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A B S T R A C T   

In functional MRI (fMRI), effective connectivity analysis aims at inferring the causal influences that brain regions 
exert on one another. A common method for this type of analysis is structural equation modeling (SEM). We here 
propose a novel method to test the validity of a given model of structural equation. Given a structural model in 
the form of a directed graph, the method extracts the set of all constraints of conditional independence induced 
by the absence of links between pairs of regions in the model and tests for their validity in a Bayesian framework, 
either individually (constraint by constraint), jointly (e.g., by gathering all constraints associated with a given 
missing link), or globally (i.e., all constraints associated with the structural model). This approach has two main 
advantages. First, it only tests what is testable from observational data and does allow for false causal inter
pretation. Second, it makes it possible to test each constraint (or group of constraints) separately and, therefore, 
quantify in what measure each constraint (or, e..g., missing link) is respected in the data. We validate our 
approach using a simulation study and illustrate its potential benefits through the reanalysis of published data.   

1. Introduction 

A key concept in investigating functional brain interactions in blood 
oxygen level dependent (BOLD) functional magnetic resonance imaging 
(fMRI) is effective connectivity, which has been defined as the influence 
that regions exert on one another [13]. There are various methods to 
deal with effective connectivity in fMRI, including, but not restricted to, 
structural equation modeling (SEM) [6,7,21,24,36,40], dynamic causal 
modeling [10,15,16,27,48] and Granger causality [3,11,18,23,41]; for 
partial reviews, see, e.g., Valdes-Sosa et al. [50]; Stephan and Roebroeck 
[47]; Bielczyk et al. [4]; Jovellar and Doudet [25]. We here focus on 
SEM [5,8,12,22], which relies on expressing the time course yi(t) of one 
region i as a linear function of the time course of other regions, 

yi(t) =
∑

j∕=i

λijyq(t) + ei(t). (1)  

The model parameters 
(
λij
)

are then estimated by optimization of a 
global cost function that usually depends on the data through the sample 
covariance matrix only [7,9]. While of great practical interest, blind 
extraction of the model’s structure from data quickly becomes intrac
table as the number of regions increases. Methods have been proposed 
that provide heuristics to explore the set of potential models and 

provides a “best fit” according to some (also global) metric [7,40]. 
There are two main issues with most methods that have been pro

posed so far. First, they put the emphasis on links (arrows). By contrast, 
given observational data, a structural model can only be defined in terms 
of its constraints of conditional independence, which characterize the 
missing links. It is thus not the links themselves but these missing links 
that are characteristic of a structural model in the face of data. As a 
consequence, it can happen that different models (i.e., with different sets 
of links) generate the same sets of constraints of conditional indepen
dence. These models, called observationally equivalent ([35,44,46]; 
[51], sect. 8.11; [38], sect. 5.2.3), have identical values of data fit 
regardless of the measure and, therefore, cannot be distinguished from 
data alone. This means that methods dealing with links do not compare 
models but classes of (observationally equivalent) models. Application 
of the main methods of structural equation modeling without being 
aware of this major feature might give the neuroscientist the false 
impression that a unique optimal causal model has been found and lead 
to an erroneous physiological interpretation of such causality. 

Another issue is that most methods propose models based on global 
measures. They therefore base their decision on how a given model 
globally fits the data. The larger the number of links, the more complex 
the search space and the smaller the weigh of each link into these global 
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schemes. By contrast, one is often interested in a very specific link, set of 
links, or pathway and, for instance, the influence of a given task on it. 
Even in a more general setting, it would still be of interest to be able to 
test different parts of a model separately, in order to determine where 
the structural model can be trusted and where it could be improved. 

In the present paper, we propose a novel method that avoids the two 
above-mentioned issues. Given a structural model, it extracts the set of 
all constraints of conditional independence induced by the absence of 
links between pairs of regions in the model and tests for their validity in 
a Bayesian framework, either individually (constraint by constraint), 
jointly (e.g., by gathering all constraints associated with a given missing 
link), or even globally (i.e., all constraints associated with a structural 
model). In other words, we use the relevance of the constraints associ
ated with a structural model as a proxy for the relevance of the structural 
model itself. With such an approach, observationally equivalent models 
have the same sets of conditional independence constraints and, there
fore, the same set of constraints is tested. Also, it makes it possible to test 
each constraint (or group of constraints) separately and, therefore, 
quantify in what measure each constraint (or, e.g., missing link) is 
respected in the data. This feature gives the neuroscientist a key feed
back as to which assumptions underlying the model can be deemed 
correct and which ones seem to contradict the data. We validate our 
approach on synthetic data and illustrate its behavior by a reanalysis of 
published experimental data, showing its potential added value. 

To this aim, we use a dataset and two structural models originating 
from Bullmore et al. [7]. This example has several advantages. It in
cludes a limited number of regions and therefore allows for an exhaus
tive description of the procedure. Also, it deals with cyclic graphs, which 
are common in neuroscience/neuroimaging while being quite chal
lenging from a graph-theoretic perspective. Finally, it has already been 
investigated using other approaches, including SEM [7] and partial 
correlation [28,33], giving us a good view of the informative content 
and limits of the model and data. We use this study to (i) exemplify the 
extraction of conditional independence constraints from real-life SEMs; 
(ii) provide a generative model for our synthetic data; and (iii) reanalyze 
their experimental data. 

