.3 Patterns of mutual independence and exchangeability

We here give a quick example of the implication of assuming exchangeability for the prior distribution on partitions. Consider the case of D = 3 variables X_1 , X_2 , and X_3 . There are $\varpi_3 = 5$ potential partitions: 1|2|3, 12|3, 13|2, 23|1, and 123. Since 13|2 can be obtained from 12|3 by permutation of labels 2 and 3, exchangeability requires for a prior P_3

$$P_3([12|3]) = P_3([13|2]). \tag{35}$$

Similarly, since 23|1 can be obtained from 12|3 by permutation of labels 1 and 3,

$$P_3([12|3]) = P_3([23|1]). \tag{36}$$

So, to define P_3 , we would have to set $P_3([1|2|3])$, $P_3([12|3]) = P_3([13|2]) = P_3([23|1])$ and $P_3([123])$, with the further constraint that all probabilities sum to 1, i.e.,

$$P_3([1|2|3]) + 3P_3([12|3]) + P_3([123]) = 1.$$
(37)

3.4 Patterns of mutual independence and consistency

We here demonstrate why the requirement of having a prior distribution on the set of partitions that is consistent in the sense of [6] is not valid for patterns of mutual independence. Consistency relies on the fact that a prior can be generated constructively from a set with D variables by adding one variable, leading to a set with D + 1 variables. In our case, it implies that knowing the pattern of mutual independence between D variables strongly constrains the pattern of mutual independence of the same D variables to which one extra variable is added. In the simple case D = 2, assuming consistency would imply that the pattern of mutual independence between X_1 and X_2 constrains that between X_1 , X_2 , and X_3 . Unfortunately, this is not true. Two variables X_1 and X_2 can potentially be partitioned in $\varpi_2 = 2$ different ways, namely the one-block partition 12 and the two-block partition 1|2. Adding one variable X_3 , there are $\varpi_3 = 5$ potential partitions: 1|2|3, 12|3, 13|2, 23|1, and 123. Since adding 3 to partition 12 can be done in two different ways, namely 12|3 and 123, consistency would require¹

$$P_2([12]) = P_3([12|3]) + P_3([123]).$$
(38)

Similarly, since adding 3 to partition 1|2 can be done in three different ways, namely 13|2, 1|23, and 1|2|3, consistency would entail

$$P_2([1|2]) = P_3([1|2|3]) + P_3([12|3]) + P_3([1|23]).$$
(39)

In words, this second case means that knowing that X_1 and X_2 are independent (i.e., the correct partition is 1|2) when considering only these two variables entails that the pattern of dependence between X_1 , X_2 , and X_3 has to be either 1|2|3, 12|3, or 1|23; in particular, it *cannot* be 123.

To show that this is not true, assume that X_1 , X_2 and X_3 are related through the directed acyclic graph depicted in Figure 1. X_1 and X_2 are independent, corresponding to partition 1|2, yet we neither have (X_1, X_3) and X_2 mutually independent (which would correspond to partition 13|2) nor (X_2, X_3) and X_1 mutually independent (which would correspond to partition 1|23, nor X_1 , X_2 , and X_3 mutually independent (which would correspond to partition 1|2|3). The correct partition is 123. This is a consequence of the fact that, while the distribution of (X_1, X_2, X_3) (from which we can determine the pattern of mutual independence between X_1 , X_2 , and X_3) makes it possible to determine the marginal of (X_1, X_2) (from which we can determine the pattern of mutual independence between X_1 and X_2), the converse does not hold.

Figure 1: Mutual independence may not respect consistency. (A) Example where X_1 and X_2 are independent, corresponding to partition 1|2, yet there is no mutual independence between X_1 , X_2 and X_3 , corresponding to partition 123. (B) Example where X_1 and X_2 are not independent, corresponding to partition 12, and where there is again no mutual independence between X_1 , X_2 and X_3 , corresponding to partition 123.

¹In the following, we put partition models that appear in probabilities between brackets, to make it clear that the "|" sign should *not* be interpreted as a conditioning sign.

4 Simulation study

4.1 Gaussian data

We plotted the relationship between BayesOptim and either BayesCorr (Fig. 2) or Bic (Fig. 3) depending on the number of clusters in the simulated Gaussian data.

Figure 2: Simulation study. Comparison of probability obtained for BayesOptim and BayesCorr depending on the number of clusters in the simulated Gaussian data.

Figure 3: Simulation study. Comparison of probability obtained for BayesOptim and Bic depending on the number of clusters in the simulated Gaussian data.

