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1 Results for the multivariate normal distribution

1.1 Maximum likelihood

Under the assumption of a partitioning into K independent components,
the likelihood reads

N-D-1 K
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leading to a log-likelihood that is equal to
K
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It is the sum of K independent terms, each of which is maximal for f]k =
Sk/N [1, Th. 3.2.1]. The corresponding maximum of the log-likelihood is

~ ~ N BN ND
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The only part of this expression that does depend on the partitioning in-
duced by B is
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1.2 Bayesian inference with unknown mean and covariance
1.2.1 Marginal model likelihood

Case of one vector. Computation of the marginal model likelihood for
the full dataset and i.i.d. multivariate normal distribution yields

p(@iB) = [ pla. . ZIB) dpuds

The likelihood for the whole dataset reads

P, B|B) = (2m) 72 [B|7% exp [—1 D (@ — )= (@, — ) (6)
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Following [2, §3.6], we set conjugate priors for 3 and p: Inverse-Wishart
with v degrees of freedom and inverse scale matrix A for 3; multivariate
normal with mean A and covariance matrix X /x for p:
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The product p(x|B, p, ) p(u, X|B) can therefore be expressed as
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where m is the sample mean. As a function of w, this quantity is propor-
tional to a multivariate normal distribution with mean g and covariance
matrix /(N + k). Integration with respect to p therefore involves multi-
plication by

1
2
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As a function of 3, this quantity is proportional to an inverse-Wishart dis-
tribution with IV + v degrees of freedom and inverse scale matrix

S+A+J\f\f_{i€(m—)\)(m—)\)t. (12)

Integration with respect to 3 therefore involves multiplication by

_N+v
K B a0t 2
Z(D,N +v) S+A+N+ﬁ(m A)(m —A) , (13)
finally yielding
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Case of several independent subvectors. If we have several indepen-
dent subvectors instead, a similar calculation can be performed, leading to
g
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1.2.2 Posterior probability

The posterior distribution for a given model of dependence can then be
obtained by application of Bayes’ theorem, yielding

Pr(B|x) x Pr(B) p(x|B). (16)
Since b
en ¥ () (7)

does not depend on B, this quantity does not change when h changes. It
therefore disappears in the normalization constant and we have
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Setting x — 0, we obtain the result of Equation (14).

2 Results for the cross-classified multinomial dis-
tribution

2.1 Marginal model likelihood

The marginalization formula yields

K
Pr(y|B) = /p(@l,...,GK) Pr(y|6:,...,0k) ] d6x. (19)
k=1

Assuming that the different parameters are a priori independent, the prior
distribution reads

K
p(61,...,0k) =[] p(6r), (20)
k=1

where, for each p(0y), we set a Dirichlet distribution with parameters a,
for x), € Ep,

F (kaGEBk amk)
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According to the assumption of mutual independence, we have for the like-
lihood

Pr(y‘eb s a yk‘ek (22)
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with N
Pr(yyl0r) = [ " (23)
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where Nz, is the number of time that we observe xj. Putting the prior
and likelihood together into Bayes’ theorem yields for the marginal model
likelihood

Pr(ylB) = H a6 o / [T oo "*don  (29)
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As a function of 8, this expression is proportional to a Dirichlet distribution
with parameters N, + ag, for x;, € Ep,. Integration with respect to 6y,
therefore yields

( mkEEBk a:Ek) H:I:kEEBk F(Nmk + awk)
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2.2 Asymptotic approximation

From the previous equation, we have

K
InPr(y|B) = Z Z InI'(Ng, + ag,) —InT Z Ng, + ag, || + cst,
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where ”cst“ is a term that does not depend on the data. Set

2,
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and fz, = Ng, /N, so that zwkeEBk
large data set, N — oo and use the following approximation for the Gamma

function [3| p. 257

fo, = 1. In the following, we assume

ImD(z) = (z— ;) Inz— 2+ O(L). (27)
We have
InT(N +ay) = <N +ap— 1> (N + ax) — (N + az) + O(1)
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and, similarly,
InI'(Ng, +ag,) = InT(fz, N+ az,)
= (fmkN—l—amk —;) In(fz, N + ag,) — (fz, N + az,) + O(1)
= fe, NInN + N(fz, In fz, — fz,) + <awk—;> InN +0O(1).
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Putting these two results together yields for the log marginal model likeli-
hood

K
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Considering the log posterior distribution instead of the marginal model
likelihood only adds the log prior which is itself O(1).