The outline of the manuscript is the following. In Section 2, we 
introduce and develop the method. In Section 3, we assess its validity 
using a simulation study. In Section 4, we reanalyze the experimental 
data from Bullmore et al. [7]. Further issues are discussed in Section 5. 

2. Method 

In this section, we introduce the general frameworks of directed 
graphs (Section 2.1) and graphical representation of SEMs (Section 2.2). 
We then delve into the extraction of individual conditional indepen
dence constraints, first stating the general procedure (Section 2.3), then 
applying it to the two structural models of Bullmore et al. [7] (Section 
2.4). In the particular case of multivariate normal distributions, we show 
that the contraints have a simple expression in terms of conditional 
correlation coefficients (Section 2.5). Finally, we provide a numerical 
Bayesian inference procedure to assess the validity of individual con
straints and show how it can be used to also test joint and global con
straints (Section 2.6). 

2.1. Directed graphs 

SEMs are often represented in the form of directed graphs and the 
method that we propose strongly relies on such a representation. In the 
present section, we quickly introduce the basic notions relative to the 
theory of directed graphs. For more information, the interested reader 
can refer to Shipley [43] or Pearl [38]. 

A graph is defined by the set of its vertices (or nodes)—here brain 
regions—, ℛ, and the set of its edges, or arrows, A . Edges stand for 
effective connections of the type i→j from brain region i to brain region j. 
A path from region i to region j is a sequence of regions such that two 

consecutive regions are connected by an edge. The path is said to be 
directed if it is possible to go from region i to region j only by following 
arrows (i.e., from tail to head); it is undirected if the direction of arrows 
is ignored. j is a descendant of i if there exists a directed path from i to j; 
in that case, we also say that i is an ancestor of j. A collider c is a region 
that has arrows pointing to it, i.e., forming a pattern of the form i→c←j. 
For an application of this terminology to a toy example, see Fig. 1. 

A directed graph is acyclic if no directed path connects a vertex to 
itself; otherwise it is cyclic. The theoretical properties of acyclic graphs 
are much better understood than those of cyclic graphs. However, 
models originating from neuroscience are quite often cyclic, so both 
types of graphs need to be taken into account. 

A key concept in directed graphs is d-separation [37], which itself 
relies on the notion of path blocking. A path between regions i and j is 
blocked given a set of regions S if there is a region k on the path for 
which one of two conditions holds:  

• k is a non-collider (i.e., →k→ or ←k←) and k is in S ;  
• k is a collider (i.e., →k←) and neither k nor any of its descendants is 

in S . 

Two regions i and j are then said to be d-separated given a set of regions 
S , denoted dsep(i, j|S ), if and only if all paths between regions i and j 
are blocked by S . d-separation is a formal way of describing whether S 

can block the flow of information between regions. An illustration is 
given in Fig. 1. 

2.2. Graphical representation of SEMs 

As mentioned earlier, directed graphs are a convenient and powerful 
way to represent SEMs. Assume that the state of every region i in a 
network ℛ of R regions is quantified by a variable yi and that the global, 
R-dimensional variable y =

(
y1,…, yR

)
, describing the state of the whole 

network, is modeled by a SEM with relationships of the form of Eq. (1). 
Note that λij reads as the part of the signal of i that is contributed by 
region j. Then y can be associated with a directed graph, where each 
variable yi is represented by a vertex i, and where there is an arrow from 

Fig. 1. Example of directed graph and SEM. Top: Directed acyclic graph. In this 
example, we have ℛ = {1,2, 3,4, 5,6} and  
A = {(1, 2), (1, 3), (2, 4), (3,4), (4,5)}. 1→2→4→5 is a directed path from 1 to 
5, 1→2→4←3 an undirected path between 1 and 3. 4 and 5 are descendant of 2. 
1, 2, and 3 are ancestors of 4. 4 is a collider, since both 2 and 3 are pointing to 
it. The path 1→2→4→5 is blocked by 2, since 2 is a non-collider which is on the 
path; it is also blocked by {2,3} for the same reason. However, this path is not 
blocked by 3 alone, since 3 is a non-collider but is not on the path. The path 2→ 
4←3 is blocked by ∅ (the empty set), since the only node on the path is 4, which 
is a collider and does not belong to ∅. However, this path is neither blocked by 
4 nor by 5, since 4 is a collider that is on the path and 5 is its descendant. 1 and 
4 are d-separated by {2,3}, since both paths connecting 1 and 4 (i.e., 1→2→4 
and 1→3→4) are blocked by {2,3}; however, they are not d-separated by 2 
only, since this node does not block the path 1→3→4. Inverting the link 1→2 
yields a graph that is observationally equivalent, as does inverting the link 1→3. 
Bottom: Structural equation model whose graphical representation is given by 
the top graph. 
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region j to node i whenever λij ∕= 0. 

2.3. Constraints imposed by a structural model 

It has been shown that for a wide variety of structural models, 
including acyclic causal models, as well as cyclic causal models in which 
all variables are discrete or in which functional relationships are linear, 
each relationship of d-separation can be translated into a relationship of 
conditional independence ([43], sect. 2.8). More precisely, every time 
two regions i and j are d-separated by a set of regions S , then yi and yj 

must be conditionally independent given yS . 
Since each relationship of d-separation within an SEM is mirrored by 

a relationship of conditional independence, extracting the set of all re
lationships of d-separation for a model yields all relationships of con
ditional independence that must be verified in the data if the model is 
correct. Note that all these relationships are not necessarily independent 
from one another, as some statements can be predicted from others. In 
particular, we expect constraints involving the same pair of variables 
(i, j) to be highly correlated. We here decide to keep and test all con
straints. This question is further discussed in Section 5. 

