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1 The lattice of partitions

We here quickly review the main features of Ω(N) as a lattice based on Birkhoff (1973, Chap. 1),
Aigner (1979, Chap. I, §2.B) and Knuth (2004).

On the set of partitions Ω(N), one can define the following relation: π is a finer partition
than (or a refinement of) ω, denoted π 6 ω, if every block of π is contained in a block of ω. If
π is finer than ω, then ω is said to be coarser than π. The relation “6” has 3 properties:

• reflexivity: for all π, π 6 π;

• antisymmetry: if π 6 ω and ω 6 π then π = ω;

• transitivity: if π 6 ω and ω 6 ρ, then π 6 ρ.

Ω(N) is therefore called a partially ordered set, or poset.
If π 6 ω and π 6= ω, we write π < ω. If π < ω and there does not exist a ρ such that

π < ρ < ω, we say that ω covers π, written π ≺ ω. ω is then a direct successor to π in the
hierarchy induced by 6. In Ω(N), ω covers π if ω is obtained by merging two blocks of π.

In Ω(N), the partition O = 1 | 2 | · · · | N is such that O 6 π for all π ∈ Ω(N). It is called
the least element, or bottom, of Ω(N). Dually, I = 12 . . . N is such that π 6 I for all π ∈ Ω(N).
It is called the greatest element, or top, of Ω(N). O and I are called universal bounds of Ω(N)
as O 6 π 6 I for all π ∈ Ω(N). The elements that cover the bottom are called the atoms. In
Ω(N), there are N(N − 1)/2 atoms, each one with N − 2 blocks of size 1 and 1 block of size 2,
e.g., 12 | 3 | · · · | N or 1 | 23 | 4 | · · · | N .

Given a pair of partitions π and ω, their upper bound is defined as the set of all ρ such that
π 6 ρ and ω 6 ρ. In Ω(N), a unique least upper bound exists, called the join and written π∨ω.
Similarly, we can define the lower bound as the set of all ρ such that ρ 6 π and ρ 6 ω. In Ω(N),
a unique greatest lower bound exists, called the meet and written π ∧ω. In particular, we have
for the top partition I, bottom partition O and all π ∈ Ω(N),

O ∧ π = O, O ∨ π = π, I ∧ π = π, and I ∨ π = I. (1)

Besides, the consistency relationship expresses the relationship between the ordering and the
join and meet operators:

π 6 ω ⇔
{
π ∧ ω = π
π ∨ ω = ω.

(2)
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Practically, the meet π ∧ ω of π = a1 | · · · | ak and ω = b1 | · · · | bl is the partition that has
blocks ai ∩ bj for any 1 ≤ i ≤ k and 1 ≤ j ≤ l such that ai ∩ bj 6= ∅. In this definition, “∩”
stands for the usual set intersection. In other words, two elements of N belong to the same
block of π ∧ ω if and only if they do for both π and ω.

The concept of covering can be used to provide a graphical representation of Ω(N). If π 6 ω,
then ω is drawn higher than π in the diagram. If π ≺ ω then π and ω are connected through a
line. See for instance Figure 1 for a representation of Ω([3]) and Ω([4]).
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Figure 1: Examples of partition lattices. Representation of Ω([3]) (left) and Ω([4]) (right).

Since Ω(N) is a poset for which the join (∨) and meet (∧) exist for every pair of partitions,
it is called a lattice. In lattices, the join and meet have the following properties:

• idempotency: π ∧ π = π and π ∨ π = π;

• commutativity: π ∧ ω = ω ∧ π and π ∧ ω = ω ∨ π;

• associativity: (π ∧ ω) ∧ ρ = π ∧ (ω ∧ ρ) and (π ∨ ω) ∨ ρ = π ∨ (ω ∨ ρ);

• absorption: π ∧ (π ∨ ω) = π ∨ (π ∧ ω) = π.

We also have the following properties:

ω 6 ρ ⇒
{
π ∧ ω 6 π ∧ ρ
π ∨ ω 6 π ∨ ρ. (3)

Note that Ω(N) is not distributive.
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2 Simulation study: correlation thresholding

We independently tested each sample correlation coefficient r under the null hypothesis that it
is equal to 0 using the fact that, under this assumption,

r
√
k − 2√

1− r2
(4)

has the t-distribution with k − 2 degrees of freedom (Anderson, 1958, §4.2.1). We then per-
formed multiple comparison using the FDR approach as detailed in §3.3.2 of the manuscript
(Benjamini and Hochberg, 1995). The finest pattern of mutual independence was finally ob-
tained by identifying each block with a maximally connected component. Results regarding the
ratio of correct inference at a significance level of α = 0.1 are summarized in Figure 2.

Note that we did not compute the other quantities presented in Figure 2 of the manuscript,
such as AUC, sensitivity and specificity. While we could compute them, their use as a way
to compare approaches would be very limited. Indeed, in the case of our approach, these
quantities were calculated using the rates of true/false positive/negatives among the set Ω2(N)
of dichotomic independence relationships, which has a cardinality of 2n−1 − 1. By contrast, in
the case of correlation threshlding, they could only be calculated using the rates of true/false
positive/negatives among the set of correlation coefficients, whic has a cardinality of n(n−1)/2.
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Figure 2: Simulation study. For a significance level α = 0.1, ratio of patterns of mutual
independence correctly detected using correlation thresholding and FDR.
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3 Simulation study: noncentral chi-squared distribution

We used the same procedure as detailed in §4.2 of the manuscript, except for the fact that we
used the noncental chi-squared approximation developped in §3.3.1 of the manuscript. Results
are reported in Figure 3.
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Figure 3: Simulation study. (a) AUC. For a significance level α = 0.1: (b) Sensitivity; (c)
Specificity. (d) Ratio of patterns of mutual independence correctly detected. (a), (b) and (c)
are boxplot (median and [25%, 75%] frequency interval). p-values are computed with noncentral
chi-squared distribution.
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