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1 Known distributions

We assume that the distribution of (X,Y ) is known exactly in both H0 and H1. In this case, we
remove the explicit dependency on the model parameter for the sake of simplicity. Equation (10) of
the manuscript leads to

Blnr(X ,Y|D) = ln
p(H1)

p(H0)
+ ln

∏N
n=1 f

(1)
XY (xn,yn)∏N

n=1 f
(0)
X (xn) f

(0)
Y (yn)

= ln
p(H1)

p(H0)
+

N∑
n=1

ln
f
(1)
XY (xn,yn)

f
(0)
X (xn) f

(0)
Y (yn)

. (S-1)

Setting

JN (D) =
1

N

N∑
n=1

ln
f
(1)
XY (xn,yn)

f
(0)
X (xn) f

(0)
Y (yn)

, (S-2)

we obtain

Blnr(X ,Y|D) = ln
p(H1)

p(H0)
+N JN (D). (S-3)

According to the strong law of large numbers (Bernardo and Smith, 2000, §3.2.3), JN (D) tends to∫
f(x,y) ln

f
(1)
XY (x,y)

f
(0)
X (x) f

(0)
Y (y)

dx dy (S-4)

when N → ∞, where f(x,y) is the true underlying distribution of (X,Y ). We can now consider what
happens under the assumptions of independence (§1.1) and dependence (§1.2).

1.1 Case of independence

If H0 is true, f(x,y) is equal to f
(0)
X (x) f

(0)
Y (y). The expression of Equation (S-4) is then equal

to −DKL(f
(0)
X f

(0)
Y ∥f (1)XY ), where DKL(u∥v) is the relative entropy (or Kullback–Leibler divergence)

between u(z) and v(z),

DKL(u∥v) =
∫
u(z) ln

u(z)

v(z)
dz.

Since the Kullback–Leibler divergence between two distinct distributions is always strictly positive,
we have

JN (D)
N→∞→ −DKL(f

(0)
X f

(0)
Y ∥f (1)XY ) < 0.

JN (D) will therefore be strictly negative for N large enough. As a consequence, Blnr(X ,Y|D) of
Equation (S-3) will tend to −∞ as N → ∞.

Besides, the sampling expectation of Blnr(X ,Y|D) under H0 for finite N can be obtained from
Equation (S-1) as

E [Blnr(X ,Y|D)|H0] = ln
p(H1)

p(H0)
+N

∫
f
(0)
X (x)f

(0)
Y (y) ln

f
(1)
XY (x,y)

f
(0)
X (x) f

(0)
Y (y)

dxdy

= ln
p(H1)

p(H0)
−N DKL(f

(0)
X f

(0)
Y ∥f (1)XY ).

This is a decreasing function of DKL(f
(0)
X f

(0)
Y ||f (1)XY ). Since DKL(f

(0)
X f

(0)
Y ||f (1)XY ) > 0, it is also a de-

creasing function of N .
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1.2 Case of dependence

By contrast, if H1 is true, f(x,y) of Equation (S-4) is equal to f
(1)
XY (x,y). As N → ∞, JN (D) tends

to DKL(f
(1)
XY ∥f

(0)
X f

(0)
Y ), i.e., ∫

f
(1)
XY (x,y) ln

f
(1)
XY (x,y)

f
(0)
X (x) f

(0)
Y (y)

dx dy.

This can be reexpressed as∫
f
(1)
XY (x,y) ln

f
(1)
XY (x,y)

f
(1)
X (x) f

(1)
Y (y)

dx dy +

∫
f
(1)
XY (x,y) ln

f
(1)
X (x) f

(1)
Y (y)

f
(0)
X (x) f

(0)
Y (y)

dx dy,

where f
(1)
X (x) and f

(1)
Y (y) are the marginals of X and Y , respectively, under H1. The first inte-

gral is equal to DKL(f
(1)
XY ∥f

(1)
X f

(1)
Y ), also called mutual information between X and Y (Cover and

Thomas, 1991, Chap. 2) and denoted by I(X,Y ). The second integral is equal to DKL(f
(1)
X ∥f (0)X ) +

DKL(f
(1)
Y ∥f (0)Y ). Since I(X,Y ) is strictly positive underH1 and bothDKL(f

(1)
X ∥f (0)X ) andDKL(f

(1)
Y ∥f (0)Y )

are positive as Kullback–Leibler divergences, we have that JN (D) tends to

I(X,Y ) +DKL(f
(1)
X ∥f (0)X ) +DKL(f

(1)
Y ∥f (0)Y ) > 0

as N → ∞. JN (D) will therefore be strictly positive for N large enough. Consequently, Blnr(X ,Y|D)
will tend to +∞ as N → ∞.

Besides, if H1 is true, then the sampling expectation of Blnr(X ,Y|D) for finite N is given by

E [Blnr(X ,Y|D)|H1] = ln
p(H1)

p(H0)
+N

∫
f
(1)
XY (x,y) ln

f
(1)
XY (x,y)

f
(0)
X (x) f

(0)
Y (y)

dxdy.

= ln
p(H1)

p(H0)
+N

[
I(X,Y ) +DKL(f

(1)
X ∥f (0)X ) +DKL(f

(1)
Y ∥f (0)Y )

]
.

This is an increasing function of I(X,Y ). Since I(X,Y ) is always strictly positive under H1 and both

DKL(f
(1)
X ∥f (0)X ) and DKL(f

(1)
Y ∥f (0)Y ) are positive, the expectation is also an increasing function of N .

2 Known likelihood functions with unknown parameters

Assuming that the prior hi(θ
(i)) is strictly positive and of slow variation around θ̂

(i)

N , the integral of
Equation (11) of the manuscript can be approximated using Laplace method (Tierney and Kadane,
1986; Gelfand and Dey, 1994), yielding

P (D|Hi) =
hi(θ̂

(i)

N )Li(θ̂
(i)

N )(2π)
Di
2

N
Di
2

∣∣∣∣√det(G(i))

∣∣∣∣
[
1 +O

(
1

N

)]
, (S-5)

where O(·) stands for the usual Bachmann–Landau, Big O notation andG(i) is the average of sampling

Hessian matrices at θ̂
(i)

N ,

G(i) =

− 1

N

N∑
n=1

∂2 ln fi(xn, yn|θ(i))
∂θ

(i)
ik ∂θ

(i)
il

∣∣∣∣∣
θ(i)=θ̂

(i)
N


kl

. (S-6)

Plugging this expression into Equation (10) of the manuscript yields

Blnr(X ,Y|D) = ln
L1(θ̂

(1)

N )

L0(θ̂
(0)

N )
− D2 −D1

2
lnN +O(1). (S-7)
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We now define

JN (D) =
1

N

N∑
n=1

ln
f
(1)
XY (xn,yn|θ̂

(1)

N )

f
(0)
X (xn|θ̂

(0)

N ) f
(0)
Y (yn|θ̂

(0)

N )
, (S-8)

so that

Blnr(X ,Y|D) = N JN (D)− D1 −D0

2
lnN +O(1). (S-9)

JN (D) can be further expressed as

JN (D) =
1

N

N∑
n=1

ln
f
(1)
XY (xn,yn|θ̂

(1)

N )

f
(1)
X (xn|θ̂

(1)

N ) f
(1)
Y (yn|θ̂

(1)

N )
+

1

N

N∑
n=1

ln
f
(1)
X (xn|θ̂

(1)

N )

f
(0)
X (xn|θ̂

(0)

N )
+

1

N

N∑
n=1

ln
f
(1)
Y (yn|θ̂

(1)

N )

f
(0)
Y (yn|θ̂

(0)

N )
.

