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Abstract
For a random variable X , we are interested in the blind extraction of its finest mutual
independence patternμ(X). We introduce a specific kind of independence that we call
dichotomic. If �(X) stands for the set of all patterns of dichotomic independence that
hold for X , we show that μ(X) can be obtained as the intersection of all elements of
�(X). We then propose a method to estimate �(X) when the data are independent
and identically (i.i.d.) realizations of a multivariate normal distribution. If �̂(X) is the
estimated set of valid patterns of dichotomic independence, we estimate μ(X) as the
intersection of all patterns of �̂(X). The method is tested on simulated data, showing
its advantages and limits. We also consider an application to a toy example as well as
to experimental data.

Keywords Mutual independence · Dichotomic independence · Lattice · Finest
pattern · Inference

1 Introduction

In probability theory,n randomvariables X1,…,Xn are said to bemutually independent
if their joint distribution can be expressed as the product of their marginal distributions
(Hogg et al. 2004, Sect. 2.6):

Pr(X1, . . . , Xn) =
n∏

i=1

Pr(Xi ). (1)

Analysis of mutual independence is a key issue in statistics. Several subtopics relevant
to this problem have been examined in depth. Some authors have provided efficient
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measures to test for the independence between two variables in various conditions,
the two variables being either unidimensional (Spearman 1904; Hotelling and Pabst
1936; Kendall 1938; Gebelein 1941; Hoeffding 1948; Rényi 1959; Reshef et al. 2011)
or multidimensional (Jupp andMardia 1980; Cover and Thomas 1991, Chaps. 2 and 8;
Bakirov et al. 2006; Schott 2008; Jiang et al. 2012; Székely and Rizzo 2013). Testing
for the existence of a specific pattern of mutual independence has also been a topic of
interest (Anderson 1958, Chap. 9; Kullback 1968, Chap. 8, Sects. 2 and 3.1, and pp.
306–307; Zar 2010, Sect. 23.8). Some researchers have focused on total, or complete,
independence, i.e., mutual independence between all variables (Csörgö 1985; Schott
2005; Pfister et al. 2018). Finally, there has also been some interest for the investigation
of mutual independence through multiple bivariate pairwise independence tests (Mao
2017, 2018).

We are here interested in yet another subtopic of mutual independence analysis,
namely, blind extraction of mutual independence patterns. Indeed, from the perspec-
tive of X = {X1, . . . , Xn}, Eq. (1) corresponds to a particular case—that of total
independence. In the more general case, other situations may occur, where different
groups of variables would be mutually independent. Investigating patterns of mutual
independence on X therefore requires to propose methods that extract these groups.
The objective is then to explore the whole set of mutual independence patterns that
could exist within amultidimensional variable and determine the ones that best explain
the data. To the best of the authors’ knowledge, this topic has generated few publica-
tions, with the exception ofMarrelec et al. (2015), who devised aBayesian hierarchical
clustering scheme with automatic stopping rule, and Marrelec and Giron (2021), who
proposed a Bayesianmodel comparison approach coupledwith anMCMCexploration
of the pattern space.

In blind extraction, a major issue that still needs to be tackled is that a collection
X of variables can (and, usually, does) have several patterns of mutual independence.
Denoting by �(X) the set of all patterns of mutual independence on X , we can define
the finest pattern of mutual independence μ(X) as the intersection of all patterns of
�(X). In the present manuscript, we are interested in providing a one-step data-driven
procedure that infersμ(X). To this end,we introduce a particular kind of independence
which we call dichotomic. A pattern of dichotomic independence on X deals with the
independence between a subvariable of X and its complement in X . We denote by
�(X) the set of all patterns of dichotomic independence on X , which is a subset of
�(X). Our main result is that μ(X) can be exactly reconstructed as the intersection
of all elements of �(X) (see Theorem 4 below). Note that, while intuitively clear,
the concepts introduced above—�(X), μ(X), �(X) and the notion of intersection—
will be specified below using the bijection between patterns of mutual independence
and partitions, together with the lattice structure of partitions. We then propose a sta-
tistical procedure that estimates �(X) in the case where X follows a multivariate
normal distribution and the data is composed of independent and identically (i.i.d.)
realizations of X . The approach relies on testing the minimum discrimination infor-
mation statistics (Kullback 1968, Chap. 12, Sect. 3.6) corresponding to all patterns of
dichotomic independence and correcting for multiple comparison by controlling the
false discovery rate (Benjamini and Hochberg 1995). Patterns that cannot be rejected
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are said to belong to the estimate �̂(X) of �(X). We finally estimate μ(X) by μ̂(X),
the intersection of all elements of �̂(X).

The outline of the manuscript is the following. In Sect. 2, we relate mutual inde-
pendence and partitions, introduce the lattice structure over the set of partitions, and
investigate its implications for mutual independence. In Sect. 3, we define dichotomic
independence, prove that the finest pattern of mutual independence can be uniquely
extracted from dichotomic independence, and provide for a statistical procedure that
extracts the set of patterns of dichotomic independence when the data are independent
and identically distributed (i.i.d.) as a multivariate normal distribution. In Sect. 4, we
perform a simulation study to assess the quality of the inference process as well as its
strengths and weaknesses. In Sect. 5, we provide an application to a toy example and,
in Sect. 6, to real data consisting of brain recordings. Further issues are discussed in
Sect. 7.

2 Mutual independence, partitions and lattices

After a quick introduction of the notations (Sect. 2.1),we emphasize the key connection
between mutual independence and partitions (Sect. 2.2). In Sects. 2.3 and 2.4, we then
focus on �(X), the set of all patterns of mutual independence that hold on X , and
μ(X), the finest pattern of �(X), providing a characterization of both concepts in
terms of lattice structure.

2.1 Notations

We henceforth rely on the following notations. Let X = {X1, . . . , Xn} be a collection
of random variables and N = [n] = {1, . . . , n} the index set containing the full set of
suffices. If a = {i1, . . . , ik} is a subset of N , then the random variable Xa is defined
as the subset of variables of X such that

Xa = {Xi1, . . . , Xik } = {Xi : i ∈ a}.

The full variable is XN = X , X∅ is empty, and XN\a denotes the subvariable of X
obtained by excluding Xa . Xa can be thought of as the restriction of X (treated as a
mapping from N ) to a. Such notations are similar to ones already existing (Darroch
et al. 1980; Whittaker 1990, Sect. 1.4), but modified to assure consistency.

