# Online supplement for manuscript "Automated extraction of mutual independence patterns using Bayesian comparison of partition models" 

Guillaume Marrelec and Alain Giron

## Contents

1 Results for the multivariate normal distribution 1
1.1 Maximum likelihood . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Bayesian inference with unknown mean and covariance . . . . 2
1.2.1 Marginal model likelihood . . . . . . . . . . . . . . . . 2
1.2.2 Posterior probability . . . . . . . . . . . . . . . . . . . 4

2 Results for the cross-classified multinomial distribution 4
2.1 Marginal model likelihood . . . . . . . . . . . . . . . . . . . . 4
2.2 Asymptotic approximation. . . . . . . . . . . . . . . . . . . . 5

3 Results regarding partitions 6
3.1 Asymptotic approximation for Bell numbers . . . . . . . . . . 6
3.2 Partitioning a set in two blocs. . . . . . . . . . . . . . . . . . 7
3.3 Patterns of mutual independence and exchangeability . . . 7
3.4 Patterns of mutual independence and consistency . . . . . . . 7

4 Simulation study 9
4.1 Gaussian data. . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.2 Non-Gaussian data . . . . . . . . . . . . . . . . . . . . . . . . 10

5 HIV study data 14

## 1 Results for the multivariate normal distribution

### 1.1 Maximum likelihood

Under the assumption of a partitioning into $K$ independent components, the likelihood reads

$$
\begin{equation*}
\mathrm{p}\left(\boldsymbol{S} \mid \mathcal{B}, \boldsymbol{\Sigma}_{1}, \ldots, \boldsymbol{\Sigma}_{K}\right)=\frac{|\boldsymbol{S}|^{\frac{N-D-1}{2}}}{Z(D, N)} \prod_{k=1}^{K}\left|\boldsymbol{\Sigma}_{k}\right|^{-\frac{N}{2}} \exp \left[-\frac{1}{2} \operatorname{tr}\left(\boldsymbol{S}_{k} \boldsymbol{\Sigma}_{k}^{-1}\right)\right] \tag{1}
\end{equation*}
$$

leading to a log-likelihood that is equal to

$$
\begin{equation*}
l\left(\boldsymbol{\Sigma}_{1}, \ldots, \boldsymbol{\Sigma}_{K}\right)=\mathrm{cst}-\sum_{k=1}^{K} \frac{N}{2}\left[\ln \left|\boldsymbol{\Sigma}_{k}\right|-\frac{1}{2} \operatorname{tr}\left(\boldsymbol{S}_{k} \boldsymbol{\Sigma}_{k}^{-1}\right)\right] . \tag{2}
\end{equation*}
$$

It is the sum of $K$ independent terms, each of which is maximal for $\widehat{\boldsymbol{\Sigma}}_{k}=$ $\boldsymbol{S}_{k} / N$ [1, Th. 3.2.1]. The corresponding maximum of the log-likelihood is

$$
\begin{equation*}
l\left(\widehat{\boldsymbol{\Sigma}}_{1}, \ldots, \widehat{\boldsymbol{\Sigma}}_{K}\right)=\operatorname{cst}-\sum_{k=1}^{K} \frac{N}{2} \ln \left|\widehat{\boldsymbol{\Sigma}}_{k}\right|-\frac{N D}{2} . \tag{3}
\end{equation*}
$$

The only part of this expression that does depend on the partitioning induced by $\mathcal{B}$ is

$$
\begin{equation*}
-\sum_{k=1}^{K} \frac{N}{2} \ln \left|\widehat{\boldsymbol{\Sigma}}_{k}\right| . \tag{4}
\end{equation*}
$$

### 1.2 Bayesian inference with unknown mean and covariance

### 1.2.1 Marginal model likelihood

Case of one vector. Computation of the marginal model likelihood for the full dataset and i.i.d. multivariate normal distribution yields

$$
\begin{align*}
\mathrm{p}(\boldsymbol{x} \mid \mathcal{B}) & =\int \mathrm{p}(\boldsymbol{x}, \boldsymbol{\mu}, \boldsymbol{\Sigma} \mid \mathcal{B}) \mathrm{d} \boldsymbol{\mu} \mathrm{~d} \boldsymbol{\Sigma} \\
& =\int \mathrm{p}(\boldsymbol{x} \mid \mathcal{B}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) \mathrm{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma} \mid \mathcal{B}) \mathrm{d} \boldsymbol{\mu} \mathrm{~d} \boldsymbol{\Sigma} . \tag{5}
\end{align*}
$$