(S-10)
The first term of the right-hand side is the sampling mutual information Î(X,Y ) under H1, leading
to

Blnr(X ,Y|D) = N

Î(X,Y ) +
1

N

N∑
n=1

ln
f
(1)
X (xn|θ̂

(1)

N )

f
(0)
X (xn|θ̂

(0)

N )
+

1

N

N∑
n=1

ln
f
(1)
Y (yn|θ̂

(1)

N )

f
(0)
Y (yn|θ̂

(0)

N )

−D2 −D1

2
lnN+O(1).

(S-11)

3 Nested models

It can be shown (O’Hagan and Forster, 2004, §7.25) that 2NJN (D) (i.e., twice the likelihood ratio test
statistic) is asymptotically distributed as a noncentral chi-square with D2 − D1 degrees of freedom
and noncentrality parameter Nλ with

λ = (ϕ− ϕ0)
tV −1

ϕ (ϕ− ϕ0), (S-12)

where V ϕ derives from the information matrix of a single observation. The expectation of this quantity
is therefore asymptotically equal to D2 −D1 +Nλ and the variance twice this value.

Under H0, λ = 0 (since ϕ = ϕ0), so that 2NJN (D) is a standard chi-square variable with D2−D1

degrees of freedom. According to Equation (S-9), Bienaymé–Chebyshev inequality entails that(
−D1 −D0

2
lnN

)−1

Blnr(X ,Y|D) (S-13)

tends to 1 in probability as N → ∞. This shows that, when N → ∞, Blnr(X ,Y|D) essentially behaves
as −D1−D0

2 lnN , which is a decreasing function of N that tends to −∞. Also, E[2NJN (D)] = D1−D0,
so that

E [Blnr(X ,Y|D)|H0] = −D1 −D0

2
lnN +O(1), (S-14)

which is a decreasing function of N .
By contrast, under H1, λ > 0, so that Equation (S-9) and Bienaymé–Chebyshev inequality yield

that (
Nλ

2

)−1

Blnr(X ,Y|D) (S-15)

tends to 1 in probability as N → ∞, i.e., Blnr(X ,Y|D) essentially behaves as Nλ/2, which is an
increasing function of N with limit +∞. In this case, E[2NJN (D)] = Nλ+D2 −D1, leading to

E [Blnr(X ,Y|D)|H1] =
Nλ

2
− D1 −D0

2
lnN +O(1). (S-16)

While the first-order approximation is an increasing function of N , this second-order approximation
may not be monotonic anymore. Indeed, if N0 = (D1 −D2)/λ ≥ 2, then B(X ,Y|D) is decreasing for
N ≤ N0 and increasing for N ≥ N0.
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4 Maximum-entropy distributions

4.1 Summary of results

We here delve in the particular case of maximum-entropy distributions (Jaynes, 2003, Chap. 11). We
say that f(z|θ) with θ = (θ1, . . . , θK) is a maximum-entropy distribution if there exists K functions
uk(z) andK values Uk, 1 ≤ k ≤ K, such that f(z|θ) maximizes entropy under the following constraints

E [uk(z)] = Uk, 1 ≤ k ≤ K. (S-17)

One can show that such a distribution is of the form (Jaynes, 2003, Chap. 11)

f(z|θ) = 1

Z(θ)
exp

[
−

K∑
k=1

θkuk(z)

]
.

Maximum-entropy distributions are tightly related to exponential families (Bernardo and Smith, 2000,
§4.5.3 and §4.5.4; Abramovich and Ritov, 2013, §1.6) or Koopman–Darmois families. Multivariate
normal distributions and bivariate discrete distributions belong to this family.

For maximum-entropy distributions, it can be shown that for any θ(1) ∈ Θ(1), we have (Kullback,
1968, Chap. 5, §4; see also §4.2 below)

ln
L1(θ̂

(1)

N )

L1(θ
(1))

= N DKL

[
f
(1)
XY (x,y|θ̂

(1)

N )∥f (1)XY (x,y|θ
(1))
]
.

In the case where H0 is nested in H1, we have

f
(0)
X (x|θ̂(0)N ) f

(0)
Y (y|θ̂(0)N ) = f

(1)
XY

[
x,y|π(θ̂(0)N )

]
,

leading to

ln
L1(θ̂

(1)

N )

L0(θ̂
(0)

N )
= ln

L1(θ̂
(1)

N )

L1

[
π(θ̂

(0)

N )
]

= N DKL

{
f
(1)
XY (x,y|θ̂

(1)

N )∥f (1)XY

[
x,y|π(θ̂(0)N )

]}
= N DKL

[
f
(1)
XY (x,y|θ̂

(1)

N )∥f (0)X (x|θ̂(0)N ) f
(0)
Y (y|θ̂(0)N )

]
. (S-18)

In our particular case, the Kullback–Leibler divergence is nothing else than mutual information and
the right-hand side of Equation (S-18) the plug-in estimator for mutual information, so that

Blnr(X ,Y|D) = N Î(X,Y )− (D1 −D0)

2
lnN +O(1). (S-19)

This shows the connection of our approach with Kullback’s minimum discrimination information for
the independence of X and Y (Kullback, 1968), as well as the connection with the BIC correction
(Schwarz, 1978). See the particular cases of multivariate normal distributions and bivariate discrete
distributions below, §5 and §6, respectively.

4.2 Intermediary results

Definition and key properties. Since θ = (θ1, . . . , θK) is such that the K constraints of Equa-
tion (S-17) are respected, we obtain the following relationship between θk and Uk

∂ lnZ(θ)

∂θk
= −Uk, k = 1, . . . ,K.
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Kullback–Leibler divergence. Consider two maximum-entropy distributions f(z|θ) and f(z|θ′),
corresponding to expected values of uk(z) equal to Uk and U ′

k, respectively. We compute the Kullback–
Leibler divergence from f(z|θ) to f(z|θ′

D
[
f(z|θ)||f(z|θ′

]
=

∫
f(z|θ) ln f(z|θ)

f(z|θ′)
dz

=

∫
f(z|θ) ln f(z|θ) dz −

∫
f(z|θ) ln f(z|θ′) dz,

with ∫
f(z|θ) ln f(z|θ) dz = − lnZ(θ)−

K∑
k=1

θkUk

and ∫
f(z|θ) ln f(z|θ′) dz = − lnZ(θ′)−

K∑
k=1

θ′kUk,

leading to

D
[
f(z|θ); f(z|θ′)

]
= − ln

Z(θ)

Z(θ′)
−

K∑
k=1

(θk − θ′k)Uk. (S-20)

Maximum likelihood. We now consider a likelihood function that is a maximum-entropy distri-
bution. It can therefore be expressed as

lnL(θ) = −N

[
lnZ(θ) +

∑
k

θkuk(zn)

]
,

where uk(zn) is the sampling average of uk(z),

uk(zn) =
1

N

N∑
n=1

uk(zn).

The maximum-likelihood estimate is obtained by canceling the first derivatives of lnL(θ) with respect
to each θk, leading to the following equations

∂ lnZ(θ̂)

∂θk
= −uk(zn), k = 1, . . . ,K.

The corresponding maximum-entropy distribution is then such that

E [uk(z)] = uk(zn), k = 1, . . . ,K,

that is, its moments are equal to their sample counterparts.