2.2 Mutual independence and partitions

There exists a bijection between patterns of mutual independence and partitions.
Indeed, if X is such that

Pr(X) =
k∏

i=1

Pr(Xai ), (2)
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then the ai ’s form a partition of N = {1, . . . , n}, whichwe also express as a1 | · · · | ak .
The ai ’s are called the blocks of the partition. The definition of a decomposition of X
into mutually independent subsets of variables is therefore equivalent to the choice of
a partition.We let�(N ) be the set of all partitions of N . The cardinality of this set, i.e.,
the number of partitions of N , is given by the nth Bell number, traditionally denoted
�n (Rota 1964)—see Table 4 below for a few examples. The number of partitions of

N with exactly k blocks is given by the Stirling number of the second kind

{
n
k

}
. In

the following, we will mostly focus on a partition representation of patterns of mutual
independence. In particular, we will take advantage of the bijection between patterns
of mutual independence and partitions to identify both. For instance, we will say that
the pattern of mutual independence is a1 | · · · | ak as a shortcut for the fact that the
pattern of mutual independence of interest is associated with the partition a1 | · · · | ak ,
and is therefore that Xa1 , . . . , Xak are mutually independent.

2.3 Amultiplicity of patterns

Until now, we have only assumed the existence of one pattern of mutual independence
between subvariables of X . Note however that the existence of one pattern usually
entails the existence of coarser patterns. Consider for instance a variable X = X[6]
such that X1, X{2,3}, X{4,5} and X6 aremutually independent, i.e., the pattern ofmutual
independence is associated with the partition π = 1 | 23 | 45 | 6. Such a pattern of
mutual independence entails other coarser patterns, such as the ones associated with
the partitions 123 | 45 | 6 and 1 | 2345 | 6. Our starting point is that, given a pattern
of mutual independence, it is possible to characterize other (coarser) patterns.

Proposition 1 Assume that a1 | · · · | ak is a partition of N such that Xa1 , …, Xak are
mutually independent. Let b1, . . . , bl be disjoint subsets of N such that no two bi ’s
intersect the same a j (if bi ∩a j �= ∅, then bi ′ ∩a j = ∅ for all i ′ �= i ). Then Xb1 ,…,Xbl
are mutually independent.

See Appendix A for a proof. We therefore need to consider the set of all patterns
of mutual independence that are valid for a given random variable.

Definition 1 For a given random variable,�(X) is the subset of partitions correspond-
ing to all existing patterns of mutual independence that hold on X .

�(X) is not empty, as even for a variable with nomutual independence, the 1-block
partition 1 . . . n belongs to �(X). Two examples of �(X) are given in Fig. 1.

Importantly, the existence of a pattern of mutual independence does not prevent the
existence of finer patterns either. Going back to our example above, stating that X1,
X{2,3}, X{4,5} and X6 are mutually independent (corresponding to partition π = 1 |
23 | 45 | 6) is not incompatible with the fact that X1, X{2,3}, X4, X5 and X6 could also
be mutually independent (corresponding to partition π ′ = 1 | 23 | 4 | 5 | 6). For this
reason, we also need to define the notion of finest pattern of mutual independence.

Definition 2 Let X be a random variable. μ(X) is the partition that can be associated
with the finest pattern of mutual independence for X .
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Fig. 1 Two examples of�(X). Top: representation of�(X) corresponding to X = {X1, X2, X3, X4} such
that X{1,2}, X3 and X4 are mutually independent, i.e.,μ(X) = 12 | 3 | 4.�(X) is superimposed on�([4])
(in gray). Bottom: representation of �(X) corresponding to X = {X1, X2, X3, X4, X5, X6} such that X1,
X{2,3}, X{4,5} and X6 are mutually independent, i.e., μ(X) = 1 | 23 | 45 | 6. Only �(X) is represented

The existence and unicity of this finest pattern are proved in the next section.

2.4 The sublattice of mutual independence patterns

At this point, it is important to note that �(N ) has the key property of being a lattice
(Birkhoff 1935; Birkhoff 1973, Example 9, pp. 15–16; Aigner 1979, Chap. I, Sect. 2.B;
for a quick review, see Sect. 1 of Supplementary material). As a consequence, it is
associated with a partial order, denoted “�”. We say that, for two partitions π1 and
π2, π1 � π2 if π1 is finer than π2, i.e., each block of π1 is contained in a block of π2.
For example, if π is defined as in the previous section, π = 1 | 23 | 45 | 6, we have
π � 123 | 45 | 6, π � 1 | 2345 | 6 and 1 | 23 | 4 | 5 | 6 � π . There is actually
a particular relation between the partial order and patterns of mutual independence,
which is a direct consequence of Proposition 1:
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Corollary 1 If π is a partition associated with a pattern of mutual independence on
X, then any partition π ′ such that π � π ′ is also associated with a pattern of mutual
independence on X.

Since �(N ) is a lattice, the partial order � can be used to define for every pair of
elements their unique least upper bound, or join (“union of two partitions”, denoted
∨), and their unique greatest lower bound, or meet (“intersection of two partitions”,
denoted ∧). While the terms “join” and “meet” are more adapted to the situation,
we will rather use the terms “union” (instead of “join”) and “intersection” (instead
of “meet”), which are more pictural and take advantage of the analogy with sets.
Similarly, while the results will be stated and proved in lattice terminology in the
appendix, we will try in the main text to restrict ourselves to results that can be stated
in general terms.

Interestingly, we can show that the set of patterns of mutual independence is stable
by union and intersection (i.e., the union and intersection of any pair of patterns of
mutual independence on X are patterns of mutual independence on X as well) and
that the finest pattern has a simple characterization (see Appendix B for a proof)

Theorem 2 Let �(X) be the subset of partitions corresponding to all patterns of
mutual independence that hold on X. Then �(X) is a sublattice of �(N ). Both its
coarsest and its finest elements exist and are unique: Its coarsest element is the trivial
one-block partition 1 . . . n, while its finest element is equal to

μ(X) = ∧π∈�(X)π. (3)

In words, the partition μ(X) corresponding to the finest pattern of mutual indepen-
dence on X is equal to the finest partition on �(X).

For instance, considering the case n = 4, there are 15 potential patterns of mutual
independence (see Fig. 1, top). If X is such that X123⊥⊥X4, X124⊥⊥X3, X12⊥⊥X34
as well as X12, X3, X4 mutually independent, then �(X) = {123 | 4, 124 | 3, 12 |
34, 12 | 3 | 4}. μ(X) is obtained as the intersection of all elements of �(X), which
is 12 | 3 | 4 (see again Fig. 1, top). This means that the finest pattern of mutual
independence on X is that X12, X3 and X4 are mutually independent.