2.4. Example 

We use two structural models from the literature [7] to exemplify the 
extraction of conditional independence constraints from real-life 
directed graphs. 

Bullmore et al. [7] considered SEM analysis of a task requiring se
mantic decision and subvocal rehearsal. The following R = 5 left 
hemispheric cortical regions of interest were selected: the ventral 
extrastriate cortex (VEC), the prefrontal cortex (PFC), the supplemen
tary motor area (SMA), the inferior frontal gyrus (IFG), and the inferior 
parietal lobule (IPL). Thus, the set of vertices is given by 

ℛ = {VEC, PFC, SMA, IFG, IPL}.

In their study, they introduced two structural models. They first pro
posed a plausible structural model based on anatomical and functional 
considerations. The resulting model, henceforth referred to as the “ 
theoretically preferred model ” (or “TP” model; see Fig. 2, left). They 
also applied a procedure implemented in the LISREL proprietary soft
ware package,1 yielding a “ best fit model ”, henceforth referred to as 
such (or “BF” model). The resulting model is schematized in Fig. 2, right. 
Note that both structural models are cyclic. Two cycles in the theoreti
cally preferred model are. 

IPL→VEC→IPL  

and  

IPL→VEC→PFC→SMA→IFG→IPL,

while, for the best fit model we have  

IPL→VEC→PFC→IFG→IPL.

and  

IPL→VEC→PFC→SMA→IPL.

We are now in position to extract the conditional independence con
straints from the TP model (Section 2.4.1) and the BF model (Section 
2.4.2). 

2.4.1. Theoretically preferred model 
For the theoretically preferred model, the following links are 

missing: between VEC and SMA; VEC and IFG; PFC and IFG, PFC and 
IPL, SMA and IPL. Reviewing all paths between these pairs of regions 
(see Table 1) leads to the following sets of d-separation and corre
sponding constraints on conditional correlation—  

• Between VEC and SMA: There are three potential paths between both 
regions. PFC must be in the conditioning set, otherwise VEC → PFC 
→ SMA is not blocked. IFG must also be in the conditioning set, 
otherwise VEC ← IPL ← IFG ← SMA is not blocked. Since IFG also 
blocks VEC → IPL ← IFG ← SMA, the set {PFC, IFG} is sufficient. 
Adding IPL in the conditioning set does not change the conclusion. 
We therefore have the following two constraints: 

C1 : Corr[VEC,SMA|PFC, IFG] = 0
C2 : Corr[VEC, SMA|PFC, IFG, IPL] = 0.

• Between VEC and IFG: IPL must be in the set, otherwise IFG → IPL → 
VEC is not blocked. However, IPL activates the path IFG → IPL ← 
VEC, with no possibility to block it with a non-collider. As a conse
quence, no set of regions can d-separate VEC and IFG.  

• Between PFC and IFG: SMA must be in the conditioning set to block 
PFC → SMA → IFG. VEC must also be in the conditioning set to block 
both PFC ← VEC ← IPL ← IFG and PFC ← VEC → IPL ← IFG. Adding 
IPL keep the conclusion unchanged. We therefore have the following 
two constraints: 

C3 : Corr[PFC, IFG|VEC,SMA] = 0
C4 : Corr[PFC, IFG|VEC,SMA, IPL] = 0.

• Between PFC and IPL: VEC must be in the conditioning set to block 
both PFC ← VEC ← IPL and PFC ← VEC → IPL. As to the first path, it 
is blocked by either SMA or IFG, or the two. As a consequence, we 
have three constraints: 

C5 : Corr[PFC, IPL|VEC, IFG] = 0
C6 : Corr[PFC, IPL|VEC,SMA] = 0
C7 : Corr[PFC, IPL|VEC,SMA, IFG] = 0.

• Between SMA and IPL: IFG must be in the conditioning set to block 
the first path. Both the second and third path are blocked by VEC 
and/or PFC. We consequently have the following constraints: 

C8 : Corr[SMA, IPL|PFC, IFG] = 0
C9 : Corr[SMA, IPL|VEC, IFG] = 0
C10 : Corr[SMA, IPL|VEC, PFC, IFG] = 0.

2.4.2. Best fit model 
For the best fit model, the following links are missing: between VEC 

and SMA; VEC and IFG; and PFC and IPL. Reviewing all paths between 
these pairs of regions (see Table 1) leads to: 

PFC

SMA

IFG

IPL

VEC

PFC

SMA

IFG

IPL

VEC

Fig. 2. Example of structural models. “Theoretically preferred” (TP) model 
(left) and “best fit” (BF) model (right) from Bullmore et al. [7]. 

1 http://www.ssicentral.com/lisrel/ 
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• Between VEC and SMA: PFC and IPL must be in the conditioning set, 
otherwise either one of the first two paths connecting these regions is 
not blocked. This set is sufficient, since both nodes also block the 
third path. Adding IFG in the conditioning set does not change the 
conclusion. We therefore have the following two constraints: 

C1′ : Corr[VEC, SMA|PFC, IPL] = 0
C2′ : Corr[VEC, SMA|PFC, IFG, IPL] = 0.

