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recherches et d’�etudes en sciences des interactions, CR�ESI, Center for Interaction Science, CIS, Paris, France

ABSTRACT
In directional statistics, the von Mises distribution is a key element in the
analysis of circular data. While there is a general agreement regarding the
estimation of its location parameter l, several methods have been pro-
posed to estimate the concentration parameter j. We here provide a thor-
ough evaluation of the behavior of 12 such estimators for datasets of size
N ranging from 2 to 8192 generated with a j ranging from 0 to 100. We
provide detailed results as well as a global analysis of the results, showing
that (1) for a given j, most estimators have behaviors that are very similar
for large datasets (N � 16) and more variable for small datasets, and (2) for
a given estimator, results are very similar if we consider the mean absolute
error for j � 1 and the mean relative absolute error for j � 1:
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1. Introduction

In directional statistics, the von Mises distribution is a key element in the analysis of circular
data. Its distribution is given by

f ðxÞ ¼ 1
2pI0ðjÞ e

j cos ðx�lÞ, x 2 0, 2pÞ,½ (1)

where l 2 ½0, 2pÞ is the location parameter, j � 0 the concentration parameter, and I0ðjÞ the
incomplete Bessel integral of the first kind,

I0ðjÞ ¼ 1
2p

ð2p
0
ej cos ðxÞ dx: (2)

The von Mises distribution vMðl,jÞ is a unimodal distribution with its mode at x ¼ l: j¼ 0
corresponds to the uniform distribution, and the larger j, the more concentrated the distribution
is around its mode. The von Mises distribution is a convenient way to model unimodal circular
or directional data in many fields of science (Fisher 1995) and naturally arises in a wide variety
of cases (Mardia and Jupp 2000, §3.5.4). It can be obtained by conditioning a bivariate normal
distribution on the circle, is close to the wrapped normal distribution, and tends to a normal dis-
tribution when j ! 1: Also, it is a maximum-entropy distribution and can be characterized by
the fact that the maximum likelihood of its location parameter is the sample mean direction. As
such, it is an analogue on the circle of the Gaussian distribution. It also appears as the equilib-
rium distribution of a von Mises process.
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While there is a general agreement regarding the estimation of l (Mardia and Jupp 2000,
§12.4.1), estimation of j has generated more research, and several methods have been proposed
so far. For a partial review, see, e.g., Mardia and Jupp (2000, §12.4.2). Here, we provide a system-
atic benchmark of existing estimators. More specifically, we considered 12 estimators: seven fre-
quentist estimators, including the maximum-likelihood estimator (Mardia and Jupp 2000, §5.3.1),
the marginal maximum-likelihood estimator (Schou 1978), two estimators with bias correction
(Best and Fisher 1981), two estimators based on the circular median (Lenth 1981; Ko 1992), and
an estimator based on the normal approximation (Abeyasekera and Collett 1982); and five
Bayesian estimators (Dowe et al. 1996), including three maximum a posteriori (MAP) estimators
and two minimum message length (MML) estimators. We assessed the behavior of these 12 esti-
mators for datasets of size N ranging from 2 to 8192 generated with a j ranging from 0 to 100.
We provide detailed results as well as a more global view of the estimators’ performance. Our
two main findings are that (1) for a given j, most estimators have behaviors that are very similar
for large datasets (N � 24) and much more variable for small datasets, and (2) for a given estima-
tor, results are very similar if one considers the mean absolute error for j � 1 and the mean rela-
tive absolute error for j � 1:

The outline of the manuscript is the following. In Sec. 2, we provide a quick description of the
12 estimators used here. The simulation study itself is detailed in Sec. 3. Further issues are dis-
cussed in Sec. 4.

2. Overview of existing estimators

We here quickly review existing approaches, including frequentist (Sec. 2.1) and Bayesian (Sec.
2.2) estimators. All approaches start from a sample fx1, :::, xNg of N independent and identically
distributed (i.i.d.) realizations of a vMðl, jÞ distribution with l and j unknown.