Maximum-likelihood estimate. For model H and block k, the maximum-
likelihood estimate is given by

Y

Op, = —25 = fo,. (31)

The corresponding maximum of the log-likelihood is then equal to

lnPr(y\/O\l,..., ZN Z fa, I fa, (32)
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which corresponds to the the first term in the right-hand side of the above
approximation.

3 Results regarding partitions

3.1 Asymptotic approximation for Bell numbers
We have the following asymptotic approximation [4, §6.2]

lnlnD>

Inwp
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showing that

see also [5], §7.2.1.5].



3.2 Partitioning a set in two blocs

We here prove that {g} = 29=1 _ 1. First, there is a one-to-one mapping
between the set of functions ¢ : [d] — {0,1}¢ and the set of partitioning of
[d] into two subsets A and B (for instance, by translating ¢(i) =0toi € A
and ¢(i) = 1toi € B). There are 2¢ such functions. Among these functions,
two correspond to a partitioning of [d] into only one block: ¢([d]) = {0}¢
(corresponding to A = [d] and B = ) and ¢([d]) = {1} (corresponding
to A = () and B = [d]), which we remove, leaving ony 2¢ — 2 functions.
Finally, each function ¢ can be uniquely associated to a different function
1 that only switches labels A and B, for instance, by defining v such that
(1) =1 — ¢(i). Since the labels do not interest us for partitioning, we are
left with (2¢ —2)/2 = 291 — 1 distinct cases.

3.3 Patterns of mutual independence and exchangeability

We here give a quick example of the implication of assuming exchangeability
for the prior distribution on partitions. Consider the case of D = 3 variables
X1, Xo, and X3. There are w3 = 5 potential partitions: 1[2|3, 12|3, 132,
23|1, and 123. Since 13|2 can be obtained from 12|3 by permutation of labels
2 and 3, exchangeability requires for a prior P

Py([12[3]) = P5([13[2]). (35)

Similarly, since 23|1 can be obtained from 12|3 by permutation of labels 1
and 3,
P3([123]) = Ps([23[1]). (36)

So, to define P3, we would have to set P3([1|2|3]), P5([12]3]) = P5([13|2]) =
P5([23]1]) and P5([123]), with the further constraint that all probabilities
sum to 1, i.e.,

P([112[3]) + 3P3([12(3]) + P3([123]) = 1. (37)

3.4 Patterns of mutual independence and consistency

We here demonstrate why the requirement of having a prior distribution
on the set of partitions that is consistent in the sense of [6] is not valid for
patterns of mutual independence. Consistency relies on the fact that a prior
can be generated constructively from a set with D variables by adding one
variable, leading to a set with D + 1 variables. In our case, it implies that
knowing the pattern of mutual independence between D variables strongly
constrains the pattern of mutual independence of the same D variables to
which one extra variable is added. In the simple case D = 2, assuming
consistency would imply that the pattern of mutual independence between
X1 and X5 constrains that between X7, X5, and X3. Unfortunately, this is
not true.



Two variables X; and Xs can potentially be partitioned in wy = 2
different ways, namely the one-block partition 12 and the two-block partition
1/2. Adding one variable X3, there are ws = 5 potential partitions: 1|2|3,
12]3, 132, 23|1, and 123. Since adding 3 to partition 12 can be done in two
different ways, namely 12|3 and 123, consistency would requireﬂ

Po([12]) = P5([12[3]) + P5([123]). (38)

Similarly, since adding 3 to partition 1|2 can be done in three different ways,
namely 132, 1]23, and 1/|2|3, consistency would entail

Py([112]) = Ps([1]2(3]) + P([12[3]) + P3([1]23]). (39)

In words, this second case means that knowing that X; and X, are inde-
pendent (i.e., the correct partition is 1|2) when considering only these two
variables entails that the pattern of dependence between X7, Xo, and X3
has to be either 1]2|3, 12|3, or 1|23; in particular, it cannot be 123.

To show that this is not true, assume that X;, Xo and X3 are related
through the directed acyclic graph depicted in Figure X1 and X, are
independent, corresponding to partition 1|2, yet we neither have (X, X3)
and Xo mutually independent (which would correspond to partition 13|2)
nor (Xg,X3) and X; mutually independent (which would correspond to
partition 1]23, nor X, X3, and X3 mutually independent (which would
correspond to partition 1|2|3). The correct partition is 123. This is a conse-
quence of the fact that, while the distribution of (X7, X2, X3) (from which
we can determine the pattern of mutual independence between X7, X5, and
X3) makes it possible to determine the marginal of (X, X2) (from which
we can determine the pattern of mutual independence between X; and X3),
the converse does not hold.

