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An Inferential Measure of Dependence Between
Two Systems Using Bayesian Model Comparison

Guillaume Marrelec and Alain Giron

Abstract—We propose to quantify dependence between two
systems X and Y in a dataset D based on the Bayesian com-
parison of two models: one, H0, of statistical independence and
another one, H1, of dependence. In this framework, dependence
between X and Y in D, denoted B(X ,Y|D), is quantified as
P(H1|D), the posterior probability for the model of dependence
given D, or any strictly increasing function thereof. It is therefore
a measure of the evidence for dependence between X and
Y as modeled by H1 and observed in D. We review several
statistical models and reconsider standard results in the light
of B(X ,Y|D) as a measure of dependence. Using simulations,
we focus on two specific issues: 1) the effect of noise and
2) the behavior of B(X ,Y|D) when H1 has a parameter
coding for the intensity of dependence. We then derive some
general properties of B(X ,Y|D), showing that it quantifies the
information contained in D in favor of H1 versus H0. While some
of these properties are typical of what is expected from a valid
measure of dependence, others are novel and naturally appear
as desired features for specific measures of dependence, which
we call inferential. We finally put these results in perspective;
in particular, we discuss the consequences of using the Bayesian
framework as well as the similarities and differences between
B(X ,Y|D) and mutual information.

Index Terms—Bayesian model comparison, dependence,
independence, measure of dependence.

I. INTRODUCTION

INDEPENDENCE and dependence are key concepts in
science whose goal is to characterize the structural rela-

tionships between systems. Consider two systems X and
Y characterized by a probabilistic description in terms of
(possibly multivariate) random variables X and Y , respec-
tively, with known joint probability distribution fXY(x, y) and
marginals fX(x) and fY(y). In this context, X and Y are said
to be independent if they underlying random variables are
independent, i.e., [1, Sec. 2.2]

fXY(x, y) = fX(x) fY(y). (1)

When X and Y are not independent, fXY(x, y) differ from
fX(x) fY(y), and both systems are said to be dependent. In this
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case, an important issue is the quantification of dependence
between X and Y , where one tries to measure to what
degree fXY(x, y) differs from fX(x) fY(y). There are many
ways to depart from independence, and this question remains
open in the general case. Many measures of dependence
have been proposed, including but not limited to mutual
information [2, Secs. 2 and 8], maximal correlation coef-
ficient [3], [4], the mixed derivative measure of marginal
interaction [1, Sec. 2.3], Hoeffding’s procedure [5], distance
correlation [6], [7], circular correlation [8], and Hilbert–
Schmidt information criterion [9].

Once a theoretical measure has been proposed, another layer
of complexity is often added by the fact that we do not
know fXY(x, y). A common situation is when one knows (or
assumes) that it belongs to a family fXY(x, y|θ) parameterized
by an (unknown) parameter θ which has to be estimated
using a dataset of N independent and identically distributed
(i.i.d.) samples (xn, yn). Various estimation strategies have
been proposed, from plug-in estimators (where one computes
the measure by replacing the true value of the parameter
by its estimator) [10, Ch. 9], [11, Ch. 12, Sec. 3.6] to
more refined techniques proposing estimators for the measure
itself [12], [13], [14]. The interest of this kind of approaches
relies on the asymptotic convergence of the estimators toward
the true value of the measure. However, the values taken
by these estimators for finite data size do not have simple
interpretations.

In this article, we introduce another general measure of
dependence B(X ,Y|D) between systems X and Y given
dataset D. Our starting point is the real-life situation where
the joint behavior of (X ,Y) is characterized by a dataset of N
i.i.d. samples (xn, yn). We propose to characterize dependence
between X and Y in D by using a Bayesian inference scheme
that compares the credibility of two competing models: 1) H0,
which describes X and Y as independent and 2) H1, which
describes them as dependent. This setting was already used
to infer the structure of independence within a multivariate
distribution [15], [16]. In the case of bivariate discrete dis-
tributions and multivariate normal distributions, a connection
was also observed between the log posterior odd ratio and
mutual information [15], [16], [17]. We here propose to go
one step further and advocate that the Bayesian comparison
of models H1 and H0 mentioned above provides a family of
measures that can be used to quantify the level of dependence
between X and Y . As will be further developed below, any
measure B(X ,Y|D) in this family is an increasing function of
correlation, mutual information, the minimum discrimination
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information, and the log-likelihood ratio criterion for testing
independence, in cases where it makes sense to define such
measures. As a consequence, B(X ,Y|D) shares many fea-
tures with these classical measures of dependence. Unlike
these same measures, though, the value of B(X ,Y|D) for a
given D and finite N has a direct, exact interpretation as (a
strictly increasing function of) the probability that X and Y
be dependent (as described by H1) for D. In other words,
B(X ,Y|D) quantifies the evidence for—or credibility of—
dependence between X and Y as modeled by H1 and observed
in D, i.e., the amount of information contained in D in favor of
H1 versus H0. It has several interesting features regarding the
effect of data size and noise, which are detailed throughout the
manuscript and characterize what we would call an inferential
measure of dependence.

The outline of our manuscript is the following. In Section II,
we present the general theoretical framework. In Section III,
we use simulation studies to investigate two specific issues:
1) the effect of noise and 2) the behavior of B(X ,Y|D) when
H1 has a parameter coding for the intensity of dependence.
Section IV provides a real-life application in neuroscience
and neuroimaging. We then state some key properties of
B(X ,Y|D) in Section V. Further issues are discussed in
Section VI.

II. BAYESIAN MEASURES OF DEPENDENCE

In this section, we present the core of our method. After a
quick review of Bayesian model comparison for the investiga-
tion of statistical independence and dependence (Section II-A),
we introduce a general measure of dependence B(X ,Y|D)

which can either take the form of a posterior probability or
any strictly increasing function thereof (Section II-B). We
then investigate the theoretical properties of Blnr(X ,Y|D),
a particular instance of B(X ,Y|D), in the case of known
distributions (Section II-C) and known likelihood functions
with unknown parameters (Section II-D). In Section II-E, we
apply our framework to the important case where H0 is nested
in H1, a framework that can be applied to several common
models, such as maximum-entropy distributions, multivariate
normal distributions, and bivariate discrete distributions. In
Section II-F, we consider the other particular case where
dependence is modeled through a copula. Section II-G inves-
tigates the consequences of model misspecification. Finally, in
Section II-H, we summarize the main results obtained thus far.

A. Model Comparison

We here provide a quick description of the general frame-
work of Bayesian model comparison for the investigation of
statistical dependence. For more details, the reader can refer
to [15] or [16]. Consider the following two competing models.