2.1. Frequentist estimators

Most frequentist estimators of j rely on the likelihood of the parameters. Letting �Reim be the
sample circular mean of the data,

�Reim ¼ 1
N

XN
n¼1

eixn , (3)

the likelihood can be expressed from Eq. (1) and the properties of �R as

ln Lðl,jÞ ¼ pðDjl,jÞ ¼ 2pI0ðjÞ½ ��N exp jN�R cos ðl�mÞ� �
: (4)

The maximum-likelihood estimator ĵ is the value of j that cancels the derivative of ln Lðl, jÞ.
Setting

AðjÞ ¼ I1ðjÞ
I0ðjÞ , (5)

ĵ is the solution of (Mardia and Jupp 2000, §5.3.1)

AðĵÞ ¼ �R: (6)

A marginal maximum-likelihood estimate ~j was also proposed. It is based on the expression of
the density of R ¼ N�R with respect to Lebesgue measure (Watson and Williams 1956; Mardia
1975),
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hNðR; jÞ ¼ I0ðjRÞ
I0ðjÞ½ �N RhNðR; 0Þ: (7)

The maximum ~j of this expression depends on the relationship between �R and N (Schou 1978)

� For 0 � �R � 1=
ffiffiffiffi
N

p
, ~j ¼ 0;

� For 1=
ffiffiffiffi
N

p
< �R < 1, ~j is the solution of

Að~jÞ ¼ �RAðN�R~jÞ; (8)

� For �R ¼ 1, there is no maximum (as it would correspond to ~j ¼ 1).

Using both a calculation based on a Taylor expansion around Eð�RÞ of ĵ ¼ A�1ð�RÞ from Eq. (6)
and a simulation study, Best and Fisher (1981) showed that the (regular) maximum-likelihood
estimator ĵ of Eq. (6) can be strongly biased for small j and N. They proposed to correct for
this bias using an approximate expansion, leading to

ĵ�
1 ¼

max ĵ � 2
Nĵ

, 0

� �
for ĵ < 2

ðN � 1Þ3
N3 þ N

ĵ for ĵ � 2:

8>>><
>>>:

(9)

They also proposed a jackknife correction of the bias,

ĵ�
2 ¼ max Nĵ � N � 1

N

XN
n¼1

ĵ�n, 0

( )
: (10)

By analogy with the median absolute deviation (Rousseeuw and Croux 1993) proposed an estima-
tor based on the median

ĵL ¼ 0:6724

mediann 2 1� cos ðxn � l̂medÞ½ �� � , (11)

where l̂med is the circular median (Mardia and Jupp 2000, §2.2.2). Ko (1992) improved this
approach by replacing the expectation and average of Eq. (6) with median and sampling median
(see also Ducharme and Milasevic 1990), yielding an estimator ĵmed such thatðmediann cos ðxn�l̂SBÞ½ �

�1

1
pI0ðĵmedÞ

eĵmedtffiffiffiffiffiffiffiffiffiffiffiffi
1� t2

p ¼ 1
2
, (12)

where l̂SB is any estimator of l that is standardized bias (SB) robust, such as the circular median
or the least median square (LMS) estimator.

Finally, Abeyasekera and Collett (1982) made use of the fact that a vMðl, jÞ distribution
is well approximated by the normal distribution Nðl, j�1Þ for large j and therefore proposed
as estimator of j the unbiased estimator for r�2, leading to the so-called linear estimator
for N> 3

ĵlin ¼ 1
N � 3

XN
n¼1

ðxn � �xÞ2
" #�1

, (13)

where �x is the linear mean, that is, the usual arithmetic mean

�x ¼ 1
N

XN
n¼1

xn:
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Note that there is an issue induced by the discontinuity at 0, which is dealt with by using a tech-
nical trick. Abeyasekera and Collett (1982) also proposed an improved estimator ĵ�

lin where the
bias is corrected by jackknifing the linear estimator.