3 Dichotomic independence

In this section, we first introduce the notion of dichotomic independence (Sect. 3.1)
and relate it to the finest pattern of mutual independence μ(X) (Sect. 3.2). We then
provide an inference procedure to extract patterns of dichotomic independence and
estimate μ(X) (Sect. 3.3).

3.1 Definition

We start by formally introducing dichotomic independence.
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Definition 3 A pattern of independence is dichotomic if it holds between a subset of
variables Xa and the remaining variables XN\a .

A pattern of dichotomic independence Xa⊥⊥XN\a is therefore characterized by a
formula of the form

Pr(X) = Pr(Xa) Pr(XN\a). (4)

It can therefore be associated with a 2-block partition a | (N\a) of N , also called
dichotomy, or bipartition. We denote by �2(N ) the set of all bipartitions on N .

3.2 Relatingmutual and dichotomic independence

A pattern of mutual independence is characterized by a specific set of patterns of
dichotomic independence, as expressed in the following result.

Proposition 3 Let μ(X) = a1 | · · · | ak be the finest pattern of mutual independence
on X. Then the set of patterns of dichotomic independence on X is given by

�(X) = �(X) ∩ �2(N ) = {
π = ∪ j∈b1a j | ∪ j∈b2a j , b1 | b2 ∈ �2([k])

}
(5)

Proof It is obvious that �(X) = �(X) ∩ �2(N ). The second expression of �(X) is
a direct consequence of Proposition 1 for a partition π ∈ �2(N ). ��

In other words, the finest pattern of mutual independence μ(X) between k subvari-
ables of X entails all patterns of dichotomic independence that can be obtained by
separating the k blocks of μ(X) in two. As a consequence the number of patterns of
dichotomic independence entailed by a given μ(X) composed of k blocks is given by
the cardinality of �2([k]), i.e., the number of partitions of [k] into two blocks, which
is Stirling number of the second kind

{
k
2

}
= 2k−1 − 1.

We are now in position to express μ(X) from �(X).

Theorem 4 Let μ(X) be the finest pattern of mutual independence of X and �(X) the
set of patterns of dichtomic independence on X. Then we have

μ(X) = ∧δ∈�(X)δ. (6)

This result is proved in Appendix C. In words, the finest pattern of mutual indepen-
dence is given by the intersection of all patterns of dichotomic independence. Having
access to the set of patterns of dichotomic independence is therefore enough to recon-
struct μ(X). In practice, μ(X) is composed of blocks such that each block is included
in a block of each dichotomic partition. In other words, two variables belong to the
same block of μ(X) if and only if they belong to the same block for all dichotomic
partitions.

For instance, going back to the case n = 4 and Fig. 1, top, there are 7 potential
patterns of dichotomic independence. We assume that, among these 7 patterns, only 3
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hold for X : X123⊥⊥X4, X124⊥⊥X3, and X12⊥⊥X34; besides, X13 �⊥⊥ X24, X14 �⊥⊥ X23,
X134 �⊥⊥ X2 and X1 �⊥⊥ X234. We then obtain �(X) = {123 | 4, 124 | 3, 12 | 34} and
μ(X) can be retrieved as the intersection of all elements of �(X). More precisely,
since 1 and 2 belong to the same block for all three partitions of �(X) (123 | 4,
124 | 3, 12 | 34), they will also belong to the same block in μ(X). By contrast, 1
and 3 belong to two different blocks in 124 | 3, so they will belong to two different
blocks in μ(X). Since in this partition, 3 also belongs to a different block than 2 and
4, it will form a block in itself in μ(X). The same argument holds for 4 and partition
123 | 4, leading to 4 as a 1-variable block inμ(X). In the end, the intersection is given
by μ(X) = 12 | 3 | 4.

3.3 Inference

In the previous section, we translated the problem of findingμ(X) into the question of
retrieving�(X). We here provide a statistical test that estimates�(X) from data when
X follows a multivariate normal distribution. To this aim, we rely on the minimum
discrimination information statistic (Kullback 1968, Chap. 12, Sect. 3.6) to simulta-
neously test for the existence of every potential pattern of dichotomic independence,
with a correction for multiple comparisons by controlling the false discovery rate
(Benjamini and Hochberg 1995). The estimate �̂(X) of�(X) is obtained as the set of
all patterns of dichotomic independence that cannot be rejected. Finally, the estimate
μ̂(X) for the finest pattern μ(X) is obtained as

μ̂(X) = ∧
δ∈�̂(X)

δ. (7)

The test is described in more details below.

3.3.1 Testing for the existence of one pattern of dichotomic independence

We here describe the minimum discrimination information statistic (Kullback 1968,
Chap. 12, Sect. 3.6) used to test for the existence of each pattern of dichotomic inde-
pendence.

Assume that the data are composed of k independent and identically distributed
(i.i.d.) samples from a multivariate normal distribution with mean μ and covariance
matrix �. Let a ⊂ N and ā = N \ a; na and nā be the cardinalities of a and ā,
respectively. The bipartition a | ā generates a natural partition of � into

� =
(

�aa �aā

�āa �āā

)
, (8)

where �aa is the na-by-na covariance matrix of Xa , �āā the nā-by-nā covariance
matrix of Xā , �aā the na-by-nā covariance between Xa and Xā , and �āa its trans-
pose. A pattern of dichotomic independence of the form Xa⊥⊥Xā can be tested by
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considering the null hypothesis that � is block-diagonal

Ha|ā : � =
(

�aa 0
0 �āā

)
, (9)

i.e., �aā = 0 and �āa = 0. Let R be the sample correlation matrix, partitioned as �,

R =
(
Raa Raā

Rāa Rāā

)
. (10)

We then use the fact that, under Ha|ā , theminimumdiscrimination information statistic
against Ha|ā

2 Îa|ā = (k − 1) ln
det(Raa) det(Rāā)

det(R)
(11)

has a distribution that is approximately noncentral chi-squared with

n(n + 1)

2
− na(na + 1)

2
− nā(nā + 1)

2
= nanā

degrees of freedom and noncentrality parameter

1

12(k − 1)

[
(2n3 + 3n2 − n) − (2n3a + 3n2a − na) − (2n3ā + 3n2ā − nā)

]
.