Connection with Kullback–Leibler divergence. We finally compute the following log-likelihood
ratio

ln
L(θ̂)

L(θ)
= −N

[
ln
Z(θ̂)

Z(θ)
+
∑
k

(θ̂k − θk)uk(zn)

]
= N D

[
f(z|θ̂)

∥∥f(z|θ)] ,
by comparison with Equation (S-20), since the moments of f(z|θ̂) are equal to uk(zn).
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5 Multivariate normal distributions

5.1 Summary of results

We here provide the derivation of Blnr(X ,Y|D) in the case of a multivariate normal distribution. More
details can be found in Marrelec et al. (2015), Marrelec and Giron (2021), as well as in §5.2 below.

Assume that X and Y are such that (X,Y ) has a multivariate normal distribution, with dimension
D = DX +DY . Let S be the D-by-D sum-of-square matrix of (X,Y ). Under the current assumptions
and with conjugate priors (the prior distribution for §igma, the covariance matrix for (X,Y ), is set as
an inverse-Wishart distribution with n degrees of freedom and scale matrix L), p(S|H1) and p(S|H0)
can be calculated in closed form, yielding

p(S|H0) =
|S|

N−D−1
2

Z(D,N)

∏
k∈{X,Y }

Z(Dk, N + nk)

Z(Dk, nk)

|Lkk|
nk
2

|Skk +Lkk|
N+nk

2

and

p(S|H1) =
|S|

N−D−1
2

Z(D,N)

Z(D,N + n)

Z(D,n)

|L|
n
2

|S +L|
N+n

2

,

where S +L is the regularized sample sum-of-square matrix, Skk and Lkk the subblocks of S and L,
respectively, corresponding to k ∈ {X,Y }, nk = n−D+Dk, and Z(d, n) the inverse of a normalization
constant

Z(d, n) = 2
nd
2 π

d(d−1)
4

d∏
d′=1

Γ

(
n+ 1− d′

2

)
.

Pr(H0|S) and Pr(H1|S) can be computed directly from there using Bayes updating rule, Equation (4)
of the manuscript. It can be shown that, asymptotically (N → ∞), we have

Blnr(X ,Y|D) = NÎ(X,Y )− DXDY

2
lnN +O(1), (S-21)

where

Î(X,Y ) =
1

2
ln

|ŜXX | |ŜY Y |
|Ŝ|

is the plug-in estimator of mutual information for a multivariate normal distribution, with Ŝ the
sample covariance matrix. Alternatively, N Î(X,Y ) is the minimum discrimination information for
the independence of X and Y (Kullback, 1968, Chap. 12, §3.6). Alternatively, −NÎ(X,Y ) can also
be seen as the log-likelihood ratio criterion (Anderson, 1958, §9.7). Also, in Equation (S-21), the term
in log is the BIC correction for the number of parameters [D(D+1)/2 in H1, versus DX(DX +1)/2+
DY (DY + 1)/2 in H0].

In the particular case where (X,Y ) is bivariate normal (DX = DY = 1), Equation (S-21) boils
down to

Blnr(X ,Y|D) = −N
2
ln(1− r2)− 1

2
lnN +O(1),

where r is the sample correlation coefficient between X and Y and

Î(X,Y ) = −1

2
ln(1− r2), (S-22)

is again the plug-in estimator for mutual information. These results illustrate the connection be-
tween Bayesian model comparison, the log-likelihood ratio criterion, the plug-in estimate for mutual
information, and the minimum discrimination information for the independence.
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5.2 Intermediary results

Marginal model likelihood under the hypothesis of dependence. Let us first calculate
p(S|H1), the marginal model likelihood under the hypothesis of dependence. Expressing this quantity
as a function of the model parameters yields

p(S|H1) =

∫
p(S|H1,Σ

(1)) p(Σ(1)|H1) dΣ
(1). (S-23)

Calculation of the integral requires to know the likelihood p(S|H1,Σ
(1)) and the prior distribution

p(Σ(1)|H1) of the covariance matrix underH1. With multivariate normal data, S givenΣ(1) is Wishart
distributed with N degrees of freedom and scale matrix Σ(1) (Anderson, 2003, Corollary 7.2.2), leading
to the following likelihood

p(S|H1,Σ
(1)) =

|S|
N−D−1

2

Z(D,N)
|Σ(1)|−

N
2 exp

{
−1

2
tr
[
(Σ(1))−1S

]}
, (S-24)

where Z(d, n) is the inverse of the normalization constant

Z(d, n) = 2
nd
2 π

d(d−1)
4

d∏
d′=1

Γ

(
n+ 1− d′

2

)
.

As to the prior distribution, this quantity is here set as a conjugate prior, namely an inverse-Wishart
distribution with n degrees of freedom and scale matrix L (Gelman et al., 2004, §3.6)

p(Σ(1)|H1) =
|L|

n
2

Z(D,n)
|Σ(1)|−

n+D+1
2 exp

{
−1

2
tr
[
(Σ(1))−1L

]}
. (S-25)

Bringing Equations (S-24) and (S-25) together into Equation (S-23) yields for the marginal model
likelihood

p(S|H1) =
|L|

n
2 |S|

N−D−1
2

Z(D,N)Z(D,n)

∫
|Σ(1)|−

N+n+D+1
2 exp

{
−1

2
tr
[
(L+ S)(Σ(1))−1

]}
dΣ.

The integrand is proportional to an inverse-Wishart distribution with N + n degrees of freedom and
scale matrix L+ S, leading to

p(S|H1) =
|S|

N−D−1
2

Z(D,N)

Z(D,N + n)

Z(D,n)

|L|
n
2

|S +L|
N+n

2

. (S-26)

Marginal model likelihood under the hypothesis of independence. We can now calculate
P (S|H0), the marginal model likelihood under the hypothesis of independence. If H0 holds, then Σ(0)

is block-diagonal with two blocks Σ
(0)
XX and Σ

(0)
Y Y the submatrix restrictions of Σ(0) to X and Y ,

respectively. Introduction of the model parameters therefore yields for the marginal likelihood

p(S|H0) =

∫
p(S|H0,Σ

(0)
XX ,Σ

(0)
Y Y ) p(Σ

(0)
XX ,Σ

(0)
Y Y |H0) dΣ

(0)
XX dΣ

(0)
Y Y . (S-27)

To calculate this integral, we again need to know the likelihood p(S|H0,Σ
(0)
XX ,Σ

(0)
Y Y ) and the prior

distribution p(Σ
(0)
XX ,Σ

(0)
Y Y |H0) of the two blocks of the covariance matrix under H0. The likelihood is

the same as forH0 and has the form of Equation (S-24). Furthermore, sinceΣ(0) is here block diagonal,

we have |Σ| = |Σ(0)
XX | |Σ(0)

Y Y | and tr[(Σ(0))−1S] = tr[(Σ
(0)
XX)−1SXX ] + tr[(Σ

(0)
Y Y )

−1SY Y ], where SXX

and SY Y are the restrictions of S to X and Y , respectively. Consequently, the likelihood can be
further expanded as

p(S|H0,Σ
(0)
XX ,Σ

(0)
Y Y ) =

|S|
N−D−1

2

Z(D,N)

∏
k=X,Y

|Σ(0)
kk |

−N
2 exp

{
−1

2
tr
[
(Σ

(0)
kk )

−1Skk

]}
. (S-28)
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As to the prior distribution, assuming no prior dependence between Σ
(0)
XX and Σ

(0)
Y Y yields

p(Σ
(0)
XX ,Σ

(0)
Y Y |H0) = p(Σ

(0)
XX |H0) p(Σ

(0)
Y Y |H0). (S-29)

For the sake of consistency, p(Σ
(0)
XX |H0) and p(Σ

(0)
Y Y |H0) are set equal to p(Σ

(1)
XX |H1) and p(Σ

(1)
Y Y |H1),

respectively, which are in turn obtained by marginalization of p(Σ(1)|H1) as given by Equation (S-25).

