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1 The lattice of partitions

We here quickly review the main features of (V) as a lattice based on Birkhof (1973} Chap. 1),
Aigner| (1979, Chap. I, §2.B) and Knuth/ (2004).

On the set of partitions Q(/N), one can define the following relation: = is a finer partition
than (or a refinement of) w, denoted m < w, if every block of 7 is contained in a block of w. If
m is finer than w, then w is said to be coarser than 7. The relation “<” has 3 properties:

e reflexivity: for all w, m < m;
e antisymmetry: if 7 <w and w < 7 then 7 = w;
e transitivity: if 7 < w and w < p, then m < p.

Q(N) is therefore called a partially ordered set, or poset.

If 7 < wand 7 # w, we write 7 < w. If 7 < w and there does not exist a p such that
T < p < w, we say that w covers m, written 7 < w. w is then a direct successor to 7 in the
hierarchy induced by <. In Q(N), w covers 7 if w is obtained by merging two blocks of .

In Q(N), the partition O =12 | --- | N is such that O < 7 for all # € Q(N). It is called
the least element, or bottom, of Q(N). Dually, I = 12... N is such that 7 < I for all 7 € Q(N).
It is called the greatest element, or top, of 2(N). O and I are called universal bounds of (V)
as O < 7w < [ for all m € Q(N). The elements that cover the bottom are called the atoms. In
Q(N), there are N(IN —1)/2 atoms, each one with N — 2 blocks of size 1 and 1 block of size 2,
eg,12|3]---|Nor1|23|4]---|N.

Given a pair of partitions m and w, their upper bound is defined as the set of all p such that
7 < pand w < p. In Q(N), a unique least upper bound exists, called the join and written 7V w.
Similarly, we can define the lower bound as the set of all p such that p < 7 and p < w. In Q(N),
a unique greatest lower bound exists, called the meet and written w A w. In particular, we have
for the top partition I, bottom partition O and all = € Q(N),

OANT=0, OVr=mw, IANT=m, and IVw=1 (1)

Besides, the consistency relationship expresses the relationship between the ordering and the
join and meet operators:
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Practically, the meet T Aw of m =ay | --- | ap and w = by | --- | by is the partition that has
blocks a; Nb; for any 1 < i < k and 1 < j < such that a; Nb; # (). In this definition, “N”
stands for the usual set intersection. In other words, two elements of N belong to the same
block of m A w if and only if they do for both 7 and w.

The concept of covering can be used to provide a graphical representation of Q(N). If 7 < w,
then w is drawn higher than m in the diagram. If 7 < w then 7 and w are connected through a
line. See for instance Figure [I| for a representation of Q([3]) and Q([4]).
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Figure 1: Examples of partition lattices. Representation of 2([3]) (left) and Q([4]) (right).

Since Q(N) is a poset for which the join (V) and meet (A) exist for every pair of partitions,
it is called a lattice. In lattices, the join and meet have the following properties:

e idempotency: m Am =7 and 7 V71 = T;
e commutativity: T A\ w=wA7Tand T Aw=w V T;
e associativity: (mAw)Ap=7mA(wAp)and (TVw)Vp=7V(wVp);
e absorption: TA (TVw) =7V (T Aw) =T.
We also have the following properties:

A < A
w<p = {ﬁw\wp

TVw < wVp.

Note that Q(NV) is not distributive.



2 Simulation study: correlation thresholding

We independently tested each sample correlation coefficient r under the null hypothesis that it
is equal to 0 using the fact that, under this assumption,
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has the t-distribution with & — 2 degrees of freedom (Anderson| 1958, §4.2.1). We then per-
formed multiple comparison using the FDR approach as detailed in §3.3.2 of the manuscript
(Benjamini and Hochberg, [1995). The finest pattern of mutual independence was finally ob-
tained by identifying each block with a maximally connected component. Results regarding the
ratio of correct inference at a significance level of a = 0.1 are summarized in Figure

Note that we did not compute the other quantities presented in Figure 2 of the manuscript,
such as AUC, sensitivity and specificity. While we could compute them, their use as a way
to compare approaches would be very limited. Indeed, in the case of our approach, these
quantities were calculated using the rates of true/false positive/negatives among the set Qa(NV)
of dichotomic independence relationships, which has a cardinality of 2! — 1. By contrast, in
the case of correlation threshlding, they could only be calculated using the rates of true/false
positive/negatives among the set of correlation coefficients, whic has a cardinality of n(n—1)/2.
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Figure 2: Simulation study. For a significance level « = 0.1, ratio of patterns of mutual
independence correctly detected using correlation thresholding and FDR.



3 Simulation study: noncentral chi-squared distribution

We used the same procedure as detailed in §4.2 of the manuscript, except for the fact that we
used the noncental chi-squared approximation developped in §3.3.1 of the manuscript. Results
are reported in Figure
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Figure 3: Simulation study. (a) AUC. For a significance level a = 0.1: (b) Sensitivity; (c)
Specificity. (d) Ratio of patterns of mutual independence correctly detected. (a), (b) and (c)
are boxplot (median and [25%, 75%)] frequency interval). p-values are computed with noncentral
chi-squared distribution.
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