• Between VEC and IFG: for the same reason as above, PFC and IPL 
must be in the conditioning set. This set is sufficient, since both nodes 
also block the third path. Adding SMA in the conditioning set does 
not change the conclusion. We therefore have the following two 
constraints: 

C3′ : Corr[VEC, SMA|PFC, IPL] = 0
C4′ : Corr[VEC, SMA|PFC,SMA, IPL] = 0.

• Between PFC and IPL: VEC, SMA, and IFG must all be in the condi
tioning set to block any of the three paths. As a consequence, we have 
one constraint: 

C5′ : Corr[PFC, IPL|VEC, SMA, IFG] = 0.

• Between SMA and IFG: PFC must be in the conditioning set to block 
the first path. This node also blocks the second and fourth path. 
However, PFC is also a descendant of IPL, which is a collider in the 
third path. As a consequence, it unblocks the third path, with no 
possibility to block it, since it has only one intermediary node (which 
is the collider). As a consequence, no set of regions can d-separate 
SMA and IFG. 

2.5. Case of multivariate normal distributions 

A common assumption in fMRI is that the data follow a multivariate 
normal distribution. In the framework of SEMs, this is a direct conse

quence of the assumption that the noise components ei(t) are Gaussian 
distributed. If y is multivariate normal with covariance matrix Σ, con
ditional independence is characterized by a zero conditional correlation. 
Each relationship of d-separation dsep(i, j|S ) that can be read off the 
directed graph associated with the SEM can therefore also be associated 
with one constraint of the form 

ρi,j|S = Corr
[
yi, yj|yS

]
= 0. (2)  

This coefficient of conditional correlation can be obtained from Σ as 
follows. First, we discard the part of Σ not related to T = S ∪ {i, j}. We 
then partition the remaining matrix ΣT as 
(

Σ{i,j} Σ{i,j},S
ΣS ,{i,j} ΣS

)

.

Σ{i,j} is the part of the covariance matrix that is specific to regions i and j, 
ΣS the part of the covariance matrix that is specific to regions in S , 
while Σ{i,j},S contains the covariances between regions in S on the one 
hand and, on the other hand, regions i and j. We then compute the 2-by-2 
conditional covariance matrix of {i, j} given S as ([2], sect. 2.5.1) 

Σ{i,j}|S = Σ{i,j} − Σ{i,j},S Σ− 1
S ΣS ,{i,j},

and the corresponding conditional correlation coefficients by normali
zation of the covariance coefficient, 

ρi,j|S =

(
Σ{i,j}|S

)

12̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
Σ{i,j}|S

)

11

(
Σ{i,j}|S

)

22

√ . (3)  

2.6. Inference 

Assume that the SEM leads to the expression of K constraints of the 
form given by Eq. (2), each constraint Ck being expressed as 

ρik ,jk |S k
= 0, k = 1,…,K. (4)  

Starting from a dataset D = {y1,…, yN} of N samples assumed to be in
dependent and identically distributed (i.i.d.) realizations of a multi

Table 1 
Example of structural models. Review of missing connections and corresponding paths in the theoretically preferred (TP) model and the best fit (BF) model.  

Model Connection Paths Non-collider(s) Collider(s) 

TP VEC–SMA VEC → PFC → SMA PFC ∅   
VEC → IPL ← IFG ← SMA IFG IPL   
VEC ← IPL ← IFG ← SMA IPL, IFG ∅  

VEC–IFG VEC → PFC → SMA → IFG PFC, SMA ∅   
VEC → IPL ← IFG ∅ IPL   
VEC ← IPL ← IFG IPL ∅  

PFC–IFG PFC → SMA → IFG SMA ∅   
PFC ← VEC → IPL ← IFG VEC IPL   
PFC ← VEC ← IPL ← IFG VEC, IPL ∅  

PFC–IPL PFC → SMA → IFG → IPL SMA, IFG ∅   
PFC ← VEC → IPL VEC ∅   
PFC ← VEC ← IPL VEC ∅  

SMA–IPL SMA → IFG → IPL IFG ∅   
SMA ← PFC ← VEC → IPL PFC, VEC ∅   
SMA ← PFC ← VEC ← IPL PFC, VEC ∅ 

BF VEC–SMA VEC → PFC → SMA PFC ∅   
VEC ← IPL ← SMA IPL ∅   
VEC ← IPL ← IFG ← PFC → SMA IPL, IFG, PFC ∅  

VEC–IFG VEC → PFC → IFG PFC ∅   
VEC ← IPL ← IFG IPL ∅   
VEC ← IPL ← SMA ← PFC → IFG IPL, SMA, PFC ∅  

PFC–IPL PFC → SMA → IPL SMA ∅   
PFC → IFG → IPL IFG ∅   
PFC ← VEC ← IPL VEC ∅  

SMA–IFG SMA ← PFC → IFG PFC ∅   
SMA ← PFC ← VEC ← IPL ← IFG PFC, VEC, IPL ∅   
SMA → IPL ← IFG ∅ IPL   
SMA → IPL → VEC → PFC → IFG IPL, VEC, PFC ∅  
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variate normal distribution with unknown mean μ and covariance ma
trix Σ, the goal of the present section is to propose a way to simulta
neously assess the validity of all constraints. To this aim, we use a 
standard Bayesian analysis complemented with a numerical sampling 
scheme, as described here. For the sake of simplicity, we denote 