For k ∈ {X,Y }, p(Σ(0)
kk |H0) can be found to have an inverse-Wishart distribution with nk = n−D+Dk

degrees of freedom and scale matrix Lk the restriction of L to k (Press, 2005, §5.2)

p(Σ
(0)
kk |H0) =

|Lkk|
n
2

Z(Dk, nk)
|Σ(0)

kk |
−nk+Dk+1

2 exp

{
−1

2
tr
[
Lk(Σ

(0)
kk )

−1
]}

. (S-30)

Incorporating Equations (S-28), (S-29), and (S-30) into Equation (S-27) yields

p(S|H0) =
|S|

N−D−1
2

Z(D,N)

∏
k=X,Y

|Lkk|
nk
2

Z(Dk, nk)

∫
|Σ(0)

kk |
−N+nk+Dk+1

2 exp

{
−1

2
tr
[
(Sk +Lk)(Σ

(0)
kk )

−1
]}

.

Each integrand is proportional to an inverse-Wishart distribution with N +nk degrees of freedom and
scale matrix Skk +Lkk, leading to

p(S|H0) =
|S|

N−D−1
2

Z(D,N)

∏
k=X,Y

Z(Dk, N + nk)

Z(Dk, nk)

|Lkk|
nk
2

|Skk +Lkk|
N+nk

2

. (S-31)

Asymptotic form of the log Bayes factor. From Equations (S-26) and (S-31), we have

ln
p(S|H1)

p(S|H0)
=

D∑
d=1

ln Γ

(
N + n+ 1− d

2

)
− N + n

2
ln |S +L|

−
∑

k∈{X,Y }

[
Dk∑
d=1

ln Γ

(
N + nk + 1− d

2

)
− N + nk

2
ln |Skk +Lkk|

]
+O(1).

In the following, we consider k ∈ {X,Y, (X,Y )}, with the convention that S(X,Y ) = S, etc. For the
Gamma functions, we apply Stirling approximation (Abramowitz and Stegun, 1972, p. 257)

ln Γ(z) =

(
z − 1

2

)
ln z − z +O(1).

Setting z = (N + nk + 1− d)/2, we obtain

ln Γ

(
N + nk + 1− d

2

)
=
N + nk − d

2
lnN − N

2
(1 + ln 2) +O(1).

Summing this expression over d = 1, . . . , Dk and using the fact that
∑Dk

d=1 d = Dk(Dk + 1)/2 leads us
to

Dk∑
d=1

ln Γ

(
N + nk + 1− d

2

)
= Dk

[
N + nk

2
lnN − N

2
(1 + ln 2)

]
− Dk(Dk + 1)

4
lnN +O(1). (S-32)

Defining Ŝkk as the standard sample covariance matrix, i.e., Skk = N Ŝkk, each log term can be
expanded as

N + nk
2

ln |Skk +Lkk| =
N + nk

2
ln |N Ŝkk +Lkk|

=

(
N

2
+
nk
2

)[
Dk lnN + ln |Ŝkk|+ ln |I + (N Ŝkk)

−1Lkk|
]

=
DkN

2
lnN +

N

2
ln |Ŝkk|+

Dknk
2

lnN +O(1),
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since |aA| = adim(A)|A| for any positive number a and matrix A. We therefore have

Dk∑
d=1

ln Γ

(
N + nk + 1− d

2

)
− N + nk

2
ln |Skk +Lkk|

= −DkN

2
(1 + ln 2)− Dk(Dk + 1)

4
lnN − N

2
ln |Ŝkk|+O(1).

Finally, putting all results together, we obtain

ln
p(S|H1)

p(S|H0)
=

N

2
ln

|ŜXX | |ŜY Y |
|Ŝ|

− 1

2

D(D + 1)

2
−

∑
k∈{X,Y }

Dk(Dk + 1)

2

 lnN +O(1)

=
N

2
ln

|ŜXX | |ŜY Y |
|Ŝ|

− DXDY

2
lnN +O(1).

6 Bivariate discrete distributions

6.1 Summary of results

The same work can be done in the case of a bivariate discrete distribution, showing the relationship
between Bayesian model comparison and discrete mutual information (Wolf, 1994; Marrelec and Giron,
2021). For more details regarding the calculations, the reader can refer to 6.2 below.

Consider two discrete variables X and Y taking r and s values respectively, such that

p(X = xi, Y = yj) = θij , i = 1, . . . , r, j = 1, . . . s.

The dataset is composed of the number of observations Nij for which X = xi and Y = yj . We set
Ni· =

∑
iNij , N·j =

∑
j Nij and N =

∑
ij Nij . Using a conjugate prior for θ = (θij) (i.e., a Dirichlet

prior with parameters aij), the marginal model likelihoods are given by

p(D|H0) =
Γ(a)∏
i Γ(ai·)

∏
i Γ(Ni· + ai·)

Γ(N + a)

Γ(a)∏
j Γ(a·j)

∏
j Γ(N·j + a·j)

Γ(N + a)

and

p(D|H1) =
Γ(a)∏

i,j Γ(aij)

∏
i,j Γ(Nij + aij)

Γ(N + a)
,

respectively, where we also set ai· =
∑

i aij , a·j =
∑

j aij and a =
∑

ij aij . Set Nij = fijN the observed
frequencies, together with Ni· = fi·N and N·j = f·jN their marginal counterparts. When N → ∞,
use of Stirling approximation (Abramowitz and Stegun, 1972, p. 257) leads to

Blnr(X ,Y|D) = N
∑
ij

fij ln
fij
fi·f·j

− (rs− 1)− (r − 1)− (s− 1)

2
lnN +O(1).

Again, we see the plug-in estimator of mutual information in the case of bivariate normal distributions

Î(X,Y ) =
∑
ij

fij ln
fij
fi·f·j

as well as a BIC correction for the number of parameters [rs− 1 in H1, versus (r− 1)+ (s− 1) in H0].
This allows us to express Blnr(X ,Y|D) as

Blnr(X ,Y|D) = N Î(X,Y )− (r − 1)(s− 1)

2
lnN +O(1). (S-33)

Note that 2NÎ(X,Y ) is equal to the deviance and is closely related to Pearson’s chi-squared statistic
for the goodness of fit (Whittaker, 1990, §7.4; Wolf, 1994).
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6.2 Intermediary results

Marginal model likelihood under the hypothesis of dependence. Setting θ(1) = (θ
(1)
ij ), we

have

p(D|H1) =

∫
p(θ(1)|H1) p(D|H1,θ

(1)) dθ(1).

We set a Dirichlet distribution with parameters a = (aij) for θ
(1) such that

∑
ij θ

(1)
ij = 1,

p(θ(1)) =
Γ
(∑

ij aij

)
∏

i,j Γ(aij)
(θ

(1)
ij )aij .

Besides, the likelihood reads

p(D|H1,θ) =
∏
i,j

(θ
(1)
ij )Nij ,

where Nij is the number of time that we observe the pair (xi, yj). The marginal model likelihood thus
yields

p(D|H1) =
Γ
(∑

ij aij

)
∏

i,j Γ(aij)

∫ ∏
i,j

(θ
(1)
ij )Nij+aij dθ(1).

As a function of θ(1), this expression is proportional to a Dirichlet distribution with parameters
Nij + aij . Integration with respect to θ(1) therefore yields

p(D|H1) =
Γ(a)∏

i,j Γ(aij)

∏
i,j Γ(Nij + aij)

Γ(N + a)
, (S-34)

where we set a =
∑

ij aij .