The likelihood for the whole dataset reads

$$
\begin{equation*}
\mathrm{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma} \mid \mathcal{B})=(2 \pi)^{-\frac{N D}{2}}|\boldsymbol{\Sigma}|^{-\frac{N}{2}} \exp \left[-\frac{1}{2} \sum_{n}\left(\boldsymbol{x}_{n}-\boldsymbol{\mu}\right)^{\mathrm{t}} \boldsymbol{\Sigma}^{-1}\left(\boldsymbol{x}_{n}-\boldsymbol{\mu}\right)\right] . \tag{6}
\end{equation*}
$$

Following [2, §3.6], we set conjugate priors for $\boldsymbol{\Sigma}$ and $\boldsymbol{\mu}$ : Inverse-Wishart with $\nu$ degrees of freedom and inverse scale matrix $\boldsymbol{\Lambda}$ for $\boldsymbol{\Sigma}$; multivariate normal with mean $\boldsymbol{\lambda}$ and covariance matrix $\boldsymbol{\Sigma} / \kappa$ for $\boldsymbol{\mu}$ :

$$
\begin{align*}
\mathrm{p}(\boldsymbol{\Sigma} \mid \mathcal{B}) & =\frac{|\boldsymbol{\Lambda}|^{\frac{\nu}{2}}}{Z(D, \nu)}|\boldsymbol{\Sigma}|^{-\frac{\nu+D+1}{2}} \exp \left[-\frac{1}{2} \operatorname{tr}\left(\boldsymbol{\Sigma}^{-1} \boldsymbol{\Lambda}\right)\right]  \tag{7}\\
\mathrm{p}(\boldsymbol{\mu} \mid \mathcal{B}, \boldsymbol{\Sigma}) & =(2 \pi)^{-\frac{D}{2}}\left|\frac{\boldsymbol{\Sigma}}{\kappa}\right|^{-\frac{1}{2}} \exp \left[-\frac{1}{2}(\boldsymbol{\mu}-\boldsymbol{\lambda})^{\mathrm{t}}\left(\frac{\boldsymbol{\Sigma}}{\kappa}\right)^{-1}(\boldsymbol{\mu}-\boldsymbol{\lambda})\right] . \tag{8}
\end{align*}
$$

The product $\mathrm{p}(\boldsymbol{x} \mid \mathcal{B}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) \mathrm{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma} \mid \mathcal{B})$ can therefore be expressed as

$$
\begin{align*}
& (2 \pi)^{-\frac{D(N+1)}{2}}|\boldsymbol{\Sigma}|^{-\frac{N+\nu+D+2}{2}} \kappa^{\frac{D}{2}} \frac{|\boldsymbol{\Lambda}|^{\frac{\nu}{2}}}{Z(D, \nu)} \\
& \times \exp \left\{-\frac{1}{2}\left[(N+\kappa)(\boldsymbol{\mu}-\widehat{\boldsymbol{\mu}})^{\mathrm{t}} \boldsymbol{\Sigma}^{-1}(\boldsymbol{\mu}-\widehat{\boldsymbol{\mu}})+\operatorname{tr}\left\{\boldsymbol{\Sigma}^{-1}\left[\boldsymbol{S}+\boldsymbol{\Lambda}+\frac{N \kappa}{N+\kappa}(\boldsymbol{m}-\boldsymbol{\lambda})(\boldsymbol{m}-\boldsymbol{\lambda})^{\mathrm{t}}\right]\right\}\right]\right\}, \tag{9}
\end{align*}
$$

where $\boldsymbol{m}$ is the sample mean. As a function of $\boldsymbol{\mu}$, this quantity is proportional to a multivariate normal distribution with mean $\widehat{\boldsymbol{\mu}}$ and covariance matrix $\boldsymbol{\Sigma} /(N+\kappa)$. Integration with respect to $\boldsymbol{\mu}$ therefore involves multiplication by

$$
\begin{equation*}
(2 \pi)^{\frac{D}{2}}\left|\frac{\boldsymbol{\Sigma}}{N+\kappa}\right|^{\frac{1}{2}} \tag{10}
\end{equation*}
$$

yielding

$$
\begin{align*}
& (2 \pi)^{-\frac{D N}{2}}|\boldsymbol{\Sigma}|^{-\frac{N+\nu+D+1}{2}}\left(\frac{\kappa}{N+\kappa}\right)^{\frac{D}{2}} \frac{|\boldsymbol{\Lambda}|^{\frac{\nu}{2}}}{Z(D, \nu)} \\
& \quad \times \exp \left(-\frac{1}{2} \operatorname{tr}\left\{\boldsymbol{\Sigma}^{-1}\left[\boldsymbol{S}+\boldsymbol{\Lambda}+\frac{N \kappa}{N+\kappa}(\boldsymbol{m}-\boldsymbol{\lambda})(\boldsymbol{m}-\boldsymbol{\lambda})^{\mathrm{t}}\right]\right\}\right) . \tag{11}
\end{align*}
$$