Asymptotically, this is chi-squared distributed with the same number of degrees of
freedom (Kullback 1968, Chap. 12, Sect. 3.6). This makes it possible to calculate a p-
value corresponding to the null hypothesis Ha|ā that Xa⊥⊥Xā . This test is consistent,
as its power tends to 1 as the size of the dataset k tends to infinity (Kullback 1968,
Chap. 5, Sect. 5).

Note that, for all subsequent analyses, the asymptotic chi-squared distribution will
be used. We will come back to this point in the discussion.

3.3.2 Multiple comparison

To estimate �(X), we need to simultaneously test

m =
{
n
2

}
= 2n−1 − 1 (12)

patterns of dichotomic independence using the method detailed above, each pattern
Xa⊥⊥Xā being associatedwith its own null hypothesis Ha|ā . Thismultiple comparison
procedure can be conducted by controlling the false discovery rate (FDR). For a given
significance level α, the FDR-controlling approach finds the largest mthres such that
the mthresth smallest p-value is smaller than αmthres/m (Benjamini and Hochberg
1995). These mthres smallest p-values are declared significant and the corresponding

123



1686 G. Marrelec, A. Giron

null hypotheses are rejected. The remaining m − mthres hypotheses are then assumed
to hold, and �̂(X) is composed of the corresponding patterns.

3.3.3 Summary of inference process

To summarize the inference process, each pattern of dichotomic independence
Xa⊥⊥Xā is associated with a null hypothesis Ha|ā and a minimum discrimination
information statistic Îa|ā as in Eq. (11). Since the distribution of Îa|ā under Ha|ā is
known asymptotically, a p-value can be computed. For a given significance level α,

the

{
n
2

}
patterns can be simultaneously tested while controlling the false discovery

rate (FDR). The mthres patterns with p-values smaller than αmthres/m are rejected,
while the remaining m − mthres are kept to form �̂(X). Finally, μ̂(X) is obtained as
the intersection of all patterns in �̂(X).

For instance, in the case n = 4 and related Fig. 1, top, if the four patterns 13 | 24,
14 | 23, 134 | 2 and 1 | 234 are rejected as significant (corresponding to X13 �⊥⊥ X24,
X14 �⊥⊥ X23, X134 �⊥⊥ X2 and X1 �⊥⊥ X234), then the remaining three patterns are
deemed nonsignificant (i.e., X123⊥⊥X4, X124⊥⊥X3, X12⊥⊥X34). We obtain �̂(X) =
{123 | 4, 124 | 3, 12 | 34} and

μ̂(X) = 123 | 4 ∧ 124 | 3 ∧ 12 | 34 = 12 | 3 | 4. (13)

Consistency of the whole procedure (simultaneous tests and correction for multiple
comparisons using the FDR) is a consequence of the consistency of the individual
tests together with the fact that the number of simultaneous tests is a function of the
number of variables n and is therefore fixed, while the data size k tends to infinity (see
Appendix D for a proof).

3.3.4 Positive versus negative cases

In the usual terminology of binary classification, each case for which the null hypoth-
esis Ha|ā does not hold (corresponding to Xa �⊥⊥ Xā) is coined “positive”, while
each case for which the null hypothesis Ha|ā does hold (corresponding to Xa⊥⊥Xā)
is termed “negative”.

To validate the result of a classification procedure in the face of a ground truth, the
notions of true/false positive/negative are also useful. A positive case in the ground
truth is a true positive if it is correctly detected as a positive case by the classification
procedure; otherwise, it is wrongly detected as a negative case by the classification
procedure and is termed a false negative. Similarly, a negative case in the ground truth
is a true negative if it is correctly detected as a negative case by the classification
procedure; otherwise, it is wrongly detected as a positive case by the classification
procedure and is termed a false positive.

For instance, still in the case n = 4 and related Fig. 1, top, discussed in Sect. 3.3.3,
the positive cases are the four patterns X13 �⊥⊥ X24, X14 �⊥⊥ X23, X134 �⊥⊥ X2, and
X1 �⊥⊥ X234, and the negative cases X123⊥⊥X4, X124⊥⊥X3, and X12⊥⊥X34. If the clas-
sification correctly determines that X13 �⊥⊥ X24, then it is a true positive; otherwise,
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the classification procedure concludes that X13⊥⊥X24 and it is a false negative. Sym-
metrically, if the classification correctly determines that X123⊥⊥X4, then it is a true
negative; otherwise, the classification procedure concludes that X123 �⊥⊥ X4 and it is
a false positive.

4 Simulation study

To assess the behavior of the method, we performed a simulation study with n = 6

variables, corresponding to �6 = 203 potential partitions and

{
6
2

}
= 25 − 1 = 31

dichotomic partitions. In particular, we were interested in evaluating the performance
of the method in terms of sensitivity and specificity. Sensitivity is defined as the ratio
of positive cases in the ground truth model (corresponding here to existing patterns of
the form Xa �⊥⊥ Xā) that are actually detected as positive. As to specificity, it is the
ratio of negative cases in the ground truth model (corresponding to existing patterns
of the form Xa⊥⊥Xā) that are actually detected as negative.

4.1 Data

For n = 6, we considered partitions with an increasing number of blocks K (1 ≤
K ≤ 6). For a given value of K , we performed 500 simulations, for a total of 3000
simulations. For each simulation, the 6 variables were randomly partitioned into K
clusters, all partitions having equal probability of occurrence (Nijenhuis and Wilf
1978, Chap. 12; Wilf 1999). For a given partition a1 | · · · | aK of [6], we generated
300 i.i.d. samples following either an univariate (if the size nk of ak was equal to 1) or
a multivariate (if nk > 1) normal distribution with mean 0 and covariance matrix �k

sampled according to a Wishart distribution with nk + 1 degrees of freedom and scale
matrix the identity matrix and then rescaled to a correlation matrix. Such a sampling
scheme on �k generated correlation matrices with uniform marginal distributions for
all correlation coefficients (Barnard et al. 2000).

4.2 Analysis

For each of the 3000 simulations, we considered subsets of size varying from 50 to 300
by increment of 50. For each dataset, we computed the p-values of the minimum dis-
crimination information statistics corresponding to the 31 relationships of dichotomic
independence under the null hypothesis that they are equal to 0 (Sect. 3.3) using the
asymptotic chi-squared distribution. These p-values were then used to evaluate the
inference quality using two approaches.