1) A model H0 (with parameter θ (0) ∈ �(0)) in which X
and Y are independent and where the likelihood is given
by

l0
(

x, y|θ (0)
)

= f (0)
X

(
x|θ (0)

)
f (0)
Y

(
y|θ (0)

)
. (2)

2) Another model H1 (with model parameter θ (1) ∈ �(1))

in which X and Y are dependent and the likelihood is

l1
(

x, y|θ (1)
)

= f (1)
XY

(
x, y|θ (1)

)
. (3)

In a Bayesian framework, all the information from the data
that is relevant for the problem at hand is summarized by
the posterior probabilities of H0 and H1 given the dataset D,
p(H0|D) and p(H1|D), respectively. Both quantities can be
calculated using Bayes updating rule

p(Hi|D) = p(Hi) p(D|Hi)

p(D)
, i = 0, 1. (4)

p(Hi) is the model prior probability and can be set depend-
ing on the prior belief that we have regarding the relative
plausibility of both competing hypotheses. As to the marginal
model likelihood p(D|Hi), it can be expressed using the
marginalization formula

p(D|Hi) =
∫

θ (i)∈�(i)
p
(
θ (i)|Hi

)
p
(

D|Hi, θ
(i)
)

dθ (i). (5)

In this expression, p(θ (i)|Hi) of is the parameter prior. We set
it to hi(θ

(i)) for θ (i) ∈ �(i). p(D|Hi, θ
(i)) is the likelihood

function. For N i.i.d. samples

D = {(
x1, y1

)
, . . . ,

(
xN, yN

)}
(6)

it can be decomposed as

p
(

D|Hi, θ
(i)
)

=
N∏

n=1

li
(

xn, yn|θ (i)
)
. (7)

B. A Family of Measures

By definition, p(H1|D) quantifies the posterior probability
that X and Y be dependent. As a consequence, it can be
considered as a measure of dependence between X and Y

Bpr(X ,Y|D) ≡ p(H1|D). (8)

Indeed, it is equal to 0 when it is known that X and Y are
independent as in H0, equal to 1 when they are known to
be dependent in agreement with H1, and in between when
we are sure of neither; the larger it is, the more probable the
dependence of X and Y is.

If one agrees to treat p(H1|D) as a measure of dependence,
then various strictly increasing mappings of it could also be
considered, with different ranges. For instance, one could use
the posterior odd ratio of H1 versus H0

Br(X ,Y|D) ≡ p(H1|D)

p(H0|D)
= p(H1)

p(H0)

p(D|H1)

p(D|H0)
. (9)

The first fraction of the right-hand side equation is the so-
called prior odd ratio, while the second fraction is the Bayes
factor. The Bayes factor itself could be used as a measure of
dependence. We can also use the log scale to obtain a better
representation of the measure of dependence, either in its usual
form

Blnr(X ,Y|D) ≡ ln
p(H1)

p(H0)
+ ln

p(D|H1)

p(D|H0)
(10)
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or in log10, so that a value of b means that H1 is 10b

times more probable than H0; or expressed, such as to yield
values on a scale similar to decibels [18]. Measures similar to
Blnr(X ,Y|D), Blogr(X ,Y|D) and BdB(X ,Y|D) but relying
on BBF(X ,Y|D) instead of Br(X ,Y|D) could be proposed
(i.e., not taking the relative priors of H0 and H1 into account).

Importantly, all these measures are strictly increasing func-
tion of dependence, i.e., they increase as the probability for
H1 (dependence) increases.

In the following, we will mostly focus on Blnr(X ,Y|D)

and Blogr(X ,Y|D), as it is these measures whose properties
are easiest to investigate. Furthermore, they show the closest
connections to existing frameworks for quantifying depen-
dence, such as the log-likelihood criterion for independence
and mutual information.

C. Known Distributions

If we assume that the distribution of (X, Y) is known exactly
in both H0 and H1, then it is straightforward to show that (see
Section 1 of Supplementary Material)

1) If H0 is true (independence), Blnr(X ,Y|D) tends to −∞
as N → ∞, and its sampling expectation is a decreasing
function of N.

2) If H1 is true (dependence), Blnr(X ,Y|D) tends to +∞
as N → ∞, and its expectation is an increasing function
of N and I(X, Y), the mutual information between X and
Y .

The rest of the section is devoted to show that these results also
hold for more general models, albeit in a weaker, asymptotic
form.

D. Known Likelihood Functions With Unknown Parameters

We now consider the more general case where each likeli-
hood function is not exactly known but belongs to a known
family with unknown parameter. While an exact expression
for Blnr(X ,Y|D) cannot be obtained in this case, we can still
derive an asymptotic approximation in a fashion similar to
[19, Secs. 7.22–7.27], which itself relies on the consistency of
the maximum-likelihood estimate.

For i ∈ {0, 1}, let Li(θ
(i)) = p(D|Hi, θ

(i)) be the likelihood
function associated with model Hi, as defined in (7). The
marginal model likelihoods of (5) can formally be expressed
as

P(D|Hi) =
∫

θ (i)∈�(i)
hi

(
θ (i)
)

Li

(
θ (i)
)

dθ (i). (11)

We assume that Li(θ
(i)) is unimodal and set θ̂

(i)
N its maximum-

likelihood estimate

θ̂
(i)
N = argmaxθ (i)∈�(i)Li

(
θ (i)
)
, i = 0, 1. (12)

Assuming that the prior hi(θ
(i)) is strictly positive and of

slow variation around θ̂
(i)
N , the integral of (11) can be approx-

imated using Laplace method [20], [21] (see Section 2 of

Supplementary Material), yielding

Blnr(X ,Y|D) = ln
L1

(
θ̂

(1)

N

)

L0

(
θ̂

(0)

N

) − D2 − D1

2
ln N + O(1) (13)

and

Blnr(X ,Y|D) = N

⎡
⎢⎣Î(X, Y) + 1

N

N∑
n=1

ln
f (1)
X

(
xn|θ̂ (1)

N

)

f (0)
X

(
xn|θ̂ (0)

N

)

+ 1

N

N∑
n=1

ln
f (1)
Y

(
yn|θ̂

(1)

N

)

f (0)
Y

(
yn|θ̂

(0)

N

)

⎤
⎥⎦− D2 − D1

2
ln N

+ O(1). (14)

In (13), the first term of the right-hand side is the classical
likelihood ratio test statistic, showing the connection between
our approach and the log-likelihood ratio criterion for testing
independence [10, Sec. 9.2]. The second term of the right-
hand side is the BIC correction [22]. In (14), Î(X, Y) is the
sampling mutual information under H1.

In the absence of further assumption, nothing can be said
about the asymptotic behavior of this quantity, which depends
on the true likelihood function as well as the limits of the
maximum-likelihood estimates θ̂

(0)

N and θ̂
(1)

N . These limits, in
turn, are not necessary well defined in the general case.