As a function of $\boldsymbol{\Sigma}$, this quantity is proportional to an inverse-Wishart distribution with $N+\nu$ degrees of freedom and inverse scale matrix

$$
\begin{equation*}
\boldsymbol{S}+\boldsymbol{\Lambda}+\frac{N \kappa}{N+\kappa}(\boldsymbol{m}-\boldsymbol{\lambda})(\boldsymbol{m}-\boldsymbol{\lambda})^{\mathrm{t}} . \tag{12}
\end{equation*}
$$

Integration with respect to $\boldsymbol{\Sigma}$ therefore involves multiplication by

$$
\begin{equation*}
Z(D, N+\nu)\left|\boldsymbol{S}+\boldsymbol{\Lambda}+\frac{N \kappa}{N+\kappa}(\boldsymbol{m}-\boldsymbol{\lambda})(\boldsymbol{m}-\boldsymbol{\lambda})^{\mathrm{t}}\right|^{-\frac{N+\nu}{2}}, \tag{13}
\end{equation*}
$$

finally yielding

$$
\begin{equation*}
\mathrm{p}(\boldsymbol{x} \mid \mathcal{B})=(2 \pi)^{-\frac{D N}{2}}\left(\frac{\kappa}{N+\kappa}\right)^{\frac{D}{2}} \frac{Z(D, N+\nu)}{Z(D, \nu)} \frac{|\boldsymbol{\Lambda}|^{\frac{\nu}{2}}}{\left|\boldsymbol{S}+\boldsymbol{\Lambda}+\frac{N \kappa}{N+\kappa}(\boldsymbol{m}-\boldsymbol{\lambda})(\boldsymbol{m}-\boldsymbol{\lambda})^{\mathrm{t}}\right|^{\frac{N+\nu}{2}}} . \tag{14}
\end{equation*}
$$

Case of several independent subvectors. If we have several independent subvectors instead, a similar calculation can be performed, leading to

$$
\begin{align*}
& \mathrm{p}(\boldsymbol{x} \mid \mathcal{B})=(2 \pi)^{-\frac{D N}{2}}\left(\frac{\kappa}{N+\kappa}\right)^{\frac{D}{2}} \\
& \times \prod_{k=1}^{K} \frac{Z\left(D_{k}, N+\nu_{k}\right)}{Z\left(D_{k}, \nu_{k}\right)} \frac{\left|\boldsymbol{\Lambda}_{k}\right|^{\frac{\nu_{k}}{2}}}{\left|\boldsymbol{S}_{k}+\boldsymbol{\Lambda}_{k}+\frac{N \kappa}{N+\kappa}\left(\boldsymbol{m}_{k}-\boldsymbol{\lambda}_{k}\right)\left(\boldsymbol{m}_{k}-\boldsymbol{\lambda}_{k}\right)^{t}\right|^{\frac{N+\nu_{k}}{2}}} . \tag{15}
\end{align*}
$$

### 1.2.2 Posterior probability

The posterior distribution for a given model of dependence can then be obtained by application of Bayes' theorem, yielding

$$
\begin{equation*}
\operatorname{Pr}(\mathcal{B} \mid \boldsymbol{x}) \propto \operatorname{Pr}(\mathcal{B}) \mathrm{p}(\boldsymbol{x} \mid \mathcal{B}) . \tag{16}
\end{equation*}
$$

Since

$$
\begin{equation*}
(2 \pi)^{-\frac{D N}{2}}\left(\frac{\kappa}{N+\kappa}\right)^{\frac{D}{2}} \tag{17}
\end{equation*}
$$

does not depend on $\mathcal{B}$, this quantity does not change when $h$ changes. It therefore disappears in the normalization constant and we have
$\operatorname{Pr}(\mathcal{B} \mid \boldsymbol{x}) \propto \operatorname{Pr}(\mathcal{B}) \prod_{k=1}^{K} \frac{Z\left(D_{k}, N+\nu_{k}\right)}{Z\left(D_{k}, \nu_{k}\right)} \frac{\left|\boldsymbol{\Lambda}_{k}\right|^{\frac{\nu_{k}}{2}}}{\left|\boldsymbol{S}_{k}+\boldsymbol{\Lambda}_{k}+\frac{N \kappa}{N+\kappa}\left(\boldsymbol{m}_{k}-\boldsymbol{\lambda}_{k}\right)\left(\boldsymbol{m}_{k}-\boldsymbol{\lambda}_{k}\right)^{\mathrm{t}}\right|^{\frac{N+\nu_{k}}{2}}}$.

Setting $\kappa \rightarrow 0$, we obtain the result of Equation (14).