First, we computed the area under curve (AUC) of the receiver operating charac-
teristic (ROC) curves corresponding to all datasets (Fawcett 2006). AUC is a classical
way to assess the performance of a binary classifier. More precisely, we applied sig-
nificance levels of increasing values in [0, 1]. For each level, we computed the rates of
false positives (i.e., the number of patterns Xa⊥⊥Xā in the model that were wrongly
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detected as Xa �⊥⊥ Xā in the data divided by the total number of patterns Xa⊥⊥Xā

in the model) and the rate of true positives (i.e., the number of patterns Xa �⊥⊥ Xā in
the model that were correctly detected as such in the data divided by the total number
of patterns Xa �⊥⊥ Xā in the model). Plotting the true positive rate (sensitivity) as a
function of the false positive rate (one minus specificity) yielded a ROC curve, whose
area under the curve yielded the AUC. AUC ranges between 0 and 1, with perfect sep-
aration power corresponding to 1, while the AUC corresponding to a random inference
procedure is expected to be around 0.5. Since sensitivity could not be computed in
the case of a 6-block model (all patterns of dichotomic independence hold, so there
is no true positive in the model), and similarly for specificity in the case of a 1-block
model (no pattern of dichotomic independence holds, so there is no true negative in
the model), AUC was only obtained for data generated from models with 2, 3, 4, or 5
blocks.

As a second method of assessment, we computed the sensitivity and specificity
corresponding to a fixed significance level of α = 0.1 with FDR-controlling proce-
dure. We also computed the ratio of finest patterns of mutual independence that were
correctly retrieved at that significance level.

4.3 Results

Results are summarized in Fig. 2. Globally, performance improved both in average
and variability with increasing data size. AUC was found to often be close to 1, with
variability increasing with the number of underlying blocks in the simulation model.
This result shows that, given a correct significance level, the inference procedure could
separate existing from non-existing patterns of dichotomic independence with very
high accuracy and, therefore, infer the correct pattern of mutual independence.

To further investigate AUC variability, we plotted AUC as a function of the abso-
lute average correlation in blocks (see Fig. 3). As expected, the results show that the
inference procedure was adversely affected by lowwithin-block correlation levels and
performed better when within-block correlation was larger on average.

With a fixed significance level of 0.1, specificity was very close to 1 for all data
sizes and numbers of blocks, giving evidence in favor of an excellent detection of
existing patterns of dichotomic independence. By contrast, sensitivity appeared to be
poorer, with a level that tended to decrease with an increasing number of blocks and a
variability that tended to increase with an increasing number of blocks. In other words,
it was harder for the method to correctly extract patterns of the form Xa �⊥⊥ Xā , and
we tended to extract too many patterns of dichotomic independence.

As a reference, we also analyzed the simulated data using a simple thresholding
procedurewith FDR. The results are summarized in Sect. 2 of Supplementarymaterial.
In terms of ratio of correctly inferred patterns, results were similar for a 1-block
partition (i.e., no pattern of mutual independence), and about 10% worse for the other
cases; for partitions with 2 to 5 partitions, such a difference was particularly observed
for larger data sizes, while the result was mostly independent of data size for 6-block
partitions (i..e, totally independent variables).
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Fig. 2 Simulation study. (a) AUC. For a significance level α = 0.1: (b) Sensitivity; (c) Specificity. (d)
Ratio of patterns of mutual independence correctly detected. (a), (b) and (c) are boxplots (median and
[25%, 75%] frequency interval)

5 Toy example

In this section, we considered a simple investigation of mutual independence patterns
in real data (Roverato 1999; Marrelec and Benali 2006; Marrelec et al. 2015; Marrelec
and Giron 2021. Akin to the simulation study, it involves 6 variables.

5.1 Data

The data originates from a study investigating early diagnosis of HIV infection in chil-
dren from HIV positive mothers (Roverato 1999). The variables are related to various
measures on blood and its components: X1 and X2 immunoglobin G and A, respec-
tively; X4 the platelet count; X3, X5 lymphocyte B and T4, respectively; and X6 the
T4/T8 lymphocyte ratio. The observed correlation matrix is given in Table 1. Experts
expected the existence of a strong association between variables X1 and X2 as well as
between variables X3, X5, and X6. The data was analyzed using conditional indepen-
dence graphs, suggesting no connections between X4 and other variables (Roverato
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Fig. 3 Simulation study. Value of AUC as a function of the absolute value of the average correlation within
blocks

1999; Marrelec and Benali 2006). This assumption was confirmed when investigating
mutual independence patterns (Marrelec et al. 2015; Marrelec and Giron 2021). Our
question here is: Is 12356 | 4 the finest pattern of mutual independence?

5.2 Analysis

For n = 6 variables, there was a total of m = 25 − 1 = 31 patterns of dichotomic
independence (to be comparedwith a total of 203 potential patterns ofmutual indepen-
dence). We computed the p-values associated to all 31 patterns using the asymptotic
chi-squared distribution.

5.3 Results

All p-values were found to be lower than 10−4, except for the one associated with
the partition 12356 | 4, which was found to be equal to 0.332. Only the pattern
X12356⊥⊥X4 was not rejected for a wide range of significance levels (from 4 × 10−5
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Table 1 HIV study data

X1 X2 X3 X4 X5 X6

X1 8.84 0.479 − 0.043 − 0.033 0.356 − 0.236

X2 0.483 0.192 0.068 − 0.084 − 0.224 − 0.110

X3 0.220 0.057 8.92 × 106 0.085 0.552 − 0.330

X4 − 0.040 − 0.133 0.149 2.03 × 104 0.091 0.013

X5 0.253 − 0.124 0.523 0.179 1.95 × 106 0.384

X6 − 0.276 − 0.314 − 0.183 0.064 0.213 1.39

Summary statistics for the HIV data. Sample variances (main diagonal, bold), correlations (lower triangle)
and partial correlations (upper triangle, italic). Data from Roverato (1999)

to 0.332), so that the result �̂(X) = {12356 | 4} was found to be quite robust to the
choice of threshold. Since only one pattern of dichotomic independence was found
to hold, μ̂(X) was equal to it, μ̂(X) = 12356 | 4. In other words, the inferred finest
pattern of mutual independence is that X12356⊥⊥X4.

6 Real data

We also considered an application of our method to real data consisting of brain
recordings induced by an electrical stimulation of the median nerve at wrist level. It
is well known that such a stimulation is associated with a typical response known as a
somatosensory evoked potential (SEP). Our objective here was to investigate potential
dependencies between various frequencies bands of the SEP.