E. Nested Models

We here consider the particular case where H0 is nested in
H1. In this case, the models allowed by H0 are included in
those allowed by H1, i.e., models of H0 are particular cases of
models in H1. In other words, there exists a function π such
that, for any θ (0) ∈ �(0), we have

l0
(

x, y|θ (0)
)

= l1
[
x, y|π

(
θ (0)

)]
. (15)

For the sake of simplicity, it is often assumed that π(θ (0)) is a
projection, i.e., �(1) can be parameterized by θ (1) = (θ (0),φ)

with θ (0) ∈ �(0) such that π(θ (0)) = (θ (0),φ0) (i.e., φ = φ0).
Then it can be shown the following results (see Section 3 of
Supplementary Material).

a) Under H0: When N → ∞, Blnr(X ,Y|D) essentially
behaves as −(1/2)(D1 − D0) ln N, which is a decreasing
function of N that tends to −∞. Also, E[Blnr(X ,Y|D)|H0] is
a decreasing function of N.

b) Under H1: When N → ∞, Blnr(X ,Y|D) is approx-
imately linearly increasing in N. E[Blnr(X ,Y|D)|H1] has a
first-order approximation that is an increasing function of
N, but a second-order approximation that may first decrease
before it increases.

Nested models in the particular cases of maximum-entropy
distributions, multivariate normal distributions, and bivari-
ate discrete distributions are considered in Sections 4–6 of
Supplementary Material, respectively, together with details
about the connection between our method and existing meth-
ods, such as the log-likelihood ratio criterion, the BIC, mutual
information, and the minimum discrimination information
statistic.
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F. Copula Models

Another particular case of interest is when H0 and H1
share the same assumptions regarding marginals for X and
Y—modeled by fX(x|φ) and fY(y|φ), respectively, and H1
models dependence through a copula with density c(u, v|ψ)

[23, Ch. 8]. The model parameters are therefore θ (0) = φ(0)

for H0 and θ (1) = (φ(1),ψ (1)) for H1. A common approach
to estimate parameters is the method of inference function
for margins (IFM) [24, Sec. 10.1], which has a simple
interpretation in our framework: first estimate φ(0) using the

maximum-likelihood estimate θ̂
(0)

N = φ̂
(0)

N , and then estimate

θ (1) by first setting φ̂
(1)

N = φ̂
(0)

N and then finding the maximum-

likelihood estimate θ̂
(1)

N = (φ̂
(0)

N , ψ̂
(1)

N ). In this case, (14)
simplifies to

Blnr(X ,Y|D) = NÎ(X, Y) − D2 − D1

2
ln N + O(1) (16)

with

Î(X, Y) = 1

N

N∑
n=1

ln c
[
FX

(
xn|φ̂(0)

N

)
, FY

(
yn|φ̂(0)

N

)∣∣∣ψ̂ (1)

N

]
(17)

where FX(x|φ) and FY(y|φ) are the cumulative distribution
functions of x and Y , respectively. This quantity is related to
minus the entropy of c(u, v|ψ) [25].

G. Model Misspecification

We now investigate the consequence of considering a true
underlying generative model that is neither H0 nor H1. To this
aim, we assume that the generative distribution is f (x, y|θ),
that the estimators of the model parameters under H0 and

H1 have limits, i.e., θ̂
(0)

N
N→∞→ θ

(0)∞ and θ̂
(1)

N
N→∞→ θ

(1)∞ ,
and that these limits are such that Laplace approximation
which can be applied. In (13), the leading term of X ,Y|D is

ln [L1(θ̂
(1)

N )/L0(θ̂
(0)

N )] can be expressed as (see Section 7 of
Supplementary Material)

N
{

DKL

[
f (x, y|θ)‖f (0)

X

(
xn|θ (0)∞

)
f (0)
Y

(
yn|θ (0)∞

)]

− DKL

[
f (x, y|θ)‖f (1)

XY

(
x, y|θ (1)∞

)]}
+ o(N) (18)

where o(·) is the usual little-o notation. If both Kullback–
Leibler divergences in this equation differ, then the likelihood
ratio is roughly linear in N, with a proportionality factor whose
sign is given by the difference in Kullback–Leibler diver-
gences. As a consequence, for N large enough, if the model
corresponding to H0 is closer to the true generative model
(as measured by Kullback–Leibler divergence), Blnr(X ,Y|D)

will be decreasing and will tend to −∞; if it is the model
corresponding to H1 that is closer, Blnr(X ,Y|D) will be
increasing and will tend to +∞.

H. Summary

In Section II, we introduced a general measure B(X ,Y|D)

to quantify statistical dependence in data sets. Our framework
is based on the Bayesian comparison of a model H1 taking
dependence into account (in a form specified by the model)

and a model H0 not taking this dependence into account
(Section II-A). We then defined B(X ,Y|D) as p(H1|D) or
any strictly increasing functions thereof (Section II-B). We
investigated the behavior of these measures on i.i.d. data in
the case of a known distribution (Section II-C) or a known
likelihood family with unknown parameters (Section II-D).
We then delved into two particular cases: 1) nested models
(Section II-E), which can be applied to maximum-entropy
distributions, multivariate normal distributions, and bivariate
discrete distributions and 2) copula models of dependence
(Section II-F). We finally considered the consequences of
model misspecification (Section II-G). In all the cases,
we showed that Blnr(X ,Y|D) asymptotically behaved as
follows.

1) Under H0, Blnr(X ,Y|D) is a decreasing function of N
which tends to −∞ as N → ∞;

2) Under H1, Blnr(X ,Y|D) is an increasing function of N
(possibly after an initial decrease) which tends to +∞
as N → ∞.

3) Blnr(X ,Y|D) is an increasing function of Î(X, Y) which
tends to +∞ as I(X, Y) → +∞.

4) In case of model misspecification, Blnr(X ,Y|D)

behaves as if the model closer to the true generative one
(in terms of Kullback–Leibler divergence) were the true
one.

While these results involve developments that are standard
in statistical theory and information theory, they shed some
important light on the relevance of B(X ,Y|D) as a valid
measure of dependence. We will come back to this point in
Section V.

III. SIMULATION STUDY

In the previous section, we provided general results regard-
ing some common statistical models of dependence where we
had direct access to the variables of interest. Here, we use
synthetic data to focus on two specific issues: 1) the effect
of noise and 2) the behavior of B(X ,Y|D) when H1 has a
parameter coding for the intensity of dependence.

To investigate the effect of noise, we considered syn-
thetic data originating from three distinct models: two
variables following a bivariate normal distribution plus noise
(Section III-A), two variables related by a functional rela-
tionship plus noise (Section III-B), and two chaotic systems
(Section III-D). In all three examples, we varied the size of
the dataset N and the variance of the noise σ 2. We predicted
that a good measure of dependence should behave as follows:
as the dataset becomes more and more informative (i.e., as N
increases and σ 2 decreases), the value of B(X ,Y|D) should
1) decrease and get increasingly closer to its lower bound
if the true underlying model is a model of independence
(H0) and 2) increase and get increasingly closer to its
upper bound if the true underlying model is a model of
dependence (H1).

