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1 Results for the multivariate normal distribution

1.1 Maximum likelihood

Under the assumption of a partitioning into K independent components,
the likelihood reads

p(S|B,Σ1, . . . ,ΣK) =
|S|

N−D−1
2

Z(D,N)

K∏
k=1

|Σk|−
N
2 exp

[
−1

2
tr
(
SkΣ

−1
k

)]
, (1)

1



leading to a log-likelihood that is equal to

l(Σ1, . . . ,ΣK) = cst−
K∑
k=1

N

2

[
ln |Σk| −

1

2
tr
(
SkΣ

−1
k

)]
. (2)

It is the sum of K independent terms, each of which is maximal for Σ̂k =
Sk/N [1, Th. 3.2.1]. The corresponding maximum of the log-likelihood is

l(Σ̂1, . . . , Σ̂K) = cst−
K∑
k=1

N

2
ln |Σ̂k| −

ND

2
. (3)

The only part of this expression that does depend on the partitioning in-
duced by B is

−
K∑
k=1

N

2
ln |Σ̂k|. (4)

1.2 Bayesian inference with unknown mean and covariance

1.2.1 Marginal model likelihood

Case of one vector. Computation of the marginal model likelihood for
the full dataset and i.i.d. multivariate normal distribution yields

p(x|B) =

∫
p(x,µ,Σ|B) dµdΣ

=

∫
p(x|B,µ,Σ) p(µ,Σ|B) dµd Σ. (5)

The likelihood for the whole dataset reads

p(µ,Σ|B) = (2π)−
ND
2 |Σ|−

N
2 exp

[
−1

2

∑
n

(xn − µ)tΣ−1(xn − µ)

]
. (6)

Following [2, §3.6], we set conjugate priors for Σ and µ: Inverse-Wishart
with ν degrees of freedom and inverse scale matrix Λ for Σ; multivariate
normal with mean λ and covariance matrix Σ/κ for µ:

p(Σ|B) =
|Λ|

ν
2

Z(D, ν)
|Σ|−

ν+D+1
2 exp

[
−1

2
tr(Σ−1Λ)

]
(7)

p(µ|B,Σ) = (2π)−
D
2

∣∣∣∣Σκ
∣∣∣∣− 1

2

exp

[
−1

2
(µ− λ)t

(
Σ

κ

)−1
(µ− λ)

]
. (8)

The product p(x|B,µ,Σ) p(µ,Σ|B) can therefore be expressed as

(2π)−
D(N+1)

2 |Σ|−
N+ν+D+2

2 κ
D
2
|Λ|

ν
2

Z(D, ν)

× exp

{
−1

2

[
(N + κ)(µ− µ̂)tΣ−1(µ− µ̂) + tr

{
Σ−1

[
S + Λ +

Nκ

N + κ
(m− λ)(m− λ)t

]}]}
,

(9)
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where m is the sample mean. As a function of µ, this quantity is propor-
tional to a multivariate normal distribution with mean µ̂ and covariance
matrix Σ/(N + κ). Integration with respect to µ therefore involves multi-
plication by

(2π)
D
2

∣∣∣∣ Σ

N + κ

∣∣∣∣ 12 , (10)

yielding

(2π)−
DN
2 |Σ|−

N+ν+D+1
2

(
κ

N + κ

)D
2 |Λ|

ν
2

Z(D, ν)

× exp

(
−1

2
tr

{
Σ−1

[
S + Λ +

Nκ

N + κ
(m− λ)(m− λ)t

]})
. (11)

As a function of Σ, this quantity is proportional to an inverse-Wishart dis-
tribution with N + ν degrees of freedom and inverse scale matrix

S + Λ +
Nκ

N + κ
(m− λ)(m− λ)t. (12)

Integration with respect to Σ therefore involves multiplication by

Z(D,N + ν)

∣∣∣∣S + Λ +
Nκ

N + κ
(m− λ)(m− λ)t

∣∣∣∣−N+ν
2

, (13)

finally yielding

p(x|B) = (2π)−
DN
2

(
κ

N + κ

)D
2 Z(D,N + ν)

Z(D, ν)

|Λ|
ν
2∣∣∣S + Λ + Nκ

N+κ(m− λ)(m− λ)t
∣∣∣N+ν

2

.

(14)

Case of several independent subvectors. If we have several indepen-
dent subvectors instead, a similar calculation can be performed, leading to

p(x|B) = (2π)−
DN
2

(
κ

N + κ

)D
2

×
K∏
k=1

Z(Dk, N + νk)

Z(Dk, νk)

|Λk|
νk
2∣∣∣Sk + Λk + Nκ

N+κ(mk − λk)(mk − λk)t
∣∣∣N+νk

2

.