6.1 Data

Somatosensory evoked potentials following median nerve stimulations were recorded
in a healthy subject. Brain responses were acquired using multichannel EEG with a
sampling frequency of 3 kHz. Electrical median nerve stimulation of 1 ms duration
was applied to median nerve at the wrist level. The stimulus was applied 300 times,
with a 500-ms inter-trial interval. Followingprevious recommendations,we studied the
channels recorded from peri-central sulcus (CP3–Fz). Data acquisition was performed
at the Center for Neuroimaging Research (CENIR) of the Brain and Spine Institute
(ICM, Paris, France). The experimental protocol was approved by the CNRS Ethics
Committee and by the national ethical authorities (CPP Île-de-France, Paris 6—Pitié-
Salpêtrière and ANSM). To avoid artefacts induced by the stimulation, we focused on
a time window ranging between 10 and 100 ms after stimulation.

6.2 Analysis

We considered the power spectral density (PSD) of the SEP as estimated by Welch’s
method (Welch 1967) at n = 10 frequency values uniformly spaced between 40
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Table 2 Real data. f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

40 57.2 81.8 117 167 239 342 489 699 1000

Value of frequencies (in Hz) used for power spectrum estimation

and 1000 Hz in log scale (see Table 2). We defined Xi as the log-10 of the PSD at
frequency fi . The data gave us access to k = 300 i.i.d. realizations of X = X[10].
X can be associated with �n = 115 975 different patterns of mutual independence

and

{
n
2

}
= 511 patterns of dichotomic independence. The p-values were computed

using the asymptotic chi-squared distribution.

6.3 Results

Results are summarized in Fig. 4 and Table 3. For significance levels ranging between
about 0.05 and 0.2 with FDR correction, 7 patterns of dichotomic independence were
found to be nonsignificant. �̂(X) was therefore composed of these 7 elements, whose
intersection yielded the finest pattern of mutual independence

μ̂(X) = 1234568 | 7 | 9 | 10. (14)

On the one hand, the log10-PSDs corresponding to lower frequencies (X1 to X6) were
grouped together as dependent. These dependencies seemed to be at least partly driven
by strong correlations between neighboring frequencies. The log10-PSDs correspond-
ing to higher frequencies (X7, X9 and X10) were found to be independent from all other
frequencies. By contrast, X8 was groupedwith the lower frequencies. This dependency
could mostly be seen in the form of stronger correlation values with X1 and X2. These
results provide evidence for the fact that electrical stimulation of the median nerve has
a global effect on the signal in the 10–100 ms time window, both at low frequency and
at higher frequencies. Furthermore, we expect different physiological processes to be
at the origin of the observed responses at higher frequency: some that are related to
lower frequency processes, some that are not.

7 Discussion

In the present manuscript, we were interested in the blind extraction of patterns of
mutual independence from data and, more specifically, of one particular pattern:
the finest one. We used the connection between mutual independence and partitions
together with the lattice structure of partitions. We showed that the set �(X) of pat-
terns of mutual independence that hold for a given multidimensional variable X is a
sublattice. This sublattice has a unique finest patternμ(X) of mutual independence on
X which is the intersection of all patterns of�(X). We then introduced a specific kind
of independence that we called dichotomic independence and showed that, if �(X) is
the set of all patterns of dichotomic independence holding for X , thenμ(X) is also the

123



Inferring the finest... 1693

Fig. 4 Real data. Top left: Boxplot (median and [25%, 75%] frequency interval) of X over the 300 stimu-
lations. Top right: Sample correlation matrix of X . Bottom left: Sample correlation of X7, …, X10 with all
other variables

Table 3 Real data Pattern of dichotomic independence p-value

X9⊥⊥X[10]\{9} 0.616

X{7,9}⊥⊥X[10]\{7,9} 0.469

X7⊥⊥X[10]\{7} 0.366

X{9,10}⊥⊥X[10]\{9,10} 0.352

X10⊥⊥X[9] 0.311

X{7,10}⊥⊥X[10]\{7,10} 0.215

X{7,9,10}⊥⊥X[10]\{7,9,10} 0.211

X{1,2,3,4,5,8,10}⊥⊥X{6,7,9} 0.0469

8 largest p-values and corresponding patterns of dichotomic indepen-
dence
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intersection of all patterns of �(X). We finally proposed a method to estimate �(X)

from a dataset consisting of i.i.d. realizations of amultivariate normal distribution. The
method was tested on simulated data and applied to a toy example and experimental
data.

Our approach strongly relies on the lattice structure of partitions, on the statistical
properties of the minimum discrimination information statistic, as well as on the FDR
procedure. From a mathematical perspective, the core of the method is Theorem 4,
which shows that the finest pattern of mutual independence μ(X) can be exactly
recoved as the intersection of all patterns of dichotomic independence, i.e., of all ele-
ments of�(X). It is an advantage of the method that the theory relies on mathematical
properties in abstract algebra, as this part is valid regardless of the underlying data
distribution and size.

From a statistical perspective, the inference process allowed us to take advantage of
the theoretical result and investigate the independence structure of data in the case of
i.i.d. realizations of a multivariate normal variable. Since the procedure is consistent,
the probability to have type II errors (false negatives) tends to 0 as the data size
tends to infinity. By contrast, type I errors may not vanish, as the procedure tends to
impose a fraction of false discoveries, i.e., false positive (Benjamini and Hochberg
1995; Storey et al. 2004; Blanchard et al. 2014)—unless one selects a threshold that
itself tends to 0 as the data size tends to infinity (Neuvial and Roquain 2012). This
is the price to pay for the fact that the FDR procedure is in general more powerful
than procedures controlling the family-wise errors, as, e.g., Bonferroni procedure.
When investigating mutual independence, researchers have usually already extracted
a subset of variables that they think should be dependent. In this perspective, it is the
potential existence of nontrivial patterns of independence that is of interest, as these
are later subject to interpretation in terms of underlying mechanisms and allow to
analyze independent groups of variables separately. It is therefore important to avoid
overly conservative tests, as they would tend to falsely detect non-existing patterns
of independence and, in subsequent analyses, separately investigate variables that
are actually dependent. Improving the FDR is a field of active research (see, e.g.,
Benjamini 2010; Genovese 2015), and our method can easily be adapted to apply a
wide range of multiple comparisons correction methods.