(A) (8)
OO O
X X

Figure 1: Mutual independence may not respect consistency. (A) Exam-
ple where X; and X are independent, corresponding to partition 1|2, yet
there is no mutual independence between X, X5 and X3, corresponding to
partition 123. (B) Example where X; and X5 are not independent, corre-
sponding to partition 12, and where there is again no mutual independence
between Xi, X5 and X3, corresponding to partition 123.

'In the following, we put partition models that appear in probabilities between brackets,
to make it clear that the ”|“ sign should not be interpreted as a conditioning sign.



4 Simulation study

4.1 Gaussian data

We plotted the relationship between BayesOptim and either BayesCorr
(Fig. or Bic (Fig. depending on the number of clusters in the sim-

ulated Gaussian data.
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Figure 2: Simulation study. Comparison of probability obtained for
BayesOptim and BayesCorr depending on the number of clusters in the
simulated Gaussian data.



1 cluster 2 clusters

Probability (Bic)
Probability (Bic)

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Probability (BayesOptim) Probability (BayesOptim)

3 clusters 4 clusters

Probability (Bic)
Probability (Bic)

0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 08 1

Probability (BayesOptim) Probability (BayesOptim)
5 clusters 6 clusters
1 1
0.9 0.9
08 0.8
. 0.7
) )
@ o o 06
2 205
= 3
So. Soa
<} <}
a0 a 03
0.2
0.1
0
0.2 . .0.4 06 ) 0.8 1 0 0.2 04 0.6 0.8 1
Probability (BayesOptim) Probability (BayesOptim)

Figure 3: Simulation study. Comparison of probability obtained for
BayesOptim and Bic depending on the number of clusters in the simulated
Gaussian data.

4.2 Non-Gaussian data

We plotted the global relationship between BayesOptim and either BayesCorr
or Bic depending on the degree of freedom of the Student-t distributions
and the number of clusters in the simulated non-Gaussian data (Fig. [4)).
For BayesOptim, we plotted the evolution of four quantities as a function of
sample size: posterior probability of the true model, and ratio of posterior
probability of true model to posterior probability of maximum a posteriori
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; rank of true model when ranking potential models by decreasing
posterior probability, and entropy of posterior distribution (Fig. @
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Figure 4: Simulation study. Comparison of probability obtained for
BayesOptim and either BayesCorr (left) or Bic (right) depending on the
number of degrees of freedom of the Student-¢ distributions and the number
of clusters in the simulated data.
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5 HIV study data

In Table 1}, we reported the relevances [7] associated to the HIV study data.

Table 1: HIV study: Relevances from the exact probability distribution

BayesOptim.
Cardinality  Set Relevance Cardinality Set Relevance
6 123456 3.90 x 10~°
1 1 1.40 x 107° 5 23456  1.57 x 10~ 1°
2 2.40 x 107° 13456  1.25 x 1078
3 3.43x 1077 12456  1.68 x 1071°
4 0.994 12356 0.852
5 4.63 x 107° 12346  4.89 x 10~
6 1.80 x 1073 12345  7.25x 1077
2 12 0.134 4 3456 8.35 x 1077
13 170 x 10713 2456  1.44 x 10716
14 149 x 1077 2356 2.43 x 1077
15  3.25x 10713 2346  1.15x 10716
16  5.93x 1078 2345  4.06 x 107!
23 1.24 x 1071 1456  5.42 x 1071°
24 7.46 x107¢ 1356 3.03 x 107°
25  8.54x 1071 1346  2.35 x 1077
26 2.90 x 1077 1345  9.54 x 10710
34  1.35x107" 1256 454 x 1077
35  9.21x1073 1246 1.61 x 107°
36 872x107° 1245 1.71 x 10710
45  2.30x107° 1236 1.80 x 1071°
46 257 x 1074 1235 1.01 x 1073
56 6.41 x 10710 1234  8.49x 10713
3 123 1.69 x 10~

124 3.82x 1073
125  2.60 x 1078
126  8.86 x 1072
134 452 x 1071
135 1.16 x 1077
136  1.09 x 10714
145 1.96 x 10714
146  5.37 x 10710
156  1.54 x 10712
234 1.16 x 107
235 3.58 x107°
236 1.91 x 1074
245 7.11 x 10716
246  6.78 x 107°
256  2.42 x 10714
345 7.23x 1074
346 4.32 x 1071°
356 0.136

456  2.69 x 1071
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