2.2. Bayesian estimators

In a Bayesian setting, all the information that can be inferred about the parameters l and j from
a dataset D is summarized in the posterior distribution pðl,jjDÞ, which, according to Bayes’ the-
orem, can be expressed as

pðl, jjDÞ / pðl, jÞ pðDjl, jÞ, (14)

where “/” relates two expressions that are proportional. pðDjl,jÞ is the data likelihood, already
expressed in Eq. (4). pðl, jÞ is the prior distribution, which translates the information about the
parameters that is available independently of the data. A common approach is to assume no prior
dependence between parameters, so that pðl, jÞ ¼ pðlÞ pðjÞ: pðlÞ is classically set as a noninfor-
mative uniform distribution on the circle, pðlÞ ¼ 1=2p: As for pðjÞ, Dowe et al. (1996) consid-
ered the following two prior distributions

h2ðjÞ ¼ 2
pð1þ j2Þ and h3ðjÞ ¼ j

ð1þ j2Þ32
, j � 0: (15)

They calculated the posterior distribution pðl, jjDÞ
pðl, jjDÞ / hiðjÞ 2pI0ðjÞ½ ��N exp jN�R cos ðl�mÞ� �

, (16)

and proposed to use the maximum a posteriori (MAP) estimators

jj,lMAP, i ¼ argjmax
l, j

pðl,jjDÞ ¼ argj�0max ln hiðjÞ � N ln 2pI0ðjÞ½ � þ N�Rj
� �

, i ¼ 2, 3: (17)

For h3ðjÞ, they also proposed to consider estimating j as the MAP of the distribution of ½x ¼
j cos ðlÞ, y ¼ j sin ðlÞ�, leading to

jx, yMAP, 3 ¼ max
j�0

ln
h3ðjÞ
j

	 

� ln 2pI0ðjÞ½ � þ N�Rj

� �
: (18)

Finally, they proposed two minimum message length (MML) estimators. Minimizing the message
length is equivalent to maximizing

pðl, jjDÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det Fðl,jÞp , (19)

where det Fðl, jÞ is the determinant of the Fisher matrix for the von Mises distribution. The
resulting estimators for h2ðjÞ and h2ðjÞ are

jMML, 2 ¼ argmax
j�0

h2ðjÞ pðxjl, jÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jAðjÞ þ 3

Np2
� �

A0ðjÞ
q (20)

and

jMML, 3 ¼ argmax
j�0

h3ðjÞ pðxjl, jÞ
N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jAðjÞA0ðjÞp , (21)

respectively.
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2.3. Existing simulation studies

We found three existing simulations studies assessing the relative performance of estimators of
the concentration parameter: Best and Fisher (1981), Abeyasekera and Collett (1982), and Dowe
et al. (1996). Their scope and methodology are summarized in Table 1. Best and Fisher (1981),
found that ĵ�

1 and ĵ�
2 were similar and better than ĵ for small values of j and N. ĵ�

1 was less
biased than ĵ and ĵ�

2 was less median biased. However, the bias remained for small j and N.
Abeyasekera and Collett (1982) found that ĵ�

2 was better than ĵ, ~j and ~j�; that ~j was better
than ĵ for small values of N and worse when N was large; and, finally, that ~j and ~j� had similar
behaviors. Finally, Dowe et al. (1996) found that Bayesian methods outperformed frequentist
methods, with a limited effect of the prior distribution on the behavior.

3. Simulation study

3.1. Data

We generated samples from von Mises distributions. More specifically, for each of the Q¼ 6 val-
ues of j 2 f0, 10�2, 10�1, 1, 10, 102g, we generated M ¼ 1000 “maximal” datasets. Each dataset
was composed of Nmax i.i.d. realizations of a vMðl, jÞ distribution with l uniformly distributed
on the circle and Nmax ¼ 2L with L¼ 13 (i.e., Nmax ¼ 8192). Each sample was generated using
Berens (2009)’s CircStat. This procedure therefore generated a total of Q�M ¼ 6000 maximal
datasets of size 8192: From each maximal dataset, we then extracted L datasets composed of the
2l first data points with l 2 f1, :::, Lg: This gave us a total of Q�M � L ¼ 78, 000 datasets on
which inference was performed. On each dataset, estimation of j was performed by application
of each of the J¼ 12 estimators mentioned above (see also Table 2 for a summary). We therefore
ended with a set of Q�M � L� J ¼ 936, 000 estimates.