ρ =
(
ρi1 ,j1 |S 1

,…, ρiK ,jK |S K

)
(5)  

the set of all conditional correlation coefficients of interest. In a Bayesian 
analysis, the information brought by the data is summarized by the 
posterior distribution of the parameters given the data, p(ρ|D). While 
this distribution cannot be expressed in closed form in the present case, 
it can easily be approximated using a standard result regarding the 
posterior distribution of the covariance matrix, p(Σ|D) (Section 2.6.1), 
together with a numerical sampling scheme (Section 2.6.2). From there, 
hypothesis testing can be performed at the individual, joint, or global 
level (Section 2.6.3). 

2.6.1. Posterior distribution of Σ 
Assuming a noninformative Jeffreys prior for the covariance matrix 

and letting m be the sample average, 

m =
1
N

∑N

n=1
yn,

and S the sample sum-of-square matrix, 

S =
∑N

n=1
(yn − m)(yn − m)

t
,

the posterior distribution of Σ is inverse Wishart with N − 1 degrees of 
freedom and scale matrix S ([17], sect. 3.6), 

p(Σ|D)∝|Σ|−
N+D

2 exp
[

−
1
2

tr
(
SΣ− 1)

]

. (6)  

2.6.2. Posterior distribution of ρ 
We start by numerically sampling Σ from its posterior distribution, 

Eq. (6), which can easily be done ([17], Appendix A). From each sample 
Σ[l], l = 1,…, L (e.g., L = 105) and each constraint Ck, one can then 
compute the conditional correlation coefficient ρ[l]

ik ,jk|S k 
associated with 

Ck using the procedure detailed in Section 2.5 and leading to Eq. (3). 
This procedure yields a sample from the posterior distribution of inter
est, p(ρ|D). 

2.6.3. Hypothesis testing 
We are now in position to provide a general test that uses the nu

merical sample from p(ρ|D) to test all (i.e., individual, joint, and global) 
constraints induced by a model in a similar fashion. This test is based on 
a (multivariate) normal approximation of the distributions of interest. A 
(multivariate) normal distribution is fully characterized by its mean and 
variance. In our case, approximations for the posterior mean and 
covariance matrix can readily be computed using their sample coun
terparts. Let ρ̃ be the K̃-dimensional (1 ≤ K̃ ≤ K) subvector of ρ that we 
wish to test, and c, respectively V, be the sample mean, respectively 
variance (or covariance matrix), of the numerical sample 

(
ρ̃[l]

)

approximating p(ρ̃|D). We then define deviance as 

d(ρ̃) = (ρ̃ − c)tV− 1(ρ̃ − c). (7)  

It is a squared Mahalanobis distance which characterizes how ρ̃ is close 
to c. If ̃ρ were normal distributed, then d(ρ̃) would provide the contours 
of constant probability for ̃ρ and would be chi-square distributed with K̃ 
degrees of freedom. 

We finally define p as the probability that d(ρ̃) < d(0). p is a measure 
of how plausible the null hypothesis ̃ρ = 0 is [26,29,49]. This probability 

could be computed using the chi-square approximation. Here, we rather 
rely on the numerical sample and approximate p as the fraction of 
samples for which d

(
ρ̃[l]

)
is smaller than d(0), 

p ≈
1
L
#
{

l : d
(
ρ̃[l] )

< d(0)
}
. (8)  

Finally, if a decision is required, a significance level α can be set (e.g., 
α = 0.05). All tests such that p < α are declared significant, and the 
corresponding null hypotheses are rejected. 

3. Simulation study 

We assessed the validity of our approach by applying it to synthetic 
data. The data generation process, the analysis, the evaluation scheme, 
and the main results are presented in Sections 3.1, 3.2, 3.3, and 3.4, 
respectively. 

3.1. Data generation 

We generated synthetic data using the TP and BF models introduced 
earlier (see Section 2.4). For the model parameters (path coefficients and 
noise variances), we used the values that were inferred by Bullmore et al. 
[7] from their data and are summarized in our Table 2. For each model, 
we generated 1000 sample covariance matrices, for a total of 1000 
(samples per structural model) ×2 (models) = 2000 sample covariance 
matrices. 

3.2. Analysis 

For each sample covariance matrix, we tested the relevance of the 
constraints originating from both the theoretically preferred model and 
the best fit model. More specifically, for each sample covariance matrix 
and model, we tested the validity of the following constraints:  

• For the theoretically preferred model: 10 individual constraints, 3 
joint constraints, and 1 global constraint;  

• For the best fit model: 5 individual constraints, 3 joint constraints, 
and 1 global constraint. 

Each constraint was tested by computing the corresponding p as 
detailed in Section 2.6. 

3.3. Evaluation 

For each model used to generate the data (theoretically preferred 
model and best fit model) and each model providing the constraints 

Table 2 
Simulation study. Parameter values used for data generation: path coefficients 
for the theoretically preferred model (top) and the best fit model (middle), as 
well as residual variance (bottom) (values from [7]).   