Marginal model likelihood under the hypothesis of independence. We now focus on p(D|H0),
which can be expressed as

p(D|H0) =

∫
p(ϕ(0),ψ(0)|H0) p(D|H0,ϕ

(0),ψ(0)) dϕ(0) dψ(0),

where we set ϕ(0) = (ϕ
(0)
i ) and ψ(0) = (ψ

(0)
j ), with p(X = xi) = ϕ

(0)
i and p(Y = yi) = ψ

(0)
j . We again

set Dirichlet distributions for ϕ(0) and ψ(0). Since each ϕ
(0)
i can be obtained as

ϕ
(0)
i =

∑
j

θ
(1)
ij ,

consistency imposes that the prior for each ϕ
(0)
i be equal to the prior for

∑
j θ

(1)
ij in H1, yielding

p(ϕ(0)) =
Γ(a)∏
i Γ(ai·)

∏
i

(ϕ
(0)
i )ai· ,

whee we set ai· =
∑

j aij . Similarly for ψ(0),

p(ψ(0)) =
Γ(a)∏
j Γ(a·j)

∏
j

(ψ
(0)
j )a·j ,

with a·j =
∑

j aij . Besides, the likelihood reads

p(D|H0,ϕ
(0),ψ(0)) =

∏
i

(ϕ
(0)
i )Ni·

∏
j

(ψ
(0)
j )N·j ,

12



with Ni· =
∑

j Nij and N·j =
∑

iNij . The marginal model likelihood thus yields

p(D|H0) =
Γ(a)∏
i Γ(ai·)

Γ(a)∏
j Γ(a·j)

[∫ ∏
i

(ϕ
(0)
i )Ni·+ai· dϕ(0)

]∫ ∏
j

(ψ
(0)
j )N·j+a·j dψ(0)

 .
As a function of ϕ, the first integrand is proportional to a Dirichlet distribution with parameters
Ni· + ai·, and similarly for the second integrand. Integration with respect to ϕ(0) and ϕ(0) therefore
yields

p(D|H0) =
Γ(a)∏
i Γ(ai·)

∏
i Γ(Ni· + ai·)

Γ(N + a)

Γ(a)∏
j Γ(a·j)

∏
j Γ(N·j + a·j)

Γ(N + a)
. (S-35)

Asymptotic approximation. From the expression of p(D|H1), Equation (S-34), we have

ln p(D|H1) =
∑
ij

ln Γ(Nij + aij)− ln Γ(N + a) + cst,

where ”cst“ is a term that does not depend on the data. Set fij = Nij/N , so that
∑

ij fij = 1. In
the following, we assume large data set, N → ∞ and use the following approximation for the Gamma
function (Abramowitz and Stegun, 1972, p. 257)

ln Γ(z) =

(
z − 1

2

)
ln z − z +O(1).

We have

ln Γ(N + a) =

(
N + a− 1

2

)
ln(N + a)− (N + a) +O(1)

= N lnN −N +

(
a− 1

2

)
lnN +O(1)

and, similarly,

ln Γ(Nij + aij) = lnΓ(fijN + aij)

=

(
fijN + aij −

1

2

)
ln(fijN + aij)− (fijN + aij) +O(1)

= fijN lnN +N(fij ln fij − fij) +

(
aij −

1

2

)
lnN +O(1).

Putting these two results together yields

ln p(D|H1) = N
∑
ij

fij ln fij −
rs− 1

2
lnN +O(1).

Similarly, for H0, we obtain from Equation (S-35)

ln p(D|H0) = N
∑
i

fi· ln fi· −
r − 1

2
lnN +N

∑
j

f·j ln f·j −
s− 1

2
lnN +O(1).

Finally,

ln
p(D|H1)

p(D|H0)
= N

∑
ij

fij ln
fij
fi·f·j

− (rs− 1)− (r − 1)− (s− 1)

2
lnN +O(1).
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Maximum-likelihood estimate. For model H1, the maximum-likelihood estimate is given by

θ̂ij =
Nij

N
= fij .

The corresponding maximum of the log-likelihood is then equal to

ln p(D|H1, θ̂
(1)

) = N
∑
ij

fij ln fij ,

which corresponds to the the first term in the right-hand side of the approximation of p(D|H1).
Similarly, for model H0, we have

ϕ̂
(0)
i =

Ni·
N

= fi·

and

ψ̂
(0)
j =

N·j
N

= f·j ,

so that
ln p(D|H0, ϕ̂

(0)
, ψ̂

(0)
) = N

∑
ij

fij ln fij ,

which corresponds to the the first term in the right-hand side of the approximation of p(D|H1).

7 Model misspecification

We here consider the case of model misspecification, in the case of known distributions (7.1) and
known likelihood functions with unknown parameters (7.2).

7.1 Known distributions

We first assume that the distributions are known (see 1). In this case, the likelihood function f(x,y)

is different from both f
(0)
X (x)f

(0)
Y (y) and f

(1)
XY (x,y). We can then express JN (D) of Equation (S-2) as

JN (D) =
1

N

N∑
n=1

ln
f(xn,yn)

f
(0)
X (xn) f

(0)
Y (yn)

− 1

N

N∑
n=1

ln
f(xn,yn)

f
(1)
XY (xn,yn)

.

According to the strong law of large numbers, the two sums tend to∫
f(x,y) ln

f(x,y)

f
(0)
X (x) f

(0)
Y (y)

dxdy = DKL

[
f(x,y)

∥∥f (0)X (x) f
(0)
Y (y)

]
and ∫

f(x,y) ln
f(x,y)

f
(1)
XY (x,y)

dxdy = DKL

[
f(x,y)

∥∥f (1)XY (x,y)
]
,

respectively. This shows that

JN (D)
N→∞→ DKL

[
f(x,y); f

(0)
X (x) f

(0)
Y (y)

]
−DKL

[
f(x,y)

∥∥f (1)XY (x,y)
]
.

JN (D) therefore tends to a negative value if H0 is closer to the true generative model (in the sense
of Kullback–Leibler divergence), and to a positive value if it is H1 that is closer. According to
Equation (S-3), for N large enough, Blnr(X ,Y|D) will therefore be a decreasing function of N with
limit −∞ if H0 is closer to the true model, while it will be an increasing function of N with limit
+∞ if it is H1 that is closer. In other words, Blnr(X ,Y|D) behaves as if the model closer to the true
generative one were the true one.
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7.2 Known likelihood functions with unknown parameters

JN (D) of Equation (S-8) yields

JN (D) =
1

N

N∑
n=1

ln
f(xn,yn|θ)

f
(0)
X (xn|θ̂

(0)

N ) f
(0)
Y (yn|θ̂

(0)

N )
− 1

N

N∑
n=1

ln
f(xn,yn|θ)

f
(1)
XY (xn,yn|θ̂

(1)

N )
.