3.2. Evaluation

To assess the behavior of the various estimations, we proceeded as follows. For estimation jjlmq,
obtained by application of estimator j to the 2l first data points of simulation m associated with
the qth value of j, we first considered the absolute error of the estimation compared to the true
value

�jlmq ¼ jĵjlmq � jqj: (22)

Table 1. Existing simulation studies.

Article j N M Estimators Measures of fit

Best and
Fisher (1981)

f0:1, 0:5, 1, 2:5, 5g f10, 20, 100g �1000 ĵ Qualitative on sampling
features

f0:1, 0:5, 1, 2:5, 5,
10, 100, 500g

f10, 20g �1000 ĵ�
1, ĵ

�
2 Qualitative on sampling

features
f0:1, 0:5, 1, 2:5, 5g 100 �1000 ĵ�

1, ĵ
�
2 Qualitative on sampling

features
f0:01, 0:2, 0:3, 0:4, 0:75g f10, 20g �1000 ĵ�

1, ĵ
�
2 Qualitative on sampling

features
f0:01, 0:2, 0:3g 100 �1000 ĵ, ĵ�

1, ĵ
�
2 Qualitative on sampling

features
Abeyasekera and

Collett (1982)
f0:1, 0:5, 1, 2, 3, 4, 5, 7:5g f10, 20, 30, 100g 1000 ĵ, ~j , ĵ�

2, ~j
� Sample bias and MSE

Dowe et al. (1996) f0, 0:5, 1, 10g f2, 5g 1000 ĵ , ~j, jMAP, 2, jMAP, 3 MAE, MSE, MKL
f0, 1, 10g f25, 100g 1000 ĵ , ~j, jMAP, 2, jMAP, 3 MAE, MSE, MKL

Our simulation f0, 0:01, 0:1, 1, 10, 100g f2, 4, 8, 16, :::, 8192g 1000 see Table 2 MAE, MRAE

Summary of scope and methodology. N is the sample size and M the number of samples used to compute mean errors. MAE:
mean absolute error; MSE: mean squared error; MKL: mean Kullback–Leibler divergence; MRAE: mean relative absolute error.
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We then summarized the results over the M simulations by computing the mean absolute error
(MAE), defined as a sampling average

��jlq ¼ 1
M

XM
m¼1

�jlmq: (23)

In the same fashion, we also considered the relative error, where the above error of Eq. (22) is
normalized by the true value

�0jlmq ¼
jĵjlmq � jqj

jq
, (24)

and the mean relative absolute error (MRAE) as its sampling average over the M simulations

�0 jlq ¼ 1
M

XM
m¼1

�0jlmq: (25)

3.3. Results

Detailed results can be found in the supplemental material, in the form of summary statistics
(Tables 1–12, supplemental material) and graphs (Figures 1–6, supplemental material). We here
focus on some key features of the behavior: computation time, algorithmic failures, the global
trend as a function of N, the behavior for large samples (N � 24), and the small-sample behavior.

3.3.1. Computation time
The detailed computation times can be found in the supplemental material, Tables 1–12, columns
3 and 4. For all estimators, the actual value of j seemed to have very limited influence on the
computation time. Similarly, for most estimators (jML, mML, BF1, linear, MML-3, BayesEst-2-
jMAP-km, BayesEst-3-jMAP-km, and BayesEst-3-jMAP-xy), the computation time was not a
function of the sampling size; it was of the order of 40ms for BF1 and of 20ms for the others
(see Table 2). Three estimators had computation times that were a function of data size: BF2,
median1, and median2 (see Figure 1). For BF2, the computation time was roughly linear, with a
doubling of the data size corresponding to a doubling of the computation time. For median1 and
median2, the computation time was roughly constant up to N ¼ 27 and then increased
exponentially.