The behavior of B(X ,Y|D) when H1 has a parameter
coding for the intensity of dependence was investigated
using three models as well: 1) the abovementioned model
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Fig. 1. Simulation study: bivariate normal distribution with noise. Boxplots (median and [25%, 75%] percentile) of Blogr(X ,Y|D) in various conditions.
Top left: Effect of N and σ 2 for simulations with ρ = 0. Top right: Effect of N and ρ > 0 for simulations with σ 2 = 0.1. Bottom left: Effect of prior p(ρ|H1)

for ρ ∈ {−0.2,−0.1, 0, 0.1, 0.2}, σ 2 = 10−4 and N = 200. Bottom right: Effect of ρ and σ 2 for datasets of size N = 100.

of bivariate normal distribution plus noise (Section III-A);
2) a copula model of dependence (Section III-C); and 3) the
abovementioned model of two chaotic systems (Section III-D).
In the three models, the intensity of dependence under H1 was
quantified through a parameter (ρ for Sections III-A and III-C,
C for Section III-D). We varied the parameter and expected
Blogr(X ,Y|D) to be an increasing function of the intensity of
dependence (|ρ| for Section III-A) and Section III-C, C for
Section III-D.

For all simulations, we focused on Blogr(X ,Y|D), whose
value is simple to interpret (a value of b means that H1 is 10b

times more probable than H0). Its lower and upper bounds are
−∞ and +∞, respectively. A summary of the main results
can be found in Section III-E.

A. Bivariate Normal Distribution With Noise

1) Model: We considered data generated according to the
following model: (X, Y) is a bivariate normal distribution with
zero mean and covariance matrix given by

τ 2
(

1 ρ

ρ 1

)
= τ 2M(ρ) (19)

where τ is assumed to be a known parameter. However, we
only measured noisy versions (U, V) of (X, Y) related through

(U, V) = (X, Y) + (E, F) (20)

with E and F independent Gaussian variables with zero
mean and known variance σ 2. We observed N realizations
(un)n=1,...,N and (vn)n=1,...,N of U and V . To quantify the
dependence between X and Y from these N realizations, we
used the following two models: 1) H0, where X and Y are
uncorrelated (ρ = 0) and 3) H1 where they may be correlated.

The model is analyzed in Section 8 of Supplementary
Material, yielding for p(D|H0)

(2π)−
2N
2

(
σ 2 + τ 2

)− 2N
2

exp

[
−
∑N

n=1

(
u2

n + v2
n

)

2
(
σ 2 + τ 2

)
]

(21)

and for p(D|H1)

(2π)−
2N
2

∫ ∣∣∣σ 2I + τ 2M(ρ)

∣∣∣
− N

2
p(ρ|H1) dρ

× exp

[
− 1

2σ 2
tr

(
S

{
I −

[
I + σ 2

τ 2
M(ρ)−1

]−1})]
.

(22)

For p(ρ|H1), we considered a prior that could possibly remove
a neighborhood of ρ = 0. To this end, we used a general
distribution of the form

qε(ρ) =
{

0, for |ρ| < ε
1

2(1−ε)
, otherwise.

(23)

Such a prior imposes ρ �∈ [−ε, ε] and is uniform otherwise.
For ε = 0, this is the usual uniform prior on [−1, 1].

2) Data: We generated data with ρ ranging from −0.9
to +0.9 by increment of 0.1, N ranging from 20 to 200
by increment of 20 as well as 300 and 500, and σ 2 ∈
{10−4, 10−3, 10−2, 10−1, 1}. τ 2 was set to 1. For each par-
ticular value of the triplet (ρ, σ 2, N), we generated M =
1000 samples. For each sample, we computed Blogr(X ,Y|D)

using priors for ρ of the form given in (23) with ε ∈
{0, 0.01, 0.1, 0.2}.

3) Results: Results are summarized in Fig. 1. For ρ = 0
(corresponding to H0 true), Blogr(X ,Y|D) was mostly nega-
tive and its value decreased with increasing N and decreasing
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Fig. 2. Simulation study: functional dependence with noise. Boxplots
(median and [25%, 75%] percentile) of the effect of σ 2 and N on
Blogr(X ,Y|D) when the true model is either H1 (top) or H0 (bottom).

σ 2 [Fig. 1, top left]. For ρ �= 0 (corresponding to H1 true), it
was mostly positive, and its value increased with increasing
N, decreasing σ 2, and increasing |ρ| [Fig. 1, top and bottom
right]. Furthermore, Blogr(X ,Y|D) was observed to behave
similarly to a logarithmic function of N for ρ = 0 and to a
linear function of N for ρ �= 0. Finally, a prior distribution
prohibiting small values of |ρ| tended to give more weight to
H0 around ρ = 0 [Fig. 1, bottom left]. These results are in
line with our predictions regarding the expected behavior of
B(X ,Y|D) when N increases and σ 2 decreases (see beginning
of Section III).

B. Functional Dependence With Noise

1) Model: We considered a two-dimensional (2-D) variable
(X, Y) where X and Y may be related by a functional
relationship. For the sake of simplicity, we considered a linear
relationship. More precisely, for dependence (H1), we assumed
that we had

(X, Y) = (T, T) + (E, F) (24)

with T ∼ N (0, τ 2). By contrast, for independence (H0), we
assumed

(X, Y) = (U, V) + (E, F) (25)

with U, V ∼ N (0, τ 2). In both cases, E and F are white noise
of known variance σ 2, and τ 2 is assumed to be known. Assume
that we observed N realizations (xn, yn)n=1,...,N of (X, Y). Note
that the intermediary variables (U and V for H0; T for H1) are
not observed. Interestingly, unlike most models of dependence,
the description of dependence here requires fewer parameters
(the tn’s) than description of independence (the un’s and vn’s).

We obtain (see Section 9 of Supplementary Material)

ln
p(D|H1)

p(D|H0)

= −N

2
ln
(
σ 2
)

− N

2
ln
(
σ 2 + 2τ 2

)
+ N ln

(
σ 2 + τ 2

)

−
N∑

n=1

[
(xn − yn)

2

2σ 2
(
2 + α2

) + x2
n + y2

n

2τ 2
(
2 + α2

) − x2
n + y2

n

2τ 2
(
1 + α2

)
]

(26)

with α2 = σ 2/τ 2.

Fig. 3. Simulation study: dependence through copula. Boxplots (median and
[25%, 75%] percentile) of the effect of ρ and N on Blogr(X ,Y|D) when H1
is true (top), and of the effect of N when H0 is true (bottom).