We now assume that the estimators have limits, i.e., θ̂
(0)

N
N→∞→ θ

(0)
∞ and θ̂

(1)

N
N→∞→ θ

(1)
∞ , and that

these limits are such that Laplace approximation of Equation (S-5) can be applied. In this case, the
likelihood ratio test statistic can be further expanded as

JN (D) =
1

N

N∑
n=1

ln
f(xn,yn|θ)

f
(0)
X (xn|θ(0)∞ ) f

(0)
Y (yn|θ

(0)
∞ )

+
1

N

N∑
n=1

ln
f
(0)
X (xn|θ(0)∞ ) f

(0)
Y (yn|θ

(0)
∞ )

f
(0)
X (xn|θ̂

(0)

N ) f
(0)
Y (yn|θ̂

(0)

N )

− 1

N

N∑
n=1

ln
f(xn,yn|θ)

f
(1)
XY (xn,yn|θ

(1)
∞ )

− 1

N

N∑
n=1

ln
f
(1)
XY (xn,yn|θ

(1)
∞ )

f
(1)
XY (xn,yn|θ̂

(1)

N )
. (S-36)

According to the strong law of large numbers, the first and third sums in the right-hand side of the
equation tend to

DKL

[
f(x,y|θ)

∥∥f (0)X (x|θ(0)∞ ) f
(0)
Y (y|θ(0)∞ )

]
(S-37)

and
DKL

[
f(x,y|θ)

∥∥f (1)XY (x,y|θ
(1)
∞ )
]
, (S-38)

respectively, while both the second and fourth sums tend to 0. Consequently, we obtain

JN (D) = DKL

[
f(x,y|θ)∥f (0)X (x|θ(0)∞ ) f

(0)
Y (y|θ(0)∞ )

]
−DKL

[
f(x,y|θ)∥f (1)XY (x,y|θ

(1)
∞ )
]
+ o(1),

where o(·) is the usual little-o notation, so that

ln
L1(θ̂

(1)

N )

L0(θ̂
(0)

N )
= N

{
DKL

[
f(x,y|θ)∥f (0)X (x|θ(0)∞ ) f

(0)
Y (y|θ(0)∞ )

]
−DKL

[
f(x,y|θ)∥f (1)XY (x,y|θ

(1)
∞ )
]}

+o(N).

8 Bivariate normal distribution with noise

8.1 Graphical model

The graphical representation of the model can be found in Figure S-1.

8.2 Marginal model likelihood of H0.

The marginal model likelihood of H0 can be expressed as

p(D|H0) =

∫
p(D|H0,x,y) p(x,y|H0) dxdy

with

p(x,y|H0) =
(
2πτ2

)− 2N
2

N∏
n=1

exp

(
−x

2
n + y2n
2τ2

)
and

p(D|H0,x,y) =
(
2πσ2

)− 2N
2

N∏
n=1

exp

{
− 1

2σ2
[
(un − xn)

2 + (vn − yn)
2
]}

,

15



σ2 τ2

xn yn

un vn

n = 1, . . . , N

σ2ρ τ2

xn yn

un vn

n = 1, . . . , N

H0 H1

Figure S-1: Simulation study: bivariate normal distribution with noise. Bayesian networks
coding the independence model H0 (left) and the dependence model H1 (right). Parameters whose
values are known are represented in gray circles, and unknown parameters in white circles.

so that

p(D|H0) = (2π)−
4N
2
(
σ2
)− 2N

2
(
τ2
)− 2N

2

N∏
n=1

∫
exp

(
−x

2
n + y2n
2τ2

)
× exp

{
− 1

2σ2
[
(un − xn)

2 + (vn − yn)
2
]}

dxn dyn.

Each quadratic term can be expanded as

(un − xn)
2

σ2
+
x2n
τ2

=
u2n + x2n − 2unxn

σ2
+
x2n
τ2

=

(
1

σ2
+

1

τ2

)
x2n − 2

un
σ2
xn +

u2n
σ2

=

(
1

σ2
+

1

τ2

)
(xn − x̂n)

2 +
u2n
σ2

−
(

1

σ2
+

1

τ2

)
x̂2n,

with

x̂n =
un
σ2

1
σ2 + 1

σ2
0

and

u2n
σ2

−
(

1

σ2
+

1

τ2

)
x̂2n =

u2n
σ2

−
u2
n

σ4

1
σ2 + 1

τ2

=
u2n

σ2 + τ2
,

so that
(un − xn)

2

σ2
+
x2n
τ2

=
σ2 + τ2

σ2τ2
(xn − x̂n)

2 +
u2n

σ2 + τ2
.

This leads to the following integration:∫
exp

{
−1

2

[
(un − xn)

2

σ2
+
x2n
τ2

]}
dxn = exp

[
− u2n
2(σ2 + τ2)

] √
2π

(
σ2τ2

σ2 + τ2

)
.

Similarly, ∫
exp

{
−1

2

[
(vn − yn)

2

σ2
+
y2n
τ2

]}
dyn = exp

[
− v2n
2(σ2 + τ2)

] √
2π

(
σ2τ2

σ2 + τ2

)
.
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The marginal model likelihood then yields

p(D|H0) = (2π)−
2N
2
(
σ2 + τ2

)− 2N
2 exp

[
−
∑N

n=1(u
2
n + v2n)

2(σ2 + τ2)

]
.

8.3 Marginal model likelihood of H1.

Setting wn = (un, vn)
t and zn = (xn, yn)

t, we obtain

p(D|H1) =

∫
p(D|H1, z, ρ) p(z|H1, ρ) p(ρ|H1) dz dρ,

with

p(z|H1, ρ) =
(
2πτ2

)− 2N
2 |M(ρ)|−

N
2

N∏
n=1

exp

[
− 1

2τ2
ztnM(ρ)−1zn

]
and

p(D|H1, z, ρ) =
(
2πσ2

)− 2N
2

N∏
n=1

exp

[
− 1

2σ2
(wn − zn)t(wn − zn)

]
,

so that

p(D|H1) = (2π)−
4N
2
(
σ2
)− 2N

2
(
τ2
)− 2N

2

N∏
n=1

∫
|M(ρ)|−

N
2 exp

[
− 1

2τ2
ztnM(ρ)−1zn

]
× exp

[
− 1

2σ2
(wn − zn)t(wn − zn)

]
p(ρ|H1) dzn dρ.

The quadratic terms can be expanded as

1

σ2
(wn − zn)t(wn − zn) +

1

τ2
ztnM(ρ)−1zn

= ztn

[
1

σ2
I +

1

τ2
M(ρ)−1

]
zn − 2

σ2
ztnwn +

1

σ2
wt

nwn

= (zn − ẑn)t
[
1

σ2
I +

1

τ2
M(ρ)−1

]
(zn − ẑn) +

1

σ2
wt

nwn − ẑtn
[
1

σ2
I +

1

τ2
M(ρ)−1

]
ẑn,

with

ẑn =

[
1

σ2
I +

1

τ2
M(ρ)−1

]−1 1

σ2
wn

and

1

σ2
wt

nwn − ẑtn
[
1

σ2
I +

1

τ2
M(ρ)−1

]
ẑn

=
1

σ2

{
wt

nwn − 1

σ2
wt

n

[
1

σ2
I +

1

τ2
M(ρ)−1

]−1

wn

}

=
1

σ2
wt

n

{
I −

[
I +

σ2

τ2
M(ρ)−1

]−1
}
wn

so that

1

σ2
(wn − zn)t(wn − zn) +

1

τ2
ztnM(ρ)−1zn

= (zn − ẑn)t
[
1

σ2
I +

1

τ2
M(ρ)−1

]
(zn − ẑn) +

1

σ2
wt

n

{
I −

[
I +

σ2

τ2
M(ρ)−1

]−1
}
wn.
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We then obtain the following integration∫
exp

[
− 1

2σ2
(wn − zn)t(wn − zn)−

1

2τ2
ztnM(ρ)−1zn

]
dzn

= (2π)

∣∣∣∣ 1σ2 I + 1

τ2
M(ρ)−1

∣∣∣∣− 1
2

exp

(
− 1

2σ2
wt

n

{
I −

[
I +

σ2

τ2
M(ρ)−1

]−1
}
wn

)
.

The marginal model likelihood then yields

p(D|H1) = (2π)−
2N
2

∫ ∣∣σ2I + τ2M(ρ)
∣∣−N

2

× exp

(
− 1

2σ2

N∑
n=1

wt
n

{
I −

[
I +

σ2

τ2
M(ρ)−1

]−1
}
wn

)
p(ρ|H1) dρ.