VEC PFC SMA IFG IPL 

λTP 

VEC 0 0 0 0 0.80 
PFC 0.59 0 0 0 0 
SMA 0 0.60 0 0 0 
IFG 0 0 0.31 0 0 
IPL − 0.16 0 0 0.52 0  

λBF 

VEC 0 0 0 0 0.61 
SMA 0 0.58 0 0 0 
IFG 0 0.43 0 0 0 
IPL 0 0 0.27 0.58 0       

ψ 0.825 0.868 0.870 0.881 0.851  
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tested (again, theoretically preferred model and best fit model), we 
computed two summaries:  

• the 5% percentile for p, i.e., the value p5% for which we have p < p5% 
for 5% of the 1000 samples (i.e., for 50 values);  

• the fraction f0.05 of tests declared significant at a significance level of 
α = 0.05. 

When analyzing data generated according to a structural model with the 
constraints associated with the same model (i.e., testing constraints from 
the theoretically preferred model using data generated according to the 
theoretically preferred model, or testing constraints from the best fit 
model using data generated according to the best fit model), we expect 
to have p5% ≈ 0.05 and f0.05 ≈ 0.05. 

3.4. Results 

Results of simulation study can be found in Table 3. When testing the 
constraints of the theoretically preferred model on data generated using 
the theoretically preferred model, the values of p5% and f0.05 were both 
relatively close to the expected value of 0.05 for the individual con
straints (range for p5%: 0.029–0.052; range for f0.05: 0.029–0.060) and 
the joint constraints (range: 0.044–0.060), but quite different for the 

global constraint (p5% = 0.252, f0.05 = 0.004). When testing the con
straints associated with the theoretically preferred model with data 
generated using the best fit model, values where much lower for p5% 
(range: < 0.001 to 0.038) and much larger for f0.05 (range 0.072–0.941) 
for all types of constraints. 

By contrast, when testing the constraints associated with the best fit 
model, we found limited difference in results between data generated 
using the theoretically preferred model (range for p5%: 0.0163–0.116; 
range for f0.05: 0.010–0.117, all constraint types) and data generated 
using the best fit model (range for p5%: 0.028–0.148; range for f0.05: 
0.005–0.072, all constraint types). 

4. Experimental data 

We finally used the experimental data provided in Bullmore et al. [7] 
to reanalyze their study and provide new insight into the structural 
modeling. 

4.1. Data 

Each of the 5 regions mentioned in Section 2.4 was associated with a 
time course of length T = 96 time samples. The sample correlation 
matrix between the time series was given in Bullmore et al. [7] and is 
reported in Table 4. 

4.2. Analysis 

We applied our procedure to the real data to infer in what measure 
they support the existence of the theoretically preferred model and/or 
the best fit model. In particular, while the theoretically preferred model 
and the best fit model differed both structurally (different set of arrows) 
and numerically (different path coefficients for arrows that are common 
to both models), Bullmore et al. [7] concluded that the data did not 
contain enough evidence to enable one to discard the theoretically 

Table 3 
Simulation study. Results of analysis: p5%, the 5% percentile interval for p, as well as f0.05, the fraction of samples that were declared significant for a significance level 
of α = 0.05.  

Tested model Connection Constraints Generative model 

TP BF 

p5% f0.05 p5% f0.05 

TP VEC–SMA C1 Corr[VEC, SMA|PFC, IFG] = 0 0.052 0.049 0.002 0.231   
C2 Corr[VEC, SMA|PFC, IFG, IPL] = 0 0.041 0.063 0.027 0.072   
J1 joint constraint 0.044 0.053 < 0.001 0.550  

VEC–IFG none – – – –  
PFC–IFG C3 Corr[PFC, IFG|VEC, SMA] = 0 0.038 0.059 < 0.001 0.926   

C4 Corr[PFC, IFG|VEC, SMA, IPL] = 0 0.042 0.057 < 0.001 0.859   
J2 joint constraint 0.060 0.043 < 0.001 0.879  

PFC–IPL C5 Corr[PFC, IPL|VEC, IFG] = 0 0.034 0.067 0.002 0.259   
C6 Corr[PFC, IPL|VEC,SMA] = 0 0.044 0.061 0.001 0.340   
C7 Corr[PFC, IPL|VEC,SMA, IFG] = 0 0.039 0.061 0.038 0.063   
J3 joint constraint 0.058 0.040 < 0.001 0.941  

SMA–IPL C8 Corr[SMA, IPL|PFC, IFG] = 0 0.037 0.067 < 0.001 0.743   
C9 Corr[SMA, IPL|VEC, IFG] = 0 0.029 0.075 < 0.001 0.749   
C10 Corr[SMA, IPL|VEC,PFC, IFG] = 0 0.029 0.072 < 0.001 0.638   
J4 joint constraint 0.048 0.054 < 0.001 0.712   
G global constraint 0.252 0.004 0.004 0.534 

BF VEC–SMA C′
1 Corr[VEC, SMA|PFC, IPL] = 0 0.040 0.061 0.033 0.071   

C′
2 Corr[VEC, SMA|PFC, IFG, IPL] = 0 0.041 0.062 0.028 0.072   

J′
1 joint constraint 0.060 0.040 0.082 0.026  

VEC–IFG C′
3 Corr[VEC, IFG|PFC, IPL] = 0 0.021 0.117 0.050 0.050   

C′
4 Corr[VEC, IFG|PFC, SMA, IPL] = 0 0.016 0.113 0.051 0.049   

J′
2 joint constraint 0.041 0.059 0.106 0.018  

PFC–IPL C′
5 Corr[PFC, IPL|VEC,SMA, IFG] = 0 0.040 0.061 0.038 0.063   

J′
3 joint constraint 0.040 0.061 0.038 0.063  

SMA–IFG none – – – –   
G′ global constraint 0.116 0.010 0.148 0.005  

Table 4 
Experimental data. Sample correlation matrix of the dataset examined in Bull
more et al. [7] (lower triangular matrix) and corresponding sample partial 
correlation matrix (upper triangular matrix, italics).   