2) Data: We generated data with either model H0 or model
H1, N ranging from 20 to 200 by increment of 20 as well
as 300 and 500, and σ 2 ∈ {10−4, 10−3, 10−2, 10−1, 1}. τ 2

was set to 1. For each particular value of (Hi, σ
2, N), we

generated M = 1000 samples. For each sample, we computed
Blogr(X ,Y|D).

3) Results: Results are summarized in Fig. 2. When H0
was true, Blogr(X ,Y|D) was found to be negative, a decreas-
ing function of N, and an increasing function of σ 2. When
H1 was true, Blogr(X ,Y|D) was found to be positive, an
increasing function of N, and a decreasing function of σ 2.
Unlike what was found previously, Blogr(X ,Y|D) behaved
similarly to a linear function of N under both H0 and H1. But
these results are again in line with our predictions.

C. Dependence Through Copula

1) Model: We modeled a 2-D variable (X, Y) with
marginals equal to gamma distributions, with (α, β) equal to
(4, 4) for X and (10, 5) for Y . In H1, dependence was modeled
through a Student’s t copula [23, Sec. 8.3] with 5 degrees of
freedom and ρ ∈ {0, 0.2, 0.7}. Note that ρ = 0 corresponds
to uncorrelated, yet dependent variables [26, Sec. 1.16].

2) Data: We generated data with either model H0 or model
H1, N ranging from 20 to 100 by increment of 20. Each
time, we generated M = 1000 samples. For each sample, we
computed Blogr(X ,Y|D) using IFD with (16) and (17).

3) Results: Results are summarized in Fig. 3. As expected,
Blogr(X ,Y|D) was found to be 1) negative and a decreasing
function of N when H0 was true, and 2) positive and an
increasing function of both |ρ| and N when H1 was true.

D. Dependence of Two Chaotic Systems

1) Model: To demonstrate the possibility of our measure
to quantify the intensity of coupling between two systems, we
used the example of two coupled chaotic Rossler oscillators
with a small parameter mismatch. Each oscillator i ∈ {1, 2}
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Fig. 4. Simulation study: dependence of two chaotic systems. Boxplots
(median and [25%, 75%] percentile) of the effect of the coupling parameter C
when N = 50 (top), and of the effect of N with either C = 1, corresponding
to H1 true (middle) or with C = 0, corresponding to H0 true (bottom).

was characterized by its position (xi, yi, zi) and time deriva-
tives (ẋi, ẏi, żi). Coupling was quantified through C (C = 0
corresponds to no coupling). For more details, see Section 10
of Supplementary Material or [27, Sec. 3.1.4].

2) Data: We simulated data with C ∈ {0, 10−3, 10−2,

10−1, 1}. For a given set of parameter values, the trajectory
of the system was generated numerically with an explicit
Runge–Kutta method and downsampled to one sample per
second. Trajectories with N ∈ {10, 20, 50} time points were
considered. From each trajectory, M = 100 samples were
generated by adding Gaussian white noise with variance σ 2 ∈
{10−3, 10−2, 10−1, 1}.

3) Results: Results are summarized in Fig. 4. As expected,
Blogr(X ,Y|D) was globally found to be 1) a decreasing
function of N and an increasing function of σ 2 when H0 was
true and 2) an increasing function of both N and C and a
decreasing function of σ 2 when H1 was true. Exceptions to
this general trend was the case when C was low and σ 2 large,
in which case Blogr(X ,Y|D) could first decrease and then
increase for increasing N.

E. Summary of Results

In the simulation section, we showed that Blogr(X ,Y|D)

provided a measure of dependence between X and Y that had
the following properties.

1) When H0 was true, Blogr(X ,Y|D) typically decreased
when the quantity of information available in the data
increased (increasing N, decreasing σ 2).

2) When H1 was true, Blogr(X ,Y|D) typically increased
when the quantity of information available in the data
increased (increasing N, decreasing σ 2). Furthermore,

when the intensity of dependence between X and Y
was parameterized, Blogr(X ,Y|D) was found to be an
increasing function of this intensity.

IV. REAL-LIFE APPLICATION

Electroencephalography (EEG) is a brain exploration
technique that allows to noninvasively record electrical con-
sequences of brain activity. Such recordings are often driven
by brain oscillations originating from synchronized neuronal
activity. A common procedure for EEG acquisitions is the so-
called event-related protocol, where one records how the brain
responds (through the evoked response) to a given stimulation
over many repetitions, called trials. For some types of proto-
cols, the stimulus may consistently induce synchronization of
brain activity, which translates into a phenomenon called phase
resetting. In this case, the phase of the signal (quantified, e.g.,
through time-frequency analysis) in a certain time window
after the stimulus remains consistent over trials. It θn is the
phase quantified for trial n, n = 1, . . . , N, phase consistency
has typically been quantified using intertrial phase coherence
(ITC) [28], [29], which, in circular statistics, is the mean
resultant length R of the sample (θn) [30, Sec. 2.3.1]

R =
∣∣∣∣∣

1

N

N∑
n=1

eiθn

∣∣∣∣∣.

In our framework, we can propose an alternative measure
of the dependence between the stimulus and the brain. More
specifically, we consider two competing models H0 and H1,
where H0 assume that θn is uniformly distributed on the
circle, while H1 assumes that θn has a von Mises distri-
bution with mean direction μ and concentration parameter
κ [30, Sec. 3.5.4]. Using standard prior distributions for μ

and κ , we obtain the following measure of dependence (see
Section 11 of Supplementary Material)

Blogr(X ,Y|D) = log10
p(H1)

p(H0)

+ log10

⎡
⎣
∫

κI0
(
NRκ

)
(
1 + κ2

) 3
2 I0(κ)N

dκ

⎤
⎦.

In the following, we assume p(H1) = p(H0) = 1/2. The
integral can be computed numerically for any value of N
and R.

Results are summarized in Fig. 5. Blogr(X ,Y|D) was found
to be an increasing function of R, a decreasing function of N
for lower values of R (R � 0.1), and an increasing function
of N for larger values of R (R � 0.3). For intermediate
values of R, B(X ,Y|D) first decreased, then increased. To
further investigate this change in monotonicity, we computed
for different values of R

N0
(
R
) = argminNBlogr(X ,Y|D).

For fixed R, Blogr(X ,Y|D) decreased for N ≤ N0(R) and

increased for N ≥ N0(R). Since 2NR
2

is approximately χ2
2

for large N under the assumption of uniform phase (i.e., H0)

[30, Sec. 4.4], we have E(R
2|H0) ≈ 1/N, that is, we can
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Fig. 5. Real-life application. Blogr(X ,Y|D) as a function of R for various
values of N (top) and as a function of N for various values of R (middle).
Bottom panel: contour plot of Blogr(X ,Y|D), together with [N0(R), R] (black
solid line and circles) and (N, 1/

√
N) (black dashed line).

expect R to have values of the order of 1/
√

N (still under H0).
We empirically noticed that N0(R) was smaller than, yet close
to 1/

√
N.