4.2 Non-Gaussian data

We plotted the global relationship between BayesOptim and either BayesCorr or Bic depending on the degree of freedom of the Student-*t* distributions and the number of clusters in the simulated non-Gaussian data (Fig. 4). For BayesOptim, we plotted the evolution of four quantities as a function of sample size: posterior probability of the true model, and ratio of posterior probability of true model to posterior probability of maximum a posteriori

(Fig. 5); rank of true model when ranking potential models by decreasing posterior probability, and entropy of posterior distribution (Fig. 6).

Figure 4: **Simulation study.** Comparison of probability obtained for **BayesOptim** and either **BayesCorr** (left) or **Bic** (right) depending on the number of degrees of freedom of the Student-*t* distributions and the number of clusters in the simulated data.

5 HIV study data

In Table 1, we reported the relevances [7] associated to the HIV study data.

Cardinality	Set	Relevance	Cardinality	Set	Relevance
			6	123456	3.90×10^{-5}
1	1	1.40×10^{-6}	5	23456	1.57×10^{-10}
	2	2.40×10^{-5}		13456	1.25×10^{-8}
	3	3.43×10^{-7}		12456	1.68×10^{-10}
	4	0.994		12356	0.852
	5	4.63×10^{-9}		12346	4.89×10^{-14}
	6	1.80×10^{-3}		12345	7.25×10^{-7}
2	12	0.134	4	3456	8.35×10^{-4}
	13	1.70×10^{-13}		2456	1.44×10^{-16}
	14	1.49×10^{-7}		2356	2.43×10^{-7}
	15	3.25×10^{-13}		2346	1.15×10^{-16}
	16	5.93×10^{-8}		2345	4.06×10^{-11}
	23	1.24×10^{-13}		1456	5.42×10^{-15}
	24	7.46×10^{-6}		1356	3.03×10^{-5}
	25	8.54×10^{-15}		1346	2.35×10^{-17}
	26	2.90×10^{-7}		1345	9.54×10^{-10}
	34	1.35×10^{-7}		1256	4.54×10^{-7}
	35	9.21×10^{-3}		1246	1.61×10^{-5}
	36	8.72×10^{-9}		1245	1.71×10^{-10}
	45	2.30×10^{-9}		1236	1.80×10^{-10}
	46	2.57×10^{-4}		1235	1.01×10^{-3}
	56	6.41×10^{-10}		1234	8.49×10^{-13}
3	123	1.69×10^{-10}			
	124	3.82×10^{-3}			
	125	2.60×10^{-8}			
	126	8.86×10^{-3}			
	134	4.52×10^{-15}			
	135	1.16×10^{-7}			
	136	1.09×10^{-14}			
	145	1.96×10^{-14}			
	146	5.37×10^{-10}			
	156	1.54×10^{-12}			
	234	1.16×10^{-14}			
	235	3.58×10^{-9}			
	236	1.91×10^{-14}			
	245	7.11×10^{-16}			
	246	6.78×10^{-9}			
	256	2.42×10^{-14}			
	345	7.23×10^{-4}			
	346	4.32×10^{-10}			
	356	0.136			
	456	2.69×10^{-11}			

Table 1: HIV study: Relevances from the exact probability distribution BayesOptim.

References

- T. W. Anderson, An Introduction to Multivariate Statistical Analysis, ser. Wiley Publications in Statistics. John Wiley and Sons, New York, 1958.
- [2] A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin, *Bayesian Data Analysis*, ser. Texts in Statistical Science. Chapman & Hall, London, 1998.
- [3] M. Abramowitz and I. A. Stegun, Eds., *Handbook of Mathematical Functions*, ser. Applied Math. National Bureau of Standards, 1972, no. 55.
- [4] N. G. de Bruijn, Asymptotic Methods in Analysis, 2nd ed., ser. Bibliotheca Mathematica. A Series of Monographs on Pure and Applied Mathematics. North-Holland Publishing Co., Amsterdam, 1961, vol. IV.
- [5] D. E. Knuth, The Art of Computer Programming. Volume 4, Fascicle 3B. Addison-Wesley, Boston, 2005.
- [6] J. G. Booth, G. Casella, and J. P. Hobert, "Clustering using objective functions and stochastic search," *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, vol. 70, pp. 119–139, 2008.
- [7] J. A. Hartigan, "Partition models," Communications in Statistics. Theory and Methods, vol. 19, pp. 2745–2756, 1990.