A key advantage of the method is the reduction of dimensionality that it is able to
perform. Indeed, one of the reasons of the complexity to extract patterns of mutual
independence is that the space of potential patterns is discrete and very large; its
cardinality is given by the nth Bell number �n (Rota 1964), which grows faster
that an exponential but slower than a factorial—it is O[(n/ ln n)n]. By contrast, our
approach proposes to test the subset of all dichotomic partitions. The potential number
of patterns of dichotomic independence for an n-dimensional variable is given by the

Stirling number of the second kind

{
n
2

}
= 2n−1 − 1 as mentioned earlier. While

this quantity grows quickly for large n, it is still substantially smaller than �n—see,
e.g., Table 4 for a few comparative examples. For instance, for n = 20, listing and
storing �n = 5.17 × 1013 patterns of mutual independence is out of reach of many

computers, while the number of patterns of dichotomic independence

{
n
2

}
= 524 287
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Table 4 Number of potential patterns of mutual independence and dichotomic independence for an n-
dimensional variable

n 1 2 3 4 5 6 7 8 9 10 20

�n 1 2 5 15 52 203 877 4 140 21 147 115 975 5.17 × 1013
{
n
2

}
0 1 3 7 15 31 63 127 255 511 524287

is large but still manageable. Note that, unlike greedy algorithms, such a reduction of
the search space is not based on a heuristic, a local search, nor a stepwise procedure,
as our approach provides an exact one-step, global solution thanks to Theorem 4.

While the theoretical result of Theorem 4 ensures thatμ(X) can always be obtained
from �(X), the efficiency of the methods relies in great part on how well the infer-
ence procedure is able to estimate �(X) from data. On simulated data with n = 6, we
showed that the method was able to perform well. With AUCs close to 1, there were
many cases where an optimal threshold existed, separating negative and positive val-
ues almost perfectly, and leading to a correct retrieval of �(X) and, therefore, μ(X).
When the significance threshold was set at α = 0.1, we also found high specificity
(showing that existing patterns of dichotomic independence could very often be cor-
rectly detected), but sensitivity appeared to behave more poorly. We believe that these
results hint for a suboptimal choice of the significance level and suggest that there is
still room for improvement in the choice of this value.

We mentioned the theoretical result that the minimum discrimination statistic has
a distribution that can be approximated by a noncentral chi-squared distribution and,
asymptotically, a chi-squared distribution (Sect. 3.3.1). While we expected the non-
central distribution to provide better inference, in particular for smaller data sizes, we
actually found out that it exhibited poorer performance on the simulated data than
the asymptotic chi-squared distribution (see Sect. 3 of Supplementary material). The
reason for this unexpected result remains a puzzle to us. As a consequence, we applied
the asymptotic chi-squared distribution for all analyses.

The main result of this work is the possibility to extract the finest pattern of mutual
independence using dichotomic independence. This result was applied to a statistical
framework assuming normal data. In this case, mutual independence could be tested
using an asymptotically exact test based on the minimum discrimination information
statistic. It is however interesting to consider what is specific to normal distributions
and what is valid regardless of the distribution. Importantly, the mathematical frame-
work leading to the main result (Sects. 2, 3.1 and 3.2) is related to the lattice structure
of the set of partitions and, as such, is valid regardless of the underlying distribution.
Also, mutual information, fromwhich theminimum discrimination information statis-
tic is derived, is a measure that is always positive, and is equal to 0 if and only if the
two variables are independent, regardless of the underlying distribution. By contrast,
what is specific of normal variables is (i) the fact that the covariance matrix fully
determines all patterns of independence, (ii) the expression of mutual independence
as a function of the covariance matrix, Eq. (11), and (iii) the distribution of the test
under the null hypothesis of independence between the two blocks of variables. To
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adapt the method to non-Gaussian variables, one would have to (1) either find an
estimator for mutual information adapted to the situation or use another measure, and
(2) determine the distribution of this measure under the null hypothesis. For (1), one
could think of nonparametric estimators of mutual information (e.g., Kraskov et al.
2005), with theoretical properties that still remain to be investigated (at least in part),
or measures already proposed in order to investigate independence between two vari-
ables and referred to in the introduction (e.g., in themultivariate case, Jupp andMardia
1980; Cover and Thomas 1991, Chaps. 2 and 8; Bakirov et al. 2006; Schott 2008; Jiang
et al. 2012; Székely and Rizzo 2013). An advantage of our approach is precisely that it
relies on independence between two sets of variables, a research field that has already
been investigated. Recent advances in that field, both in terms of potential measures
that coud be used and associated statistical tests, could therefore be combined to our
approach to deal with the non-Gaussian case.

Still, the case of normal data that we studied has the interest of showing that blind
extraction of the finest pattern of mutual independence remains a challenge even
when the underlying statistical model is simple and correct and the test perfectly
adapted. First, it has to be kept in mind that the number of tests grows quickly as the
number of variables n tends to infinity, potentially narrowing the validity domain of the
asymptotic results regarding consistency and the approximation of the null hypothesis
distribution. We suspect that what also makes this problem especially hard is that
weak dependencies are difficult to detect and are often overlooked as independence.
While this is clearly a limit of our statistical investigation, it mirrors a widely accepted
principle in science, where phenomena are usually first considered independent until
enough evidence for dependence is gathered.

For application to real data, ourmethodhas the key advantages of being theoretically
principled and its application a simple and fast one-step procedure. To our knowledge,
it is the first time that it is possible to blindly and noniteratively extract the finest pattern
of mutual independence from real data. For example, the analysis we presented on
brain recordings dealt with 10 variables, corresponding to 115975 potential patterns of
mutual independence. Working with dichotomic independence reduced the number of
tests to 511 and provided a principled way to bring the results together. Also, unlike a
black box, each test of dichotomic independence gives relevant information regarding
the underlying structure of independence.

More broadly, we advocate that understanding the structure ofmutual independence
is a key issue to deal properly with independence. The present work on dichotomic
independence provides a first step in this direction.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s00362-023-01455-8.
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Appendix A Proof of Proposition 1

If Xa1 , …, Xak are mutually independent, then Pr(X) can be decomposed as

Pr(X) =
k∏

i=1

Pr(Xai ). (A1)

For each i = 1, . . . , k, let ji be the (possibly empty) element of [l] such thatai∩b ji �= ∅
and let a′

i = ai ∩b ji as well as a
′′
i = ai\b ji . Then a

′
i | a′′

i is a bipartition of ai and each
b j can be expressed as the partition of a certain number of a′

i ’s. The joint probability
of X can be expressed as

Pr(X) = Pr(Xa1 , . . . , Xak )

=
k∏

i=1

Pr(Xai )

=
k∏

i=1

Pr(Xa′
i
, Xa′′

i
).