(15)
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1.2.2 Posterior probability

The posterior distribution for a given model of dependence can then be
obtained by application of Bayes’ theorem, yielding

Pr(B|x) ∝ Pr(B) p(x|B). (16)

Since

(2π)−
DN
2

(
κ

N + κ

)D
2

(17)

does not depend on B, this quantity does not change when h changes. It
therefore disappears in the normalization constant and we have

Pr(B|x) ∝ Pr(B)

K∏
k=1

Z(Dk, N + νk)

Z(Dk, νk)

|Λk|
νk
2∣∣∣Sk + Λk + Nκ

N+κ(mk − λk)(mk − λk)t
∣∣∣N+νk

2

.

(18)

Setting κ→ 0, we obtain the result of Equation (14).

2 Results for the cross-classified multinomial dis-
tribution

2.1 Marginal model likelihood

The marginalization formula yields

Pr(y|B) =

∫
p(θ1, . . . ,θK) Pr(y|θ1, . . . ,θK)

K∏
k=1

dθk. (19)

Assuming that the different parameters are a priori independent, the prior
distribution reads

p(θ1, . . . ,θK) =
K∏
k=1

p(θk), (20)

where, for each p(θk), we set a Dirichlet distribution with parameters axk
for xk ∈ EBk

p(θk) =
Γ
(∑

xk∈EBk
axk

)
∏

xk∈EBk
Γ(axk)

∏
xk∈EBk

θ
axk
xk . (21)

According to the assumption of mutual independence, we have for the like-
lihood

Pr(y|θ1, . . . ,θK) =

K∏
k=1

Pr(yk|θk), (22)
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with
Pr(yk|θk) =

∏
xk∈EBk

θ
Nxk
xk , (23)

where Nxk is the number of time that we observe xk. Putting the prior
and likelihood together into Bayes’ theorem yields for the marginal model
likelihood

Pr(y|B) =
K∏
k=1

Γ
(∑

xk∈EBk
axk

)
∏

xk∈EBk
Γ(axk)

∫ ∏
xk∈EBk

θ
Nxk

+axk
xk dθk. (24)

As a function of θk, this expression is proportional to a Dirichlet distribution
with parameters Nxk + axk for xk ∈ EBk . Integration with respect to θk
therefore yields

Pr(y|B) =

K∏
k=1

Γ
(∑

xk∈EBk
axk

)
∏

xk∈EBk
Γ(axk)

∏
xk∈EBk

Γ(Nxk + axk)

Γ
(∑

xk∈EBk
Nxk + axk

) . (25)

2.2 Asymptotic approximation

From the previous equation, we have

ln Pr(y|B) =

K∑
k=1

 ∑
xk∈EBk

ln Γ(Nxk + axk)− ln Γ

 ∑
xk∈EBk

Nxk + axk

+ cst,

(26)

where ”cst“ is a term that does not depend on the data. Set

ak =
∑

xk∈EBk

axk

and fxk = Nxk/N , so that
∑

xk∈EBk
fxk = 1. In the following, we assume

large data set, N →∞ and use the following approximation for the Gamma
function [3, p. 257]

ln Γ(z) =

(
z − 1

2

)
ln z − z +O(1). (27)

We have

ln Γ(N + ak) =

(
N + ak −

1

2

)
ln(N + ak)− (N + ak) +O(1)

= N lnN −N +

(
ak −

1

2

)
lnN +O(1) (28)

5



and, similarly,

ln Γ(Nxk + axk) = ln Γ(fxkN + axk)

=

(
fxkN + axk −

1

2

)
ln(fxkN + axk)− (fxkN + axk) +O(1)

= fxkN lnN +N(fxk ln fxk − fxk) +

(
axk −

1

2

)
lnN +O(1).

(29)

Putting these two results together yields for the log marginal model likeli-
hood

ln Pr(y|B) =
K∑
k=1

N ∑
xk∈EBk

fxk ln fxk −
IBk − 1

2
lnN

+O(1). (30)

Considering the log posterior distribution instead of the marginal model
likelihood only adds the log prior which is itself O(1).

Maximum-likelihood estimate. For modelH and block k, the maximum-
likelihood estimate is given by

θ̂xk =
Nxk

N
= fxk . (31)

The corresponding maximum of the log-likelihood is then equal to

ln Pr(y|θ̂1, . . . , θ̂K) =

K∑
k=1

N
∑

xk∈EBk

fxk ln fxk , (32)

which corresponds to the the first term in the right-hand side of the above
approximation.