## 2 Results for the cross-classified multinomial distribution

### 2.1 Marginal model likelihood

The marginalization formula yields

$$
\begin{equation*}
\operatorname{Pr}(\boldsymbol{y} \mid \mathcal{B})=\int \mathrm{p}\left(\boldsymbol{\theta}_{1}, \ldots, \boldsymbol{\theta}_{K}\right) \operatorname{Pr}\left(\boldsymbol{y} \mid \boldsymbol{\theta}_{1}, \ldots, \boldsymbol{\theta}_{K}\right) \prod_{k=1}^{K} \mathrm{~d} \boldsymbol{\theta}_{k} \tag{19}
\end{equation*}
$$

Assuming that the different parameters are a priori independent, the prior distribution reads

$$
\begin{equation*}
\mathrm{p}\left(\boldsymbol{\theta}_{1}, \ldots, \boldsymbol{\theta}_{K}\right)=\prod_{k=1}^{K} \mathrm{p}\left(\boldsymbol{\theta}_{k}\right), \tag{20}
\end{equation*}
$$

where, for each $\mathrm{p}\left(\boldsymbol{\theta}_{k}\right)$, we set a Dirichlet distribution with parameters $a_{\boldsymbol{x}_{k}}$ for $\boldsymbol{x}_{k} \in E_{B_{k}}$

$$
\begin{equation*}
\mathrm{p}\left(\boldsymbol{\theta}_{k}\right)=\frac{\Gamma\left(\sum_{\boldsymbol{x}_{k} \in E_{B_{k}}} a_{\boldsymbol{x}_{k}}\right)}{\prod_{\boldsymbol{x}_{k} \in E_{B_{k}}} \Gamma\left(a_{\boldsymbol{x}_{k}}\right)} \prod_{\boldsymbol{x}_{k} \in E_{B_{k}}} \theta_{\boldsymbol{x}_{k}}^{a_{\boldsymbol{x}_{k}}} . \tag{21}
\end{equation*}
$$

According to the assumption of mutual independence, we have for the likelihood

$$
\begin{equation*}
\operatorname{Pr}\left(\boldsymbol{y} \mid \boldsymbol{\theta}_{1}, \ldots, \boldsymbol{\theta}_{K}\right)=\prod_{k=1}^{K} \operatorname{Pr}\left(\boldsymbol{y}_{k} \mid \boldsymbol{\theta}_{k}\right), \tag{22}
\end{equation*}
$$

with

$$
\begin{equation*}
\operatorname{Pr}\left(\boldsymbol{y}_{k} \mid \boldsymbol{\theta}_{k}\right)=\prod_{\boldsymbol{x}_{k} \in E_{B_{k}}} \theta_{\boldsymbol{x}_{k}}^{N_{\boldsymbol{x}_{k}}} \tag{23}
\end{equation*}
$$

where $N_{\boldsymbol{x}_{k}}$ is the number of time that we observe $\boldsymbol{x}_{k}$. Putting the prior and likelihood together into Bayes' theorem yields for the marginal model likelihood

$$
\begin{equation*}
\operatorname{Pr}(\boldsymbol{y} \mid \mathcal{B})=\prod_{k=1}^{K} \frac{\Gamma\left(\sum_{\boldsymbol{x}_{k} \in E_{B_{k}}} a_{\boldsymbol{x}_{k}}\right)}{\prod_{\boldsymbol{x}_{k} \in E_{B_{k}}} \Gamma\left(a_{\boldsymbol{x}_{k}}\right)} \int \prod_{\boldsymbol{x}_{k} \in E_{B_{k}}} \theta_{\boldsymbol{x}_{k}}^{N_{\boldsymbol{x}_{k}}+a_{\boldsymbol{x}_{k}}} \mathrm{~d} \boldsymbol{\theta}_{k} \tag{24}
\end{equation*}
$$

As a function of $\boldsymbol{\theta}_{k}$, this expression is proportional to a Dirichlet distribution with parameters $N_{\boldsymbol{x}_{k}}+a_{\boldsymbol{x}_{k}}$ for $\boldsymbol{x}_{k} \in E_{B_{k}}$. Integration with respect to $\boldsymbol{\theta}_{k}$ therefore yields

$$
\begin{equation*}
\operatorname{Pr}(\boldsymbol{y} \mid \mathcal{B})=\prod_{k=1}^{K} \frac{\Gamma\left(\sum_{\boldsymbol{x}_{k} \in E_{B_{k}}} a_{\boldsymbol{x}_{k}}\right)}{\prod_{\boldsymbol{x}_{k} \in E_{B_{k}}} \Gamma\left(a_{\boldsymbol{x}_{k}}\right)} \frac{\prod_{\boldsymbol{x}_{k} \in E_{B_{k}}} \Gamma\left(N_{\boldsymbol{x}_{k}}+a_{\boldsymbol{x}_{k}}\right)}{\Gamma\left(\sum_{\boldsymbol{x}_{k} \in E_{B_{k}}} N_{\boldsymbol{x}_{k}}+a_{\boldsymbol{x}_{k}}\right)} . \tag{25}
\end{equation*}
$$