Table 2. Simulation study: Summary of estimators used.

Estimator Equation Identification Computation time (mean ± std dev)

ĵ (6) jML 23.9 ± 5.6 ms
~j (8) mML 23.9 ± 5.6 ms
ĵ�
1 (9) BF1 46.9 ± 8.5 ms

ĵ�
2 (10) BF2 see Figure 1

ĵL (11) median1 see Figure 1
ĵmed (12) median2 see Figure 1
ĵ lin (13) Linear 24.0 ± 5.6 ms
ĵMML, 2 (20) MML-2 24.4 ± 5.7 ms
ĵMML, 3 (21) MML-3 24.5 ± 5.7 ms
ĵj, l
MAP, 2 (17) BayesEst-2-jMAP-km 24.0 ± 5.5 ms

ĵj, l
MAP, 3 (17) BayesEst-3-jMAP-km 24.0 ± 5.4 ms

ĵx, y
MAP, 3 (18) BayesEst-3-jMAP-xy 24.0 ± 5.3 ms
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3.3.2. Failures
We first report cases where methods failed to compute an estimate (see Table 3). This happened
for median2 (corresponding to ĵmed) and linear (corresponding to ĵ lin). By definition, ĵlin of Eq.
(13) is not defined for N¼ 2. Also, the second median estimator, ĵmed, was not always defined,
as there were cases for which the integral of Eq. (12) was smaller than 1/2 for all j � 0 (and, in
particular for j¼ 0). Cases corresponding to failures were removed to compute the summary sta-
tistics �� and �0 :

3.3.3. Evolution as a function of N
Graphs corresponding to �� and �0 for all estimators gathered by value of j can be found in
Figure 2. Globally, most estimators improved as the sample size increased. One clear exception
was BF2 for small N and low s. In that particular case, the method tended to estimate s as equal
to 0, leading to an error of the order of s, with a correction toward a more normal trend as the
data size increased. This behavior was also observed to a much lesser extend for the maximum
message length estimators (MML-2 and MML-3) and the Bayesian estimators (BayesEst-2-jMAP-
km, BayesEst-3-jMAP-km, and BayesEst-3-jMAP-xy).

3.3.4. Large-sample behavior
We observed quite homogeneous results for large datasets (N � 24), both within- and between
estimators. First, the mean absolute error roughly decreased linearly in log-log coordinates for
most estimators. The two exceptions were median1 for low s, where the estimator seemed to
reach a plateau independently of N, and linear, for which data samples of increasing size did not
seem to improve estimation. Also, the performance of a given method for different values of j
were quite similar when one considered the mean absolute error �� for j � 1 and the mean rela-
tive absolute error �0 for j � 1: The main exception was median1 due to the difference in behav-
ior for low values versus high values of s mentioned earlier in the paragraph. For the other
estimators, the slope of log 10ð��Þ as a function of log 10ðNÞ was found to be around �1=2, corre-
sponding to a decrease of mean (relative) absolute error in 1=

ffiffiffiffi
N

p
: Finally, most estimators

behaved quite similarly in this large-sample regime, at the exception of median1, linear and, to a
lesser extend, median2.

To quantify these large-sample behaviors, we fitted to each curve a model of linear regression,
either

Figure 1. Simulation study. Computation time for estimators that were influenced by sample size. Boxplots (median and
½25%, 75%� percentile interval) across values of j and simulations.
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Table 3. Simulation study: Summary of number of failures encountered for all s and N.

s N median2 linear

0 2 0 1000
4 73 0
8 109 0
16 165 0
32 175 0
64 194 0
128 201 0
256 200 0
512 211 0
1024 214 0
2048 193 0
4096 241 0
8192 229 0

0.01 2 0 1000
4 71 0
8 105 0
16 150 0
32 157 0
64 189 0
128 185 0
256 193 0
512 194 0
1024 211 0
2048 216 0
4096 232 0
8192 249 0