3 Results regarding partitions

3.1 Asymptotic approximation for Bell numbers

We have the following asymptotic approximation [4, §6.2]

ln$D

D
= lnD − ln lnD − 1 +O

(
ln lnD

lnD

)
, (33)

showing that

$D = O

[(
D

lnD

)D]
, (34)

see also [5, §7.2.1.5].
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3.2 Partitioning a set in two blocs

We here prove that
{
d
2

}
= 2d−1 − 1. First, there is a one-to-one mapping

between the set of functions φ : [d] → {0, 1}d and the set of partitioning of
[d] into two subsets A and B (for instance, by translating φ(i) = 0 to i ∈ A
and φ(i) = 1 to i ∈ B). There are 2d such functions. Among these functions,
two correspond to a partitioning of [d] into only one block: φ([d]) = {0}d
(corresponding to A = [d] and B = ∅) and φ([d]) = {1}d (corresponding
to A = ∅ and B = [d]), which we remove, leaving ony 2d − 2 functions.
Finally, each function φ can be uniquely associated to a different function
ψ that only switches labels A and B, for instance, by defining ψ such that
ψ(i) = 1− φ(i). Since the labels do not interest us for partitioning, we are
left with (2d − 2)/2 = 2d−1 − 1 distinct cases.

3.3 Patterns of mutual independence and exchangeability

We here give a quick example of the implication of assuming exchangeability
for the prior distribution on partitions. Consider the case of D = 3 variables
X1, X2, and X3. There are $3 = 5 potential partitions: 1|2|3, 12|3, 13|2,
23|1, and 123. Since 13|2 can be obtained from 12|3 by permutation of labels
2 and 3, exchangeability requires for a prior P3

P3([12|3]) = P3([13|2]). (35)

Similarly, since 23|1 can be obtained from 12|3 by permutation of labels 1
and 3,

P3([12|3]) = P3([23|1]). (36)

So, to define P3, we would have to set P3([1|2|3]), P3([12|3]) = P3([13|2]) =
P3([23|1]) and P3([123]), with the further constraint that all probabilities
sum to 1, i.e.,

P3([1|2|3]) + 3P3([12|3]) + P3([123]) = 1. (37)

3.4 Patterns of mutual independence and consistency

We here demonstrate why the requirement of having a prior distribution
on the set of partitions that is consistent in the sense of [6] is not valid for
patterns of mutual independence. Consistency relies on the fact that a prior
can be generated constructively from a set with D variables by adding one
variable, leading to a set with D + 1 variables. In our case, it implies that
knowing the pattern of mutual independence between D variables strongly
constrains the pattern of mutual independence of the same D variables to
which one extra variable is added. In the simple case D = 2, assuming
consistency would imply that the pattern of mutual independence between
X1 and X2 constrains that between X1, X2, and X3. Unfortunately, this is
not true.
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Two variables X1 and X2 can potentially be partitioned in $2 = 2
different ways, namely the one-block partition 12 and the two-block partition
1|2. Adding one variable X3, there are $3 = 5 potential partitions: 1|2|3,
12|3, 13|2, 23|1, and 123. Since adding 3 to partition 12 can be done in two
different ways, namely 12|3 and 123, consistency would require1

P2([12]) = P3([12|3]) + P3([123]). (38)

Similarly, since adding 3 to partition 1|2 can be done in three different ways,
namely 13|2, 1|23, and 1|2|3, consistency would entail

P2([1|2]) = P3([1|2|3]) + P3([12|3]) + P3([1|23]). (39)

In words, this second case means that knowing that X1 and X2 are inde-
pendent (i.e., the correct partition is 1|2) when considering only these two
variables entails that the pattern of dependence between X1, X2, and X3

has to be either 1|2|3, 12|3, or 1|23; in particular, it cannot be 123.
To show that this is not true, assume that X1, X2 and X3 are related

through the directed acyclic graph depicted in Figure 1. X1 and X2 are
independent, corresponding to partition 1|2, yet we neither have (X1, X3)
and X2 mutually independent (which would correspond to partition 13|2)
nor (X2, X3) and X1 mutually independent (which would correspond to
partition 1|23, nor X1, X2, and X3 mutually independent (which would
correspond to partition 1|2|3). The correct partition is 123. This is a conse-
quence of the fact that, while the distribution of (X1, X2, X3) (from which
we can determine the pattern of mutual independence between X1, X2, and
X3) makes it possible to determine the marginal of (X1, X2) (from which
we can determine the pattern of mutual independence between X1 and X2),
the converse does not hold.