### 2.2 Asymptotic approximation

From the previous equation, we have
$\ln \operatorname{Pr}(\boldsymbol{y} \mid \mathcal{B})=\sum_{k=1}^{K}\left[\sum_{\boldsymbol{x}_{k} \in E_{B_{k}}} \ln \Gamma\left(N_{\boldsymbol{x}_{k}}+a_{\boldsymbol{x}_{k}}\right)-\ln \Gamma\left(\sum_{\boldsymbol{x}_{k} \in E_{B_{k}}} N_{\boldsymbol{x}_{k}}+a_{\boldsymbol{x}_{k}}\right)\right]+\mathrm{cst}$,
where "cst" is a term that does not depend on the data. Set

$$
a_{k}=\sum_{\boldsymbol{x}_{k} \in E_{B_{k}}} a_{\boldsymbol{x}_{k}}
$$

and $f_{\boldsymbol{x}_{k}}=N_{\boldsymbol{x}_{k}} / N$, so that $\sum_{\boldsymbol{x}_{k} \in E_{B_{k}}} f_{\boldsymbol{x}_{k}}=1$. In the following, we assume large data set, $N \rightarrow \infty$ and use the following approximation for the Gamma function [3, p. 257]

$$
\begin{equation*}
\ln \Gamma(z)=\left(z-\frac{1}{2}\right) \ln z-z+O(1) \tag{27}
\end{equation*}
$$

We have

$$
\begin{align*}
\ln \Gamma\left(N+a_{k}\right) & =\left(N+a_{k}-\frac{1}{2}\right) \ln \left(N+a_{k}\right)-\left(N+a_{k}\right)+O(1) \\
& =N \ln N-N+\left(a_{k}-\frac{1}{2}\right) \ln N+O(1) \tag{28}
\end{align*}
$$

and, similarly,

$$
\begin{align*}
\ln \Gamma\left(N_{\boldsymbol{x}_{k}}+a_{\boldsymbol{x}_{k}}\right) & =\ln \Gamma\left(f_{\boldsymbol{x}_{k}} N+a_{\boldsymbol{x}_{k}}\right) \\
& =\left(f_{\boldsymbol{x}_{k}} N+a_{\boldsymbol{x}_{k}}-\frac{1}{2}\right) \ln \left(f_{\boldsymbol{x}_{k}} N+a_{\boldsymbol{x}_{k}}\right)-\left(f_{\boldsymbol{x}_{k}} N+a_{\boldsymbol{x}_{k}}\right)+O(1) \\
& =f_{\boldsymbol{x}_{k}} N \ln N+N\left(f_{\boldsymbol{x}_{k}} \ln f_{\boldsymbol{x}_{k}}-f_{\boldsymbol{x}_{k}}\right)+\left(a_{\boldsymbol{x}_{k}}-\frac{1}{2}\right) \ln N+O(1) . \tag{29}
\end{align*}
$$

Putting these two results together yields for the log marginal model likelihood

$$
\begin{equation*}
\ln \operatorname{Pr}(\boldsymbol{y} \mid \mathcal{B})=\sum_{k=1}^{K}\left[N \sum_{\boldsymbol{x}_{k} \in E_{B_{k}}} f_{\boldsymbol{x}_{k}} \ln f_{\boldsymbol{x}_{k}}-\frac{I_{B_{k}}-1}{2} \ln N\right]+O(1) \tag{30}
\end{equation*}
$$

Considering the log posterior distribution instead of the marginal model likelihood only adds the $\log$ prior which is itself $O(1)$.

Maximum-likelihood estimate. For model $H$ and block $k$, the maximumlikelihood estimate is given by

$$
\begin{equation*}
\widehat{\theta}_{\boldsymbol{x}_{k}}=\frac{N_{\boldsymbol{x}_{k}}}{N}=f_{\boldsymbol{x}_{k}} \tag{31}
\end{equation*}
$$

The corresponding maximum of the log-likelihood is then equal to

$$
\begin{equation*}
\ln \operatorname{Pr}\left(\boldsymbol{y} \mid \widehat{\boldsymbol{\theta}}_{1}, \ldots, \widehat{\boldsymbol{\theta}}_{K}\right)=\sum_{k=1}^{K} N \sum_{\boldsymbol{x}_{k} \in E_{B_{k}}} f_{\boldsymbol{x}_{k}} \ln f_{\boldsymbol{x}_{k}} \tag{32}
\end{equation*}
$$

which corresponds to the the first term in the right-hand side of the above approximation.