V. GENERAL PROPERTIES OF B(X ,Y|D)

Various researchers have tried to define a set of properties
that a good measure of dependence should respect [4], [8],
[31], [32], [33], [34], [35]. The properties of B(X ,Y|D)

exhibited so far either in the calculations (Section II) or the
stimulation study (Section III) are closely related to these
properties.

1) It is well defined for any pair of (either continuous or
discrete) variables X and Y as long as the corresponding
models H0 and H1 are.

2) It is symmetrical in X and Y as long as both H0 and H1
share this property.

3) It reaches its minimum value when X and Y are known
to be independent as described by H0.

4) It reaches its maximum value when X and Y are known
to be dependent as described by H1.

5) It is an increasing function of mutual information, when
such a measure makes sense.

6) It is an increasing function of the linear correlation
coefficient in the case where (X, Y) follows a bivariate
normal distribution.

Properties 3 and 4 are quite restrictive, since we assume that
we know what the underlying model is. Indeed, we usually
do not know for sure whether H0 or H1 is true. In this case,
we must set Pr(H0) �= 0 and Pr(H1) �= 0. Results from both
the theoretical calculations and the simulation studies indicate
that the following original properties also hold asymptotically.

3’) If H0 is true, then B(X ,Y|D) is a decreasing function
of N which tends to its lower bound as N → ∞.

4’) If H1 is true, then B(X ,Y|D) is an increasing function
of N which tends to its upper bound as N → ∞.

7) In case of model misspecification, B(X ,Y|D) behaves
as if the true model were the one closer to the true
generative model (in the sense of Kullback–Leibler
divergence).

Note that, from all the results presented in this manuscript,
Property 3’ seemed to hold even for small values of N, while
Property 4’ sometimes required larger values of N to hold
and followed an initial stage where B(X ,Y|D) decreased.
Finally, we observed the following empirical properties from
the simulation studies.

8) The effect of noise was the reverse of the effect of N:
it tended to increase B(X ,Y|D) when H0 was true and
to decrease it when H1 was true.

9) When H1 was true and the intensity of dependence was
quantified by a parameter, B(X ,Y|D) was an increasing
function of this intensity.

To our knowledge, it is the first time that these properties are
considered as potentially desirable features for a measure of
dependence. This is further discussed in the next section.

VI. DISCUSSION

Summary: Quantification of dependence between two
systems is still an open issue in the general case. We
here proposed a general measure of dependence B(X ,Y|D)

between two systems X and Y for a given dataset D based on
the Bayesian comparison of two models, one of independence
H0 and another one of dependence H1. Dependence within D
was then quantified as the posterior probability of H1 given D,
Bpr(X ,Y|D) = Pr(H1|D), or a strictly increasing function of
it. We calculated the value of Blnr(X ,Y|D) = lnBpr(X ,Y|D)

in particular cases: when the model distribution is known,
when it belongs to a known parametric family with unknown
parameters, when H0 is nested in H1 (including common
models, such as maximum-entropy distributions, multivariate
normal distributions, and bivariate discrete distributions), and
when dependence is modeled through a copula. Using sim-
ulations, we investigated the behavior of Blogr(X ,Y|D) =
log10 Bpr(X ,Y|D) in the presence of noise and when H1 had
a parameter coding for the intensity of dependence. We also
provided an application of our framework to neuroscience and
neuroimaging. Finally, we stated some key general properties
of B(X ,Y|D). While some of these properties are typical
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of what is expected from a valid measure of dependence,
others are novel and naturally appear as desirable features for
B(X ,Y|D).

Existing Work: The theoretical results introduced here
relating the posterior distribution and its variants to mutual
information (Section II) bring together two existing lines
of research from standard statistical theory and information
theory. On the one hand, the behavior of the model marginal
likelihood for large N has been studied in depth and the
theoretical underpinnings of such calculations go back to the
development of the BIC and the minimum description length
(MDL). On the other hand, the asymptotic bias of empirical
mutual information estimators is also well known. The con-
nection between Bayesian posterior distribution and mutual
information was first noticed in particular cases by [15], [16],
and [17]. We here showed that this connection actually holds
in the more general setting of nested models (Section II-E).
While these results involve developments that are rather
standard in statistical theory and information theory, they shed
some important light on the relevance of B(X ,Y|D) as a valid
measure of dependence.

To our knowledge, no general theory exists regarding
Bayesian model comparison for non-nested models. Our
results from copula modeling of dependence (Sections II-F
and III-C) suggested that similar results regarding the behavior
of B(X ,Y|D) might hold in that particular case.

Difference of Behavior Under H0 and H1: It has to be
underlined that the roles of H0 (independence) and H1 (depen-
dence) are not symmetrical. Often, H0 is nested in H1 or,
equivalently, H1 includes H0 as a particular case (parameters
set to particular values, e.g., usually 0). This has the following
consequence for Bayesian model comparison. In the case of
independence, a H1 with likely parameter values becoming
increasingly closer to, e.g., 0 cannot be fully ruled out. By
contrast, in the case of dependence, H0 becomes increasingly
unlikely as N increases. This translates into a typically differ-
ent behavior of B(X ,Y|D): a logarithmic decrease under H0
but a linear increase under H1. Such a behavior, which was
observed in all our computations as well as our first example
in the simulation study, was associated with a connection
with mutual information. By contrast, the second example of
our simulation study (Section III-B) exhibited linear behaviors
both when H0 and H1 were true, together with a connection
with mutual information that remains to be determined.

Another difference between H0 and H1 can be seen in
the monotonic property of B(X ,Y|D) with respect to N.
As detailed in various places in the manuscript, B(X ,Y|D)

under H0 was found to be a decreasing function of N even
for moderate to small values of N. By contrast, under H1, it
cannot be ruled that B(X ,Y|D) has an initial stage where it
is actually a decreasing function of N, before becoming an
increasing function. We interpret it as a consequence of the
fact that Bayesian analysis tries to find a compromise between
the strength of dependence and model parsimony, in line with
the usual interpretation of Bayesian inference as providing
a quantitative implementation of Occam’s razor. How this
nonmonotonic behavior fits in our general framework remains
to be further clarified.