Defining the sample sum-of-square matrix as

S =
N∑

n=1

wt
nwn,

we are led to

p(D|H1) = (2π)−
2N
2

∫ ∣∣σ2I + τ2M(ρ)
∣∣−N

2

× exp

[
− 1

2σ2
tr

(
S

{
I −

[
I +

σ2

τ2
M(ρ)−1

]−1
})]

p(ρ|H1) dρ.

9 Functional dependence plus noise

9.1 Graphical model

The graphical representation of the model can be found in Figure S-2.

σ2 τ2

un vn

xn yn

n = 1, . . . , N

σ2 τ2

tn

xn yn

n = 1, . . . , N

H0 H1

Figure S-2: Simulation study: functional dependence plus noise. Bayesian networks coding
the independence model H0 (left) and the dependence model H1 (right). Parameters whose values are
known are represented in gray circles, and unknown parameters in white circles.

9.2 Marginal model likelihood of H0.

The marginal model likelihood of H0 can be expressed as

p(D|H0) =

∫
p(D|H0,u,v) p(u,v|H0) dudv.
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In this expression, we assume prior independence of the un’s and the vn’s, so that

p(u,v|H0) =
N∏

n=1

p(un|H0)
N∏

n=1

p(vn|H0)

with

p(un|H0) = N (un; 0, τ
2)

=
1√
2πτ2

exp

(
− u2n
2τ2

)
p(vn|H0) = N (vn; 0, τ

2)

=
1√
2πτ2

exp

(
− v2n
2τ2

)
.

As to the likelihood, it reads

p(D|H0,u,v) =
(
2πσ2

)− 2N
2

N∏
n=1

exp

[
−(xn − un)

2

2σ2

] N∏
n=1

exp

[
−(yn − vn)

2

2σ2

]
,

so that

p(D|H0) = (2π)−
4N
2
(
σ2
)− 2N

2
(
τ2
)− 2N

2

N∏
n=1

∫
dun exp

[
− u2n
2τ2

− (xn − un)
2

2σ2

]

×
N∏

n=1

∫
dvn exp

[
− v2n
2τ2

− (yn − vn)
2

2σ2

]
.

Each quadratic term in the exponential of the integrand in un can be expanded as

(xn − un)
2

σ2
+
u2n
τ2

=
x2n + u2n − 2xnun

σ2
+
u2n
τ2

=

(
1

σ2
+

1

τ2

)
u2n − 2

xn
σ2
un +

x2n
σ2

=

(
1

σ2
+

1

τ2

)
(un − ûn)

2 +
x2n
σ2

−
(

1

σ2
+

1

τ2

)
û2n,

with

ûn =
xn
σ2

1
σ2 + 1

τ2

and

x2n
σ2

−
(

1

σ2
+

1

τ2

)
û2n =

x2n
σ2

−
x2
n

σ4

1
σ2 + 1

τ2

=
x2n

σ2 + τ2
,

so that
(xn − un)

2

σ2
+
u2n
τ2

=
σ2 + τ2

σ2τ2
(un − ûn)

2 +
x2n

σ2 + τ2
.

This leads to the following integration:∫
exp

{
−1

2

[
(xn − un)

2

σ2
+
u2n
τ2

]}
dun = exp

[
− x2n
2(σ2 + τ2)

] √
2π

(
σ2τ2

σ2 + τ2

)
.
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Similarly, ∫
exp

{
−1

2

[
(yn − vn)

2

σ2
+
v2n
τ2

]}
dvn = exp

[
− y2n
2(σ2 + τ2)

] √
2π

(
σ2τ2

σ2 + τ2

)
.

The marginal model likelihood then yields

p(D|H0) = (2π)−
2N
2
(
σ2 + τ2

)− 2N
2 exp

[
−
∑N

n=1(x
2
n + y2n)

2(σ2 + τ2)

]
.

and the log

ln p(D|H0) = −2N

2
ln(2π)− 2N

2
ln
(
σ2 + τ2

)
−

N∑
n=1

x2n + y2n
2(σ2 + τ2)

.

9.3 Marginal model likelihood of H1.

The marginal model likelihood of H0 can be expressed as

p(D|H1) =

∫
p(D|H0, t) p(t|H0) dt

with

p(t|H1) =
(
2πτ2

)−N
2

N∏
n=1

exp

(
− t2n
2τ2

)
and

p(D|H1, t) =
(
2πσ2

)− 2N
2

N∏
n=1

exp

{
− 1

2σ2
[
(xn − tn)

2 + (yn − tn)
2
]}

,

so that

p(D|H1) = (2π)−
3N
2
(
σ2
)− 2N

2
(
τ2
)−N

2

N∏
n=1

∫
exp

(
− t2n
2τ2

)
× exp

{
− 1

2σ2
[
(xn − tn)

2 + (yn − tn)
2
]}

dtn.

Each quadratic term can be expanded as

(xn − tn)
2

σ2
+

(yn − tn)
2

σ2
+
t2n
τ2

=
2t2n + x2n + y2n − 2tn(xn + yn)

σ2
+
t2n
τ2

=

(
2

σ2
+

1

τ2

)
t2n − 2

xn + yn
σ2

tn +
x2n + y2n
σ2

=

(
2

σ2
+

1

τ2

)
(tn − t̂n)

2 +
x2n + y2n
σ2

−
(

2

σ2
+

1

τ2

)
t̂2n,

with

t̂n =
xn+yn

σ2

2
σ2 + 1

τ2

and

x2n + y2n
σ2

−
(

2

σ2
+

1

τ2

)
t̂2n =

x2n + y2n
σ2

−
x2
n+y2n+2xnyn

σ4

2
σ2 + 1

τ2

=
1

σ2
1

2 + σ2

τ2

[(
2 +

σ2

τ2

)
(x2n + y2n)− x2n − y2n − 2xnyn

]
=

1

σ2
1

2 + σ2

τ2

[
(xn − yn)

2 +
σ2

τ2
(x2n + y2n)

]
=

(xn − yn)
2

σ2(2 + α2)
+

x2n + y2n
τ2(2 + α2)

,
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where we set α2 = σ2/τ2. This leads us to

(xn − tn)
2 + (yn − tn)

2

σ2
+
t2n
τ2

=
σ2 + 2τ2

σ2τ2
(tn − t̂n)

2 +
(xn − yn)

2

σ2(2 + α2)
+

x2n + y2n
τ2(2 + α2)

.

This leads to the following integration:∫
exp

{
−1

2

[
(xn − tn)

2 + (yn − tn)
2

σ2
+
t2n
τ2

]}
dtn

= exp

[
− (xn − yn)

2

2σ2(2 + α2)
− x2n + y2n

2τ2(2 + α2)

] √
2π

(
σ2τ2

σ2 + 2τ2

)
.