## 3 Results regarding partitions

### 3.1 Asymptotic approximation for Bell numbers

We have the following asymptotic approximation [4, §6.2]

$$
\begin{equation*}
\frac{\ln \varpi_{D}}{D}=\ln D-\ln \ln D-1+O\left(\frac{\ln \ln D}{\ln D}\right) \tag{33}
\end{equation*}
$$

showing that

$$
\begin{equation*}
\varpi_{D}=O\left[\left(\frac{D}{\ln D}\right)^{D}\right] \tag{34}
\end{equation*}
$$

see also [5, §7.2.1.5].

### 3.2 Partitioning a set in two blocs

We here prove that $\left\{\begin{array}{l}d \\ 2\end{array}\right\}=2^{d-1}-1$. First, there is a one-to-one mapping between the set of functions $\phi:[d] \rightarrow\{0,1\}^{d}$ and the set of partitioning of $[d]$ into two subsets $A$ and $B$ (for instance, by translating $\phi(i)=0$ to $i \in A$ and $\phi(i)=1$ to $i \in B)$. There are $2^{d}$ such functions. Among these functions, two correspond to a partitioning of $[d]$ into only one block: $\phi([d])=\{0\}^{d}$ (corresponding to $A=[d]$ and $B=\emptyset$ ) and $\phi([d])=\{1\}^{d}$ (corresponding to $A=\emptyset$ and $B=[d]$ ), which we remove, leaving ony $2^{d}-2$ functions. Finally, each function $\phi$ can be uniquely associated to a different function $\psi$ that only switches labels $A$ and $B$, for instance, by defining $\psi$ such that $\psi(i)=1-\phi(i)$. Since the labels do not interest us for partitioning, we are left with $\left(2^{d}-2\right) / 2=2^{d-1}-1$ distinct cases.

### 3.3 Patterns of mutual independence and exchangeability

We here give a quick example of the implication of assuming exchangeability for the prior distribution on partitions. Consider the case of $D=3$ variables $X_{1}, X_{2}$, and $X_{3}$. There are $\varpi_{3}=5$ potential partitions: $1|2| 3,12|3,13| 2$, $23 \mid 1$, and 123 . Since $13 \mid 2$ can be obtained from $12 \mid 3$ by permutation of labels 2 and 3 , exchangeability requires for a prior $P_{3}$

$$
\begin{equation*}
P_{3}([12 \mid 3])=P_{3}([13 \mid 2]) . \tag{35}
\end{equation*}
$$

Similarly, since $23 \mid 1$ can be obtained from $12 \mid 3$ by permutation of labels 1 and 3 ,

$$
\begin{equation*}
P_{3}([12 \mid 3])=P_{3}([23 \mid 1]) \tag{36}
\end{equation*}
$$

So, to define $P_{3}$, we would have to set $P_{3}([1|2| 3]), P_{3}([12 \mid 3])=P_{3}([13 \mid 2])=$ $P_{3}([23 \mid 1])$ and $P_{3}([123])$, with the further constraint that all probabilities sum to 1, i.e.,

$$
\begin{equation*}
P_{3}([1|2| 3])+3 P_{3}([12 \mid 3])+P_{3}([123])=1 . \tag{37}
\end{equation*}
$$

### 3.4 Patterns of mutual independence and consistency

We here demonstrate why the requirement of having a prior distribution on the set of partitions that is consistent in the sense of [6] is not valid for patterns of mutual independence. Consistency relies on the fact that a prior can be generated constructively from a set with $D$ variables by adding one variable, leading to a set with $D+1$ variables. In our case, it implies that knowing the pattern of mutual independence between $D$ variables strongly constrains the pattern of mutual independence of the same $D$ variables to which one extra variable is added. In the simple case $D=2$, assuming consistency would imply that the pattern of mutual independence between $X_{1}$ and $X_{2}$ constrains that between $X_{1}, X_{2}$, and $X_{3}$. Unfortunately, this is not true.

Two variables $X_{1}$ and $X_{2}$ can potentially be partitioned in $\varpi_{2}=2$ different ways, namely the one-block partition 12 and the two-block partition $1 \mid 2$. Adding one variable $X_{3}$, there are $\varpi_{3}=5$ potential partitions: $1|2| 3$, $12|3,13| 2,23 \mid 1$, and 123 . Since adding 3 to partition 12 can be done in two different ways, namely $12 \mid 3$ and 123 , consistency would requir ${ }^{1}$

$$
\begin{equation*}
P_{2}([12])=P_{3}([12 \mid 3])+P_{3}([123]) . \tag{38}
\end{equation*}
$$

Similarly, since adding 3 to partition $1 \mid 2$ can be done in three different ways, namely $13|2,1| 23$, and $1|2| 3$, consistency would entail

$$
\begin{equation*}
P_{2}([1 \mid 2])=P_{3}([1|2| 3])+P_{3}([12 \mid 3])+P_{3}([1 \mid 23]) \tag{39}
\end{equation*}
$$

In words, this second case means that knowing that $X_{1}$ and $X_{2}$ are independent (i.e., the correct partition is $1 \mid 2$ ) when considering only these two variables entails that the pattern of dependence between $X_{1}, X_{2}$, and $X_{3}$ has to be either $1|2| 3,12 \mid 3$, or $1 \mid 23$; in particular, it cannot be 123 .