VEC PFC SMA IFG IPL 

VEC  0.305 0.023 0.089 0.495 
PFC 0.661  0.420 0.164 0.132 
SMA 0.525 0.660  0.091 0.170 
IFG 0.486 0.507 0.437  0.188 
IPL 0.731 0.630 0.558 0.517   
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preferred model as being significantly different from the best fit model. 
We wanted to qualify this statement. 

4.3. Results 

See Figs. 3 and 4 for an example of output from the approximate 
sampling scheme. The significance of the different constraints are re
ported in Table 5 and summarized in graphical form in Fig. 5. While the 
global set of constraints could not be rejected for the theoretically 
preferred model (p = 0.171), some specific constraints (such as C5, C8 
and C9; also C3 close to significance), or sets of constraints (such as J3, 
corresponding to a lack of connection between PFC and IPL and J4, 
corresponding to a lack of connection between SMA and IPL), were 
found to be significantly different from 0. By contrast, in the best fit 
model, no individual, joint or global constraint could be rejected. 

5. Discussion 

In the present paper, we proposed a novel method to test the validity 
of a given model of structural equation. Given a structural model in the 
form of a directed (cyclic or acylic) graph, it extracts the set of all 
constraints of conditional independence induced by the absence of links 
between regions in the model and tests for their validity in a Bayesian 
framework, either individually (constraint by constraint), jointly (by 
gathering all constraints associated with a given missing link), or glob
ally (all constraints associated with a structural model). We illustrated 
the approach on a dataset and two structural models. With a simulation 
study, we showed the power and limits of the method. Finally, we 
applied the method to real data. 

This approach is unique in that it avoids several issues that are 
typical of usual SEM inference methods. First, it does not mislead the 
user into making incorrect conclusions regarding the causal pattern of 

Fig. 3. Experimental data. Results from inference corresponding to the three individual constraints relative to the missing link between PFC and IPL in the theo
retically preferred model: C5 (top), C6 (middle) and C7 (bottom). Left: histograms of the samples approximating the posterior distributions of the conditional cor
relation coefficients, and corresponding normal approximations. Right: histograms of the samples approximating the posterior distributions of the deviances obtained 
from Eq. (7), and corresponding chi-square approximations. 
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the model, as observationally equivalent models will lead to the same 
conclusion. Second, it makes it possible to test constraints at the level 
desired by the user: either at the scale of a single constraint, a set of 
constraints corresponding to a missing link, and all constraints specific 
to the structural model. 

A key point in the procedure is the determination of the constraints 
of conditional independence entailed by the structural model [1]. Effi
cient methods have been proposed to extract such constraints in a 
principled fashion. For acyclic graphs, a method was proposed by Pearl 
[37]. Another, more general approach was introduced by Shipley [44]. 
Both approaches rely on the fact that the set of all constraints entailed by 

a structural model are not necessarily independent from one another, as 
some statements can be predicted from others. For instance, we could 
expect constraints involving the same pair of variables (i, j) to be highly 
correlated. The two methods mentioned above were developed to avoid 
this redundancy and to extract a (not necessarily unique) smallest sub
set, called basis, which still generates all existing relationships. We here 
departed from this approach and, instead, used brute force to extract and 
deal with all relationships of conditional independence. We reasoned 
that the redundancy contained in the set of all constraints could be 
beneficial to the inference process. Indeed, discarding some constraints 
is tantamount to discarding information about the model, which is not 
desired. Also, when dealing with real data, we can expect some 

Fig. 4. Experimental data. Results from inference corresponding to the joint constraints relative to the missing link between PFC and IFG (left) as well as between 
PFC and IPL (right) in the theoretically preferred model. Scatterplot of the conditional correlation coefficients associated with J2 and J3. The color codes − log10d(ρ̃), 
thresholded at 3. The black dot stands for ρ̃ = 0. 

Table 5 
Experimental data. Result of inference: significance values for the different 
constraints entailed by the theoretically preferred model and the best fit model. 
Values lower than a threshold of α = 0.05 are emphasized in bold, while values 
larger but close to α are in italics.  