0.1 2 0 1000
4 51 0
8 114 0
16 142 0
32 138 0
64 179 0
128 187 0
256 187 0
512 203 0
1024 193 0
2048 205 0
4096 210 0
8192 231 0

1 2 0 1000
4 29 0
8 34 0
16 54 0
32 46 0
64 42 0
128 52 0
256 57 0
512 61 0
1024 67 0
2048 58 0
4096 53 0
8192 57 0

10 2 0 1000

100 2 0 1000

No failure was encountered for jML, mML, BF1, BF2, median1, MML-2, MML-3, BayesEst-2-km, BayesEst-3-km, and BayesEst-
3-xy.
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log 10ð��Þ ¼ a log 10ðNÞ þ bþ g, N � 24, (26)

for j � 1, or

log 10ð�0 Þ ¼ a log 10ðNÞ þ bþ g, N � 24, (27)

for j � 1: The results are summarized in Figure 3, confirming generally homogeneous behaviors
(at the exception of median1, median2 and linear) that tended to depend more on the value of j
than on the specifics of the estimation method.

3.3.5. Small sample behavior
Behaviors were much more variable for small sample sizes, with both a variability between meth-
ods and, for a given method, between values of j. A majority of estimators (jML, mML, BF1,
median1, median2, MML-2, MML-3) tended to have very large average errors for very small sam-
ple sizes (N 2 f2, 4g). It was found that these extremely large values were due to a few very large
errors. For instance, in the case of MML-2, s¼ 1 and N¼ 2, all but one of the 1000 repetitions
had errors smaller than 1, the remaining error being equal to 3:72� 108:

To quantify this behavior, we modeled deviation from the linear trend as an exponential decay,
either

log 10ð��Þ ¼ â log 10ðNÞ þ b̂ þ c
1
10

� � log 10ðNÞ� log 10ð2Þ
s

þ g (28)

for j � 1 or

log 10ð�0 Þ ¼ â log 10ðNÞ þ b̂ þ c
1
10

� � log 10ðNÞ� log 10ð2Þ
s

þ g (29)

for j � 1: c is the maximum departure of the mean (relative) absolute error from the linear trend
and corresponds to the increase in mean (relative) absolute error at N¼ 2. A positive value indi-
cates a mean (relative) absolute error that is larger than the linear expectation (and therefore a

Figure 2. Simulation study. Average error �� for all values of j and all estimators.
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Figure 3. Simulation study. Result of linear regression analysis (N � 24) for either Eq. (26) (for s � 1) or Eq. (27) (for s � 1). (a)
Estimated slope a. (b) Estimated intercept b. (c) Predicted values of log 10ð��Þ (for j � 1) or log 10ð��0 Þ (for j � 1) at N ¼ 24: (d)
Predicted values of log 10ð��Þ (for j � 1) or log 10ð��0 Þ (for j � 1) at N ¼ 213: (e) Standard deviation of residual noise.
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decreased performance), while a negative value indicates a smaller mean (relative) absolute error
(and therefore an increased performance). s is such that the departure from the linear trend is
divided by 10 for log 10ðNÞ ¼ log 10ð2Þ þ s: The larger the value of s, the slower the decay. The
results are summarized in Figure 4.

Regarding c, we found several groups of estimators. A first group (jML, mML, BF1, median1,
median2) had large positive values of c regardless of j. A second group (MML-1 and MML-2)
had large positive values of c only for j � 1, and small negative values for j < 1: A third group
(linear, BayesEst-2-km, BayesEst-3-km, BayesEst-3-xy) had low (positive and negative) values of c
for all values of j. A last estimator (mML) had small positive values of c for j � 1 and negative,
small yet larger values of c for j < 1:

Regarding s, all values were found to be in the range ½0:01, 3:2�: All estimators with large val-
ues of c (corresponding to the first two groups mentioned earlier) had values in the range
½0:01, 1�, indicating a very fast exponential decay—for practical purposes, it mostly affected data-
sets of size N¼ 2.