Measures of Dependence: The main point of the present
work is that B(X ,Y|D) is a valid measure of dependence.
Quantification of dependence is still a field of ongoing
research, whose objective is to provide a measure that quan-
tifies the departure of fXY(x, y) from independence, i.e., from
fX(x)fY(y). To our knowledge, the present work is the first
one to advocate that the posterior probability in a specifi-
cally designed Bayesian model comparison analysis can be
considered as a valid measure of dependence. Importantly,
B(X ,Y|D), as a result of a Bayesian analysis, quantifies by
construction the evidence for dependence between X and Y
as modeled by H1 (compared to H0) and observed in D. It
is what we would call an inferential measure of dependence,
in that it is both model-based, as it incorporates information
from (probabilistic) models H0 and H1, and data-driven, as its
value reflects the content of a dataset D. As a consequence,
the same value of B(X ,Y|D) can be obtained for two very
different scenarios: 1) either a large amount of data about
weakly dependent variables or 2) a small amount of data about
strongly associated variables. Yet, for a given system, changes
in B(X ,Y|D) can be interpreted unambiguously: when the
information content of D increases (e.g., with increasing size
or decreasing noise), the measure becomes increasingly closer
to the boundary of its definition domain that corresponds
to the correct ideal situations, in agreement with Properties
3, 3’, 4, and 4’ of Section V. Importantly, this is not a
direct consequence of the fact that we used a Bayesian model
comparison analysis but is the result of a selective choice
of the measure. For instance, a nonmonotonic function of
Pr(H1|D), such as (1/N) ln Pr(H1|D), which behaves in a
fashion very similar to mutual information, would not qualify
as an inferential measure of dependence (see Section-12 of
Supplementary Material). We will come back to this point
below.

In parallel to the development of new measures of
dependence, there has also been active research regarding
the properties that a good measure of dependence should
respect [4], [8], [31], [32], [33], [34], [35]. In Section V, we
provided properties that hold for B(X ,Y|D). Properties 1–6
are based on previous descriptions of how ideal measures of
dependence should behave, while Properties 3’, 4’, 7, 8, and
9 have been introduced in this manuscript and are specific to
the expected behavior of what we coined inferential measures
of dependence.

Some authors also consider that a good measure of depen-
dence should be a metric [33], [34], [35]. We did not check
this requirement, and it would be of interest to see whether
it can be met by B(X ,Y|D). Still, according to the main
properties of a dependence measure, the more two variables
are dependent, the larger the measure. In classification termi-
nology, this makes a dependence measure closer to a similarity
measure than to a distance measure. To our knowledge, this
is in agreement with only one instance of measure proposed
in [36], which is indeed a decreasing function of dependence
and, therefore, does not meet Properties 3–6.

Posterior Probability and Mutual Information: In this
manuscript, we made several connections between B(X ,Y|D)

and the plug-in estimator of mutual information Î(X, Y),
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showing that B(X ,Y|D) is often, even approximately, an
affine function of Î. Still, there are some major differences
between B(X ,Y|D) and Î(X, Y), and more generally, mutual
information, that need to be stated and clarified.

First, we argue that B(X ,Y|D) is more general than
mutual information in two senses. First, while there are
many cases where there is a (direct or indirect) connection
between B(X ,Y|D) and mutual information, there are also
cases where such a connection may not make sense or
does not exist (see, e.g., the simulation study, Section III
and Section 13 of Supplementary Material). In such cases,
we advocate that the use of B(X ,Y|D)—instead of mutual
information—is justified by the framework we introduced in
the present manuscript and still makes sense. Second, unlike
mutual information, whose value taken by an estimator on
a given dataset of finite size does not have any meaning,
the values taken by Bayesian measures of dependence have a
simple interpretation, as they quantify the evidence in favor of
dependence for the dataset under consideration.

Another major difference between B(X ,Y|D) and Î(X, Y)

is that they are measures of dependence of different nature.
B(X ,Y|D) is obtained through hypothesis testing and quan-
tifies the evidence of H1 against H0. By contrast, mutual
information quantifies the theoretical level of dependence
contained in a model H1 compared to H0. It is usually a
function of model parameters that need to be estimated to
provide an estimate of mutual information. As a consequence,
when H1 is true (dependence), 1) E[Î(X, Y)] is not necessarily
an increasing function of N as N → ∞ and 2) it does not
tend to the upper bound of its range (+∞) as N → ∞. More
precisely, in the case of independence, H0 can often be asso-
ciated with a zero mutual information (Sections II-C–II-E).
In this case, any valid estimator of mutual information will
tend to 0 as N → ∞. Since 0 is the lower bound of
mutual information, Properties 3 and 3’ can be expected to
roughly hold. By contrast, if H1 is true (dependence), any valid
estimator of mutual information will tend to the theoretical
value of mutual information (which is in general strictly lower
than its upper bound, +∞), and changes in the estimator
values will be mainly due to statistical fluctuations around this
theoretical value. As a consequence, Properties 4 and 4’ of
Section V are not respected.

A model-centered measure aims at quantifying the theoret-
ical level of dependence between two variables entailed by,
or contained in, a model (and not data). It ranks models,
from one(s) with the least dependence (usually independence,
for which the measure reaches its lower bound) to one(s)
with the most dependence (for which the measure reaches its
upper bound). Data are then used to infer this theoretical level
of dependence from them. Such a feature is not specific to
mutual information, and the family of model-centered mea-
sures include many other existing measures of dependence,
including all those mentioned in the introduction (maximal
correlation coefficient [3], [4], the mixed derivative measure of
marginal interaction [1, Sec. 2.3], Hoeffding’s procedure [5],
distance correlation [6], circular correlation [8], and Hilbert–
Schmidt information criterion [9]).

Limitations of Method: The current approach strongly relies
on Bayesian model comparison. As a consequence, it has
limitations that are typical of that kind of approaches and are
related to the choice of the model, the choice of the priors,
and the computation of the marginal model likelihoods.

First, our approach requires the specification of two models,
one for independence (H0) and one for dependence (H1). Of
course, it cannot be ruled out that either, or both models are
incorrect, hence the importance of considering model misspec-
ification. In that case, it is possible to show (see Section II-G)
that, under specific assumptions, B(X ,Y|D) will behave as
if the true model were the one that is closer (in the sense
of Kullback–Leibler divergence) to the true generative one.
This is in line with existing general results regarding Bayesian
model comparison [19, Sec. 7.27]. Note that the choice of
H0 is often dictated by the type of data considered. It is
somewhat made easier by the (strong) constrain of (1). By
contrast, the choice for H1 should take into account both the
type of data and the potential structure of dependence. As a
consequence, we expect this choice to be more complex and
prone to successive adjustments.