(A) (B)

X3

X1 X2

X3

X1 X2

Figure 1: Mutual independence may not respect consistency. (A) Exam-
ple where X1 and X2 are independent, corresponding to partition 1|2, yet
there is no mutual independence between X1, X2 and X3, corresponding to
partition 123. (B) Example where X1 and X2 are not independent, corre-
sponding to partition 12, and where there is again no mutual independence
between X1, X2 and X3, corresponding to partition 123.

1In the following, we put partition models that appear in probabilities between brackets,
to make it clear that the ”|“ sign should not be interpreted as a conditioning sign.
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4 Simulation study

4.1 Gaussian data

We plotted the relationship between BayesOptim and either BayesCorr

(Fig. 2) or Bic (Fig. 3) depending on the number of clusters in the sim-
ulated Gaussian data.
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Figure 2: Simulation study. Comparison of probability obtained for
BayesOptim and BayesCorr depending on the number of clusters in the
simulated Gaussian data.

9



0 0.2 0.4 0.6 0.8 1

Probability (BayesOptim)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

ba
bi

lit
y 

(B
ic

)

0 0.2 0.4 0.6 0.8 1

Probability (BayesOptim)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

ba
bi

lit
y 

(B
ic

)

0 0.2 0.4 0.6 0.8 1

Probability (BayesOptim)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

ba
bi

lit
y 

(B
ic

)

0 0.2 0.4 0.6 0.8 1

Probability (BayesOptim)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

ba
bi

lit
y 

(B
ic

)

0 0.2 0.4 0.6 0.8 1

Probability (BayesOptim)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

ba
bi

lit
y 

(B
ic

)

0 0.2 0.4 0.6 0.8 1

Probability (BayesOptim)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

ba
bi

lit
y 

(B
ic

)

Figure 3: Simulation study. Comparison of probability obtained for
BayesOptim and Bic depending on the number of clusters in the simulated
Gaussian data.

4.2 Non-Gaussian data

We plotted the global relationship between BayesOptim and either BayesCorr
or Bic depending on the degree of freedom of the Student-t distributions
and the number of clusters in the simulated non-Gaussian data (Fig. 4).
For BayesOptim, we plotted the evolution of four quantities as a function of
sample size: posterior probability of the true model, and ratio of posterior
probability of true model to posterior probability of maximum a posteriori
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(Fig. 5); rank of true model when ranking potential models by decreasing
posterior probability, and entropy of posterior distribution (Fig. 6).
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Figure 4: Simulation study. Comparison of probability obtained for
BayesOptim and either BayesCorr (left) or Bic (right) depending on the
number of degrees of freedom of the Student-t distributions and the number
of clusters in the simulated data.
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5 HIV study data

In Table 1, we reported the relevances [7] associated to the HIV study data.

Table 1: HIV study: Relevances from the exact probability distribution
BayesOptim.

Cardinality Set Relevance Cardinality Set Relevance

6 123456 3.90× 10−5

1 1 1.40× 10−6 5 23456 1.57× 10−10

2 2.40× 10−5 13456 1.25× 10−8

3 3.43× 10−7 12456 1.68× 10−10

4 0.994 12356 0.852
5 4.63× 10−9 12346 4.89× 10−14

6 1.80× 10−3 12345 7.25× 10−7

2 12 0.134 4 3456 8.35× 10−4

13 1.70× 10−13 2456 1.44× 10−16

14 1.49× 10−7 2356 2.43× 10−7

15 3.25× 10−13 2346 1.15× 10−16

16 5.93× 10−8 2345 4.06× 10−11

23 1.24× 10−13 1456 5.42× 10−15

24 7.46× 10−6 1356 3.03× 10−5

25 8.54× 10−15 1346 2.35× 10−17

26 2.90× 10−7 1345 9.54× 10−10

34 1.35× 10−7 1256 4.54× 10−7

35 9.21× 10−3 1246 1.61× 10−5

36 8.72× 10−9 1245 1.71× 10−10

45 2.30× 10−9 1236 1.80× 10−10

46 2.57× 10−4 1235 1.01× 10−3

56 6.41× 10−10 1234 8.49× 10−13

3 123 1.69× 10−10

124 3.82× 10−3

125 2.60× 10−8

126 8.86× 10−3

134 4.52× 10−15

135 1.16× 10−7

136 1.09× 10−14

145 1.96× 10−14

146 5.37× 10−10

156 1.54× 10−12

234 1.16× 10−14

235 3.58× 10−9

236 1.91× 10−14

245 7.11× 10−16

246 6.78× 10−9

256 2.42× 10−14

345 7.23× 10−4

346 4.32× 10−10

356 0.136
456 2.69× 10−11
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