4. Discussion

In the present manuscript, we assessed the behavior of 12 estimators of j, the concentration par-
ameter of a von Mises distribution. We used synthetic datasets of size N ranging from 2 to 8192

Figure 4. Simulation study. Result of nonlinear regression analysis for either Eq. (28) (for s � 1) or Eq. (29) (for s � 1). (a)
Estimated decay amplitude c. (b) Estimated decay time s. (c) Standard deviation of residual noise (bottom left).
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generated with a j ranging from 0 to 100. We provided detailed results as well as a more global
view of the estimators’ performance. We found that, for a given estimator, results were very simi-
lar across values of j if we considered the mean absolute error for j � 1 and the mean relative
absolute error for j � 1: We also found that, for a given j, most estimators had similar behaviors
for large datasets (N � 24), while the behaviors differed more strongly for small datasets.

The fact that the mean absolute error for j � 1 was similar to the mean relative absolute error
for j � 1 has two consequences. It first shows that, for j � 1, error increases linearly as a func-
tion of s. Larger values of s are therefore expected to lead to larger estimation errors. While it
also means that smaller values of s tend to yield smaller estimation errors, this behavior cannot
be used to our advantage for j ! 0, where it would mean that error vanishes as j ! 0: By con-
trast, it is the mean absolute error that remains stable for j � 1, i.e., error reaches a plateau
when j decreases below j¼ 1.

For large datasets, the common behavior of most estimators was found to be that the mean
(relative) absolute error roughly decreased linearly in log-log coordinates, with a slope around
�1=2, corresponding to a decrease of mean (relative) absolute error in 1=

ffiffiffiffi
N

p
: This is in line

with the general estimation theory, where errors are often found to decrease as 1=
ffiffiffiffi
N

p
:

In the light of our results, we are able to give general practical guidelines regarding the use
of the estimators tested here. First, we would not recommend the use of median1, median2
and linear unless there is evidence that they might perform well in the specific context of inter-
est. For large datasets (N � 24), all other estimators perform in a similar fashion and there is
no obvious reason to recommend one or the other. In this context, BF2’s computational bur-
den is a disadvantage with no compensation in terms of performance. By contrast, for small
datasets, BF2 was found to be the estimator with the best behavior, still at the price of a high
computational cost as well as a consistent underestimation of the concentration parameter
when it was small but different from 0. For instance, for N¼ 2, it estimated j as 0 regardless
of its actual value (Table 5, supplemental material). The Bayesian estimators, which only per-
formed slightly worse than BF2 but had computational costs similar to the other estimators,
could provide valuable tradeoffs.

Importantly, all estimators considered here require a sample fx1, :::, xNg of N independent and
identically distributed (i.i.d.) realizations of a vMðl,jÞ distribution with l and j unknown. Our
simulation study faithfully respected this requirement. As a consequence, it did not explore the
behavior of estimators with respect to the presence of outliers or model misspecification. Another
consequence of the fact that we did not depart from the von Mises model is that we did not con-
sider estimators assuming that one or several observations are identified as outliers (e.g.,
Winsorized estimate of Fisher 1982). Also, some of the estimators proposed in the literature
depend on parameters (see, e.g., Lenth 1981; Kato and Eguchi 2016). Since the behavior of these
estimators strongly depends on the choice of the parameters, they were not incorporated in
the analysis.

As mentioned earlier, there were cases where some of the estimators were not defined. This
happened for the linear estimator and N¼ 2, since this estimator requires at least 4 data points.
The median-based estimator ĵmed also failed sometimes, in particular for small values of j, as
Equation (12) had no solution (the integral was smaller than 0.5 for all values of j � 0). In such
cases, we could have decided to set the estimator to 0. However, we believe that such problem is
symptomatic of a deeper problem whose investigation goes beyond the scope of the present
manuscript. So we just took the estimator as is.

As a final note, the routines calculating the various estimators were written by us and were
not optimized. As such, the computation times presented here should only serve as a rough indi-
cator of the time required to apply each of them. In particular, it is possible that optimal coding
of BF2 with a compiled language could greatly improve its computation time.
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