Also, Bayesian analyses require the introduction of prior
distributions. Here, we needed prior information regarding
both the relative plausibility of H0 and H1 as well as the
potential values of the parameters for both models. As data
size grows, we expect the respective priors for H0 and H1 to
have vanishing impact on B(X ,Y|D), unless there is prior
evidence that one model is overwhelmingly more plausible
than the other. By contrast, choosing the priors on the model
parameters is more problematic. Noninformative priors, which
are commonly used in Bayesian parameter estimation for the
sake of simplicity, are strongly advised against for model
comparison. Conjugate priors, which are often used, might
not correctly represent the prior information at hand, while
using tailored priors might lead to an intractable B(X ,Y|D).
See [15] for a discussion of the choice of the prior on the
covariance matrix for the multivariate normal model. Unlike
Bayesian parameter estimation, where the impact of the prior
vanishes for large N, Bayesian model comparison is influenced
by the choice of the model parameter prior for any data
size. Still, the manuscript provides two results that specify
the role of this type of prior. First, we theoretically showed
that, with increasing data size, it is the dimension of the
parameter space that matters rather than the distribution of
its values in that parameter space (see Sections II-D and
II-E), in line with the usual Laplace and BIC approximations.
Since Bayesian analysis can involve very complex models
with many parameters in high dimension, in particular when
modeling dependence in H1, these asymptotic results may be
of limited relevance in some applications. In these cases, one
needs to go back to the exact formulas with finite N. The
parameter prior may then have an effect on B(X ,Y|D), an
effect that is important to quantify, e.g., through sensitivity
analysis using different prior distributions. For instance, we
empirically showed on simulated data [Section III-A, see in
particular qε(ρ) and (23)] that having a more specific prior had
limited influence when H1 was true and the model parameter
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was indeed in the correct range, while helping ruling out H1
when H0 was true.

Finally, the broad applicability of B(X ,Y|D) will partly
depend on the ease with which ratios of marginal model like-
lihoods can be computed. Exact calculation of marginal model
likelihoods is usually very difficult, from both an analytical
and a computational point of view. Analytical calculations
often rely on simple models combined with conjugate priors
(as in the present manuscript), tricks, such as the Savage–
Dickey density ratio [37], or approximations, e.g., Laplace
approximation [20], [21] or the BIC [22]. Exact computational
approaches are based on numerical integration, which is
time-intensive and suffers from the curse of dimensionality.
A wealth of approximate methods have been devised, with
specific advantages and limits, which make them more or less
suitable depending on the context: the acceptance ratio method
and thermodynamic integration [38]; importance sampling,
bridge sampling, and path sampling [39, Sec. 5]; reversible
jump Markov chain Monte Carlo (RJ-MCMC) [40]; and nested
sampling [41].

Generalization to Several Variables: In the present
manuscript, we focused on the quantification of dependence
between two (potentially multidimensional) variables. The
framework can very easily be expanded to take into account
dependence between several variables. The general framework
is the same, and was detailed in [16]. The connection between
Bayesian measures of dependence and mutual information still
holds, with mutual information replaced by a generalization to
several variables known as total correlation [42], multivariate
constraint [43], δ [44], or multiinformation [45].

Questioning the Notion of Dependence: Importantly, the use
of our framework made it clear that independence itself is not
enough to provide an unambiguous measure of dependence.
Indeed, there was a need to introduce both an alternative
model H1, in which a potential structure of dependence
was introduced, and data, which where used to quantify
dependence. Both the model of dependence and the data have
a key influence on the resulting dependence measure.

It cannot be excluded that data that appear to be associated
to independent variables are actually dependent but with a
dependence structure that is not the one introduced in H1. This
could appear as a weakness of the method, but we believe it
is rather a strength of it: while the underlying assumptions
(in particular regarding the model of dependence H1) are
implicit in many methods, here they have to be clearly stated
and translated into operational form to be able to perform
a Bayesian analysis. We argue that this makes the model
easy to falsify and, as a consequence, to improve. It is not
uncommon that variables that were believed to be indepen-
dent are later found dependent based on a different model
of the dependence pattern. For instance, in neuroimaging,
where the authors have extended experience, there has been
a major interest in the subfield of functional connectivity
analysis, where one tries to use brain imaging data to quan-
tify the dependence between brain regions. Unsurprisingly,
functional connectivity is quantified differently based on the
imaging modality. In functional magnetic resonance imaging
(fMRI) [46], [47], the data are commonly assumed to follow

a normal distribution and dependence is often quantified
through pairwise correlation [48], [49]. By contrast, in EEG
and magnetoenccephalography (MEG) [50], pairwise corre-
lation is considered as a poor measure of dependence, and
other, more adapted measures of functional connectivity have
been proposed, based on models of circular or oscillating
data [51], [52]. Another example is the real-life application of
Section IV), where the two advantages of B(X ,Y|D) appear
clearly: 1) the underlying assumptions are made apparent
(uniform versus von Mises phase) and 2) these assumptions
can be checked, falsified, and possibly changed for more
realistic modeling.

Paralleling what was said for H1, it cannot be excluded that
variables that are associated with low or decreasing values
of B(X ,Y|D) based on small datasets would actually yield
large or increasing values of B(X ,Y|D) with larger data
sets. As mentioned above, Bayesian analysis comes with a
built-in quantitative implementation of Occam’s razor which
performs a compromise between the strength of dependence
and model parsimony. As a consequence, data originating
from weakly dependent models may at first yield low or
decreasing values of B(X ,Y|D). Such a behavior emphasizes
the importance of considering B(X ,Y|D) as a measure of the
evidence for dependence in a given dataset with a given model
of dependence.

VII. CONCLUSION

The present work is the first one to advocate that the pos-
terior probability (or any strictly increasing measure thereof)
resulting from a specifically designed Bayesian model com-
parison analysis can be considered as a valid measure of
dependence. We showed that such a framework provided a
family of measures, denoted B(X ,Y|D) that quantify the
information contained in D in favor of H1 versus H0. As such,
they quantify the evidence for—or credibility of—dependence
between X and Y as modeled by H1 (compared to H0) and
observed in D. All measures in this family shared the following
key asymptotic properties in a wide range of situations.

1) Under H0, B(X ,Y|D) is a decreasing function of N
which tends to its lower bound when N → ∞;

2) Under H1, B(X ,Y|D) is an increasing function of N
for N large enough (after a potential initial stage of
decrease) and tends to its upper bound when N → ∞;

3) B(X ,Y|D) is an increasing function of some common
existing measures of dependence, such as correla-
tion, mutual information, the minimum discrimination
information, and the log-likelihood ratio criterion for
testing independence;

4) In case of model misspecification, B(X ,Y|D) behaves
as if the true model were the one closer to the true
generative model.

Empirically, we also showed that 1) increasing noise had the
opposite effect on B(X ,Y|D) to increasing N, in that it drew
the measure away from the expected (lower for H0, upper
for H1) bound and 2) when H1 had a parameter coding for
the intensity of dependence, B(X ,Y|D) was an increasing
function of this intensity. Finally, the value computed for a
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given dataset of finite size has a direct, exact interpretation as
(a strictly increasing function of) the probability that X and
Y be dependent (as described by H1) for that given dataset.
Our objective is now to show the generality and versatility of
B(X ,Y|D) as an inferential measure of dependence.
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