Tested model Connection Constraints p 

TP VEC–SMA C1 Corr[VEC, SMA|PFC, IFG] = 0 0.220   
C2 Corr[VEC, SMA|PFC, IFG, IPL] = 0 0.823   
J1 joint constraint 0.136  

VEC–IFG none –  
PFC–IFG C3 Corr[PFC, IFG|VEC, SMA] = 0 0.052   

C4 Corr[PFC, IFG|VEC, SMA, IPL] = 0 0.105   
J2 joint constraint 0.098  

PFC–IPL C5 Corr[PFC, IPL|VEC, IFG] = 0 0.020   
C6 Corr[PFC, IPL|VEC,SMA] = 0 0.094   
C7 Corr[PFC, IPL|VEC,SMA, IFG] = 0 0.192   
J3 joint constraint 0.017  

SMA–IPL C8 Corr[SMA, IPL|PFC, IFG] = 0 0.034   
C9 Corr[SMA, IPL|VEC, IFG] = 0 0.009   
C10 Corr[SMA, IPL|VEC,PFC, IFG] = 0 0.089   
J4 joint constraint 0.014   
G global constraint 0.171 

BF VEC–SMA C′
1 Corr[VEC, SMA|PFC, IPL] = 0 0.765   

C′
2 Corr[VEC, SMA|PFC, IFG, IPL] = 0 0.830   

J′
1 joint constraint 0.828  

VEC–IFG C′
3 Corr[VEC, IFG|PFC, IPL] = 0 0.380   

C′
4 Corr[VEC, IFG|PFC, SMA, IPL] = 0 0.340   

J′
2 joint constraint 0.588  

PFC–IPL C′
5 Corr[PFC, IPL|VEC,SMA, IFG] = 0 0.188   

J′
3 joint constraint 0.188  

SMA–IFG none –   
G′ global constraint 0.690  

PFC

SMA

IFG

IPL

VEC

PFC

SMA

IFG

IPL

VEC

PFC

SMA

IFG

IPL

VEC

Fig. 5. Experimental data. Graphical representation of the values of p associ
ated with missing links (joint constraints) for the theoretically preferred model 
(TP, top left) and best fit model (BF, top right). Undirected links correspond to 
missing arrows and values of p associated with the corresponding joint con
straints. Bottom: values of p for partial correlations calculated using deviance. 
Blue dotted lines: p ≥ 0.1; orange dashed lines: 0.05 ≤ p < 0.11; solid red line: 
p < 0.05. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.) 
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constraints to be better respected than others in the data; which con
straints are best to investigate a model is therefore the result of an 
interaction between model and data—i.e., it is itself an inference pro
cess, which we did not take the risk of separating from the main task. 
The application we introduced confirmed the strong redundancy be
tween constraints related to the same missing link (e.g., for the theo
retically preferred model: C3 and C4, corresponding to the missing 
connection between PFC and IFG; C5, C6, and C7, corresponding to the 
missing connection between PFC and IPL), as observed by visual in
spection of either the scatterplots (see Fig. 4) or the correlation matrices 
(see Fig. 6). The application also brought evidence in favor of keeping all 
constraints, as various relationships corresponding to the same missing 
link were found to have quite different significance levels. For instance, 
in the theoretically preferred model, C5, C6 and C7, related to the same 
missing connection between PFC and IPL, had p-values ranging from 
0.020 to 0.192. 

This exhaustive way of extracting constraints may limit the gener
alization of the method to larger systems, as its scalability with respect 
to the number of regions remains to be investigated. In particular, we are 
not sure whether there exists an efficient algorithm that extracts all re
lationships of conditional independence from a given structural model. 

Note that, in the process of extracting constraints of conditional in
dependence, a missing link does not necessarily translate into a 
constraint. This is in particular true in cyclic graphs, i.e., in the presence 
of loops or feedbacks. For instance, the absence of a link between IFG 
and VE in the theoretically preferred model was not associated with a 
constraint. Similarly, in the best fit model, the missing link between SMA 
and IFG was not associated with a constraint as their unique parent PFC 
was also a descendant. 

To assess the validity of our approach, we used a simulation study 
where we generated data according to the two models under investi
gation (theoretically preferred model and best fit model). Interestingly, 
this showed evidence of a differential behavior depending on the model 
being tested. Our method was able to discriminate synthetic data 
generated according to the theoretically preferred model from synthetic 
data generated from the best fit model in the case of constraints asso
ciated with the theoretically preferred model. By contrast, it was not 
able to do so in the case of constraints associated with the best fit model. 

The approach introduced in the present manuscript strongly relies on 
conditional correlation. Conditional correlation was introduced in fMRI 
functional connectivity analysis as a data-driven way to extract infor
mation from data that is closer to effective connectivity than pairwise 
correlation [30,31]. A particular emphasis was put on partial correla
tion, a particular type of conditional correlation where the conditioning 
set is the rest of the variables [28,32–34,42,45]. By contrast, the present 
method is clearly model-based, as it requires the knowledge of a po
tential model to start with. 

For instance, consider PFC and IPL. In the theoretically preferred 
model, the absence of a link between both regions was deemed to be 
implausible in the face of the data (p = 0.017), while it was found to 
agree with the data based on the best fit model (p = 0.188). 

The validity of using SEM in fMRI as well as its strengths and limits, 

and even the very possibility to access information relative to effective 
connectivity, are topics that are still discussed [14,19,20,40]. Still, SEM 
is a classical way to deal with effective connectivity, and we reasoned 
that improving this method such that it avoids the pitfall of observa
tionally equivalent models and provides for a finer view into local re
lationships could only be beneficial to the community of SEM users. We 
also hope that our contribution will broaden the usability of SEM and 
help the neuroscientists improve the causal information that they can 
extract from data. 
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Fig. 6. Experimental data. Value of correlation between conditional correlation 
coefficients approximated with the sampling scheme. 
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