To show that this is not true, assume that $X_{1}, X_{2}$ and $X_{3}$ are related through the directed acyclic graph depicted in Figure 1. $X_{1}$ and $X_{2}$ are independent, corresponding to partition $1 \mid 2$, yet we neither have $\left(X_{1}, X_{3}\right)$ and $X_{2}$ mutually independent (which would correspond to partition 13|2) nor $\left(X_{2}, X_{3}\right)$ and $X_{1}$ mutually independent (which would correspond to partition $1 \mid 23$, nor $X_{1}, X_{2}$, and $X_{3}$ mutually independent (which would correspond to partition $1|2| 3)$. The correct partition is 123 . This is a consequence of the fact that, while the distribution of $\left(X_{1}, X_{2}, X_{3}\right)$ (from which we can determine the pattern of mutual independence between $X_{1}, X_{2}$, and $X_{3}$ ) makes it possible to determine the marginal of ( $X_{1}, X_{2}$ ) (from which we can determine the pattern of mutual independence between $X_{1}$ and $X_{2}$ ), the converse does not hold.
(A)

(B)


Figure 1: Mutual independence may not respect consistency. (A) Example where $X_{1}$ and $X_{2}$ are independent, corresponding to partition $1 \mid 2$, yet there is no mutual independence between $X_{1}, X_{2}$ and $X_{3}$, corresponding to partition 123. (B) Example where $X_{1}$ and $X_{2}$ are not independent, corresponding to partition 12 , and where there is again no mutual independence between $X_{1}, X_{2}$ and $X_{3}$, corresponding to partition 123 .

[^0]
## 4 Simulation study

### 4.1 Gaussian data

We plotted the relationship between BayesOptim and either BayesCorr (Fig. 2) or Bic (Fig. 3) depending on the number of clusters in the simulated Gaussian data.




Figure 2: Simulation study. Comparison of probability obtained for BayesOptim and BayesCorr depending on the number of clusters in the simulated Gaussian data.


Figure 3: Simulation study. Comparison of probability obtained for BayesOptim and Bic depending on the number of clusters in the simulated Gaussian data.

### 4.2 Non-Gaussian data

We plotted the global relationship between BayesOptim and either BayesCorr or Bic depending on the degree of freedom of the Student- $t$ distributions and the number of clusters in the simulated non-Gaussian data (Fig. 4). For BayesOptim, we plotted the evolution of four quantities as a function of sample size: posterior probability of the true model, and ratio of posterior probability of true model to posterior probability of maximum a posteriori
(Fig. 5); rank of true model when ranking potential models by decreasing posterior probability, and entropy of posterior distribution (Fig. 6).


Figure 4: Simulation study. Comparison of probability obtained for BayesOptim and either BayesCorr (left) or Bic (right) depending on the number of degrees of freedom of the Student- $t$ distributions and the number of clusters in the simulated data.


 ${ }^{50} \quad{ }^{100} \quad$| 150 |
| :--- |
| Number of samples |
| 200 |

Figure 5: Simulation study. For Bayes0ptim, boxplot (median and [25\%, $75 \%$ ] probability interval) of posterior probability for the true model (top) and ratio of posterior probability of true model to posterior probability of maximum a posteriori (bottom) for data of various types.


Figure 6: Simulation study. For BayesOptim, boxplot (median and [ $25 \%, 75 \%$ ] probability interval) of rank of true model when ranking potential models by decreasing posterior probability (top) and entropy of posterior distribution (bottom) for data of various types.

## 5 HIV study data

In Table 1, we reported the relevances [7] associated to the HIV study data.

Table 1: HIV study: Relevances from the exact probability distribution BayesOptim.