The joint distribution of Xb1 , . . . , Xbl can be obtained by marginalization of Pr(X)

with respect to the a′′
i ’s:

Pr(Xb1 , . . . , Xbl ) =
∑

X∪ki=1a
′′
i

Pr(X)

=
∑

X∪ki=1a
′′
i

k∏

i=1

Pr(Xa′
i
, Xa′′

i
)

=
k∏

i=1

∑

Xa′′
i

Pr(Xa′
i
, Xa′′

i
)

=
k∏

i=1

Pr(Xa′
i
)

=
l∏

j=1

Pr(Xbj ).

This is the definition of the fact that Xb1 , …, Xbl are mutually independent.
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Appendix B Proof of Theorem 2

To prove that �(X) is a sublattice of �(N ), we need to prove that it is stable by join
and meet. Consider π1 and π2 in �(X).

Set first π3 = π1 ∨π2. Since π1 � π1 ∨π2, Proposition 1 entails π1 ∨π2 ∈ �(X).
We now set π3 = π1 ∧ π2. Assume that π1 = a1 | · · · | ak , π2 = b1 | · · · | bl and

π3 = c1 | · · · | cm . Since π3 = π1 ∧ π2, each ci is of the form aφ(i) ∩ bψ(i). Since
π1 ∈ �(X), we have

Pr(X) =
k∏

i=1

Pr(Xai ). (B2)

Since π2 is a partition of N , it contains in particular a covering of each ai . Setting ξ(i)
the subset of [l] for which ai ∩ bξ(i) �= ∅, we have

ai = ∪ j∈ξ(i)(ai ∩ b j ).

Since π2 ∈ �(X), we also have

Pr(X) =
l∏

j=1

Pr(Xbj ). (B3)

Marginalization over Xbj /∈ξ(i) leads to

Pr(Xbj∈ξ(i) ) =
∏

j∈ξ(i)

Pr(Xbj ). (B4)

Setting b′
j = b j \ ai , we marginalize with respect to the Xb′

j
, yielding

Pr(Xai ) =
∏

j∈ξ(i)

Pr(Xai∩b j ). (B5)

Incorporating these results into Eq. (B2), we obtain

Pr(X) =
k∏

i=1

∏

j∈ξ(i)

Pr(Xai∩b j )

=
l∏

i=1

Pr(Xaφ(i)∩bψ(i) )

=
m∏

i=1

Pr(Xci ).
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We there have Xc1 , . . . , Xcm mutually independent, so that π3 ∈ �(X).
Since �(X) is stable by the join and meet, it is a sublattice of �(N ). The existence

and unicity of μ(X), defined through Eq. (3), is assured by the fact that �(N ) is a
lattice. Since �(X) is a sublattice, μ(X) ∈ �(X). Since it is the meet of all elements
in �(X), it is finer than all elements in �(X), and is therefore the bottom of �(X).
The fact that the trivial partition is the top of �(X) is obvious.

Appendix C Proof of Theorem 4

Since μ(X) is the finest pattern of mutual independence on X and any δ ∈ �(X) is a
pattern of mutual independence on X , we have μ(X) � δ. Since this is true for any
δ ∈ �(X), this entails that μ(X) � ∧δ∈�(X)δ.

Express ρ = ∧δ∈�(X)δ as a1 | · · · | ak . Assume now that μ(X) < ∧δ∈�(X)δ. Then
there exists ω such that μ(X) � ω < ρ and such that a block ai of ρ is decomposed
into two blocks ai1, ai2 in ω. This entails that

μ(X) � ω � a1 . . . ai−1ai1 | ai2ai+1 . . . ak,

and, as a consequence, a1 . . . ai−1ai1 | ai2ai+1 . . . ak belongs to �(X). Since ρ is the
meet of all elements of �(X), ai1 and ai2 must belong to two different blocks of ρ.
This is in contradiction with the fact that ai is a block of ρ. As a consequence, we
cannot have μ(X) < ∧δ∈�(X)δ, i.e., we must have μ(X) = ∧δ∈�(X)δ.

Appendix D Proof of consistency

Consistency of a test is defined as the fact that its power (i.e., one minus the probability
for type II errors) tends to 0 as the data size k tends to infinity (Fraser 1957, Chap. 2,
Sect. 3.9).

We first notice that the FDR procedure has more power than the family-wise error
correction using Bonferroni procedure (BP). This a direct consequence of the fact that
hypotheses that are rejected byBP at threshold α have p-values lower thanα/m, where
m is the number of tests. As a consequence, these hypotheses will also be rejected
when controlling the FDR, since the corresponding p-values, once ordered, will all be
smaller than αi/m for any 1 ≤ i ≤ m. Defining �′(X) as the complement of �(X)

in �2(N ), i.e., the set of patterns of dichotomic independence that do not hold for X ,
we can therefore express the power as

Pr
(∀δ ∈ �′(X) : Hδ FDR-rejected

) ≥ Pr
(∀δ ∈ �′(X) : Hδ BP-rejected

)
. (D6)

We then consider a modification of our procedure, where FDR has been replaced with
BP. In that case, the probability to obtain a type II error is given by

Pr
(∃δ ∈ �′(X) : Hδ not BP-rejected

) = Pr
(∪δ∈�′(X)Hδ not BP-rejected

)
. (D7)
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Use of Boole’s inequality then yields

Pr
(∪δ∈�′(X)Hδ not BP-rejected

) ≤
∑

δ∈�′(X)

Pr (Hδ not BP-rejected) . (D8)

By definition of BP, we have

Pr (Hδ not BP-rejected) = Pr
(
p-value (Hδ) >

α

m

)
, (D9)

where m is the number of tests. Since each individual test based on the minimum
information discrimination statistic is consistent (Kullback 1968, Chap. 5, Sect. 5),
the probability in the previous equation tends to 0 for δ ∈ �′(X) as the data size k
tends to infinity. As a consequence,

∃kδ : ∀k > kδ Pr
(
p-value (Hδ) >

α

m

)
<

ε

|�′(X)| . (D10)

Therefore,

∀k > max
δ∈�′(X)

(kδ)
∑

δ∈�′(X)

Pr (Hδ not BP-rejected) < ε. (D11)

Inserting this back into Eq. (D7) yields

Pr
(∃δ ∈ �′(X) : Hδ not BP-rejected

)
< ε. (D12)

This entails that the probability to have type II errors tends to 0 as k → ∞ or,
equivalently, that the power tends to 1 as k → ∞. From Eq. (D6), we finally obtain
that our procedure (with FDR) is consistent as well.
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