| Cardinality | Set | Relevance | Cardinality | Set | Relevance |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 6 | 123456 | $3.90 \times 10^{-5}$ |
| 1 | 1 | $1.40 \times 10^{-6}$ | 5 | 23456 | $1.57 \times 10^{-10}$ |
|  | 2 | $2.40 \times 10^{-5}$ |  | 13456 | $1.25 \times 10^{-8}$ |
|  | 3 | $3.43 \times 10^{-7}$ |  | 12456 | $1.68 \times 10^{-10}$ |
|  | 4 | 0.994 |  | 12356 | 0.852 |
|  | 5 | $4.63 \times 10^{-9}$ |  | 12346 | $4.89 \times 10^{-14}$ |
|  | 6 | $1.80 \times 10^{-3}$ |  | 12345 | $7.25 \times 10^{-7}$ |
| 2 | 12 | 0.134 | 4 | 3456 | $8.35 \times 10^{-4}$ |
|  | 13 | $1.70 \times 10^{-13}$ |  | 2456 | $1.44 \times 10^{-16}$ |
|  | 14 | $1.49 \times 10^{-7}$ |  | 2356 | $2.43 \times 10^{-7}$ |
|  | 15 | $3.25 \times 10^{-13}$ |  | 2346 | $1.15 \times 10^{-16}$ |
|  | 16 | $5.93 \times 10^{-8}$ |  | 2345 | $4.06 \times 10^{-11}$ |
|  | 23 | $1.24 \times 10^{-13}$ |  | 1456 | $5.42 \times 10^{-15}$ |
|  | 24 | $7.46 \times 10^{-6}$ |  | 1356 | $3.03 \times 10^{-5}$ |
|  | 25 | $8.54 \times 10^{-15}$ |  | 1346 | $2.35 \times 10^{-17}$ |
|  | 26 | $2.90 \times 10^{-7}$ |  | 1345 | $9.54 \times 10^{-10}$ |
|  | 34 | $1.35 \times 10^{-7}$ |  | 1256 | $4.54 \times 10^{-7}$ |
|  | 35 | $9.21 \times 10^{-3}$ |  | 1246 | $1.61 \times 10^{-5}$ |
|  | 36 | $8.72 \times 10^{-9}$ |  | 1245 | $1.71 \times 10^{-10}$ |
|  | 45 | $2.30 \times 10^{-9}$ |  | 1236 | $1.80 \times 10^{-10}$ |
|  | 46 | $2.57 \times 10^{-4}$ |  | 1235 | $1.01 \times 10^{-3}$ |
|  | 56 | $6.41 \times 10^{-10}$ |  | 1234 | $8.49 \times 10^{-13}$ |
| 3 | 123 | $1.69 \times 10^{-10}$ |  |  |  |
|  | 124 | $3.82 \times 10^{-3}$ |  |  |  |
|  | 125 | $2.60 \times 10^{-8}$ |  |  |  |
|  | 126 | $8.86 \times 10^{-3}$ |  |  |  |
|  | 134 | $4.52 \times 10^{-15}$ |  |  |  |
|  | 135 | $1.16 \times 10^{-7}$ |  |  |  |
|  | 136 | $1.09 \times 10^{-14}$ |  |  |  |
|  | 145 | $1.96 \times 10^{-14}$ |  |  |  |
|  | 146 | $5.37 \times 10^{-10}$ |  |  |  |
|  | 156 | $1.54 \times 10^{-12}$ |  |  |  |
|  | 234 | $1.16 \times 10^{-14}$ |  |  |  |
|  | 235 | $3.58 \times 10^{-9}$ |  |  |  |
|  | 236 | $1.91 \times 10^{-14}$ |  |  |  |
|  | 245 | $7.11 \times 10^{-16}$ |  |  |  |
|  | 246 | $6.78 \times 10^{-9}$ |  |  |  |
|  | 256 | $2.42 \times 10^{-14}$ |  |  |  |
|  | 345 | $7.23 \times 10^{-4}$ |  |  |  |
|  | 346 | $4.32 \times 10^{-10}$ |  |  |  |
|  | 356 | 0.136 |  |  |  |
|  | 456 | $2.69 \times 10^{-11}$ |  |  |  |

## References

[1] T. W. Anderson, An Introduction to Multivariate Statistical Analysis, ser. Wiley Publications in Statistics. John Wiley and Sons, New York, 1958.
[2] A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin, Bayesian Data Analysis, ser. Texts in Statistical Science. Chapman \& Hall, London, 1998.
[3] M. Abramowitz and I. A. Stegun, Eds., Handbook of Mathematical Functions, ser. Applied Math. National Bureau of Standards, 1972, no. 55.
[4] N. G. de Bruijn, Asymptotic Methods in Analysis, 2nd ed., ser. Bibliotheca Mathematica. A Series of Monographs on Pure and Applied Mathematics. North-Holland Publishing Co., Amsterdam, 1961, vol. IV.
[5] D. E. Knuth, The Art of Computer Programming. Volume 4, Fascicle 3B. Addison-Wesley, Boston, 2005.
[6] J. G. Booth, G. Casella, and J. P. Hobert, "Clustering using objective functions and stochastic search," Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol. 70, pp. 119-139, 2008.
[7] J. A. Hartigan, "Partition models," Communications in Statistics. Theory and Methods, vol. 19, pp. 2745-2756, 1990.


[^0]:    ${ }^{1}$ In the following, we put partition models that appear in probabilities between brackets, to make it clear that the "|" sign should not be interpreted as a conditioning sign.