The marginal model likelihood then yields

p(D|H1) = (2π)−
2N
2
(
σ2
)−N

2
(
σ2 + 2τ2

)−N
2

N∏
n=1

exp

[
− (xn − yn)

2

2σ2(2 + α2)
− x2n + y2n

2τ2(2 + α2)

]
and the log

ln p(D|H1) = −2N

2
ln(2π)− N

2
ln
(
σ2
)
− N

2
ln
(
σ2 + 2τ2

)
−

N∑
n=1

[
(xn − yn)

2

2σ2(2 + α2)
+

x2n + y2n
2τ2(2 + α2)

]

10 Phase synchronization of chaotic systems

The system is composed of two coupled oscillators. Each oscillator i ∈ {1, 2} is characterized by its
position (xi, yi, zi) and its time derivatives (ẋi, ẏi, żi). Their dynamics respects the following differential
equation 

ẋi = −ωiyi − zi + C(xj − xi)
ẏi = ωixi + ayi
żi = f + zi(xi − c)

i ∈ {1, 2}, j ∈ {1, 2} \ {i}. (S-39)

We set a = 0.165, f = 0.2, c = 10 (same values for both oscillators); ω1 = ω0−∆ω and ω2 = ω0+∆ω,
with ω0 = 0.97 and ∆ω = 0.02. C is the coupling parameter (C = 0 corresponds to no coupling). We
simulated data with C ∈ {0, 10−3, 10−2, 0.1, 1}. For a given set of parameter values, the trajectory of
the system was generated numerically with an explicit Runge-Kutta method and downsampled to 1 s.
Gaussian white noise is then added with variance σ2 ∈ {10−3, 10−2, 0.1, 1}.

For the inference, the parameters were optimized by numerical maximization of the log-likelihood
function (simplex search, Lagarias et al., 1998). Values of Bln(X ,Y|D) were then computed using the
BIC approximation.

11 Real-life application

11.1 Case of independence

Under H0, we have

p(θn) =
1

2π
,

so that the likelihood reads

p(D|H0) =

(
1

2π

)N

.
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11.2 Case of dependence

By contrast, under H1, the likelihood reads (Mardia and Jupp, 2000, §3.5.4)

p(θn|H1, µ, κ) =
1

2πI0(κ)
exp [κ cos(θn − µ)] ,

where I0(κ) is the modified Bessel function of the first kind and order 0,

I0(κ) =
1

2π

∫ 2π

0
exp [κ cos(θ)] dθ.

The likelihood can be rearranged to yield (Marrelec and Giron, 2024)

p(D|H1, µ, κ) =

[
1

2πI0(κ)

]N
exp

[
κNR cos(µ−m)

]
,

where Reim is the sample circular mean of the data. The prior for µ can be set as a noninformative,
uniform prior over the circle,

p(µ|H1) =
1

2π
.

For κ, we use (Dowe et al., 1996)

p(κ|H1) =
κ

(1 + κ2)
3
2

, κ ≥ 0.

p(D|H1) can then be expressed as

p(D|H1) = (2π)−(N+1)

∫
κ

(1 + κ2)
3
2

I0(κ)
−N exp

[
κNR cos(µ−m)

]
dµdκ.

Integration with respect to µ can be performed in closed form, yielding

p(D|H1) = (2π)−N

∫
κ

(1 + κ2)
3
2

I0(NRκ)

I0(κ)N
dκ.

11.3 Measure of dependence

Finally, Bln(X ,Y|D) reads

Bln(X ,Y|D) = ln
p(H1)

p(H0)
+ ln

[∫
κ

(1 + κ2)
3
2

I0(NRκ)

I0(κ)N
dκ

]
.

12 The case of the log Bayes ratio per sample

12.1 Definition

We define the log Bayes ratio per sample as

N(X ,Y|D) ≡ 1

N
Blnr(X ,Y|D) =

1

N
ln

p(H1|D)

p(H0|D)
,

which quantifies the log increase in favor of H1 per sample. Its theoretical lower and upper bounds
are −∞ and +∞, respectively.

12.2 Calculations

In the calculations, N(X ,Y|D) behaves very similarly to mutual information.
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Known distributions. In the case of a known joint distribution of the form f
(0)
X (x) f

(0)
Y (y) for H0

and f
(1)
XY (x,y) for H1, we obtain from Equation (S-1):

N(X ,Y|D) =
1

N
ln
P (H1)

P (H0)
+

1

N

N∑
n=1

ln
f
(1)
XY (xn,yn)

f
(0)
X (xn) f

(0)
Y (yn)

.

Since the (xn,yn)’s are independent for different values of n, so are the corresponding values of

ln
f
(1)
XY (xn,yn)

f
(0)
X (xn) f

(0)
Y (yn)

.

One can thus apply the law of large numbers. Under H0, it yields

1

N

N∑
n=1

ln
f
(1)
XY (xn,yn)

f
(0)
X (xn) f

(0)
Y (yn)

N→∞→
∫
f
(0)
X (x)f

(0)
Y (y) ln

f
(1)
XY (x,y)

f
(0)
X (x) f

(0)
Y (y)

dx dy = −DKL

(
f
(0)
X f

(0)
Y

∥∥f (1)XY

)
,

leading to N(X ,Y|D)
N→∞→ −DKL(f

(0)
X f

(0)
Y ||f (1)XY ). By contrast, under H1, we are led to

1

N

N∑
n=1

ln
f
(1)
XY (xn,yn)

f
(0)
X (xn) f

(0)
Y (yn)

N→∞→
∫
f
(1)
XY (x,y) ln

f
(1)
XY (x,y)

f
(0)
X (x) f

(0)
Y (y)

dx dy = I(X,Y ),

so that N(X ,Y|D) tends to I(X,Y ) as N → ∞.

Maximum-entropy distributions. We obtain from Equation (S-19)

N(X ,Y|D) = Î(X,Y )− (D1 −D0)

2

lnN

N
+O

(
1

N

)
N→∞→ I(X,Y ). (S-40)

Multivariate normal distributions. Equation (S-21) leads us to

N(X ,Y|D) = Î(X,Y )− DXDY

2

lnN

N
+O

(
1

N

)
N→∞→ I(X,Y ),

Bivariate discrete distributions. From Equation (S-33), we obtain

N(X ,Y|D) = Î(X,Y )− (r − 1)(s− 1)

2

lnN

N
+O

(
1

N

)
N→∞→ I(X,Y ).

12.3 Simulation studies

Bivariate normal distribution with noise. Results are summarized in Figure S-3. N(X ,Y|D)
tended to I(X,Y ) with increasing N and decreasing σ2. However, it was not a decreasing function
of N towards its lower bound (−∞) for H0. For H1, it did not tend to its upper bound (+∞) as
N → ∞.

Functional dependence with noise. The results are summarized in Figure S-4. N(X ,Y|D) was
relatively constant with respect to N , with a sign that was negative for H0 and positive for H1, and an
absolute value that decreased with increasing σ2. In particular, unlike other cases considered so far,
N(X ,Y|D) tended toward a negative value. Since that value was negative, it could not be associated
with mutual information (which has to be non-negative).
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Figure S-3: Simulation study: bivariate normal distribution with noise. Boxplots (median
and [25%, 75%] percentile interval) of N(X ,Y|D) when H0 is true (left) or when H1 is true with ρ = 0.8
(right).

Figure S-4: Simulation study: functional dependence with noise. Boxplots of the effect of σ2

and N on N(X ,Y|D) when H0 is true (left) or when H1 is true (right).
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12.4 Summary

The various results (calculations and simulation study) emphasize the connection between N(X ,Y|D)
and mutual information, in that N(X ,Y|D) often tends to I(X,Y ) as N → ∞. This shows that
N(X ,Y|D) is often a reasonable estimator of I(X,Y ). However, it also implies that

� In the case of no dependence (as modeled by H0), N(X ,Y|D) tends to 0 (and not its lower
bound, −∞);

� In the case of a dependence (as modeled by H1), then N(X ,Y|D) tends to a strictly positive
value (and not its upper bound, +∞).

As a consequence, the range of values that N(X ,Y|D) can reach is much more limited than its
theoretical range of ]−∞,+∞[. Also, it is not typically a monotonous (decreasing for H0, increasing
for H1) function of the quantity of information contained in the data.

13 Mutual information for the simulation study

In the case of the simulation study involving a bivariate normal distribution with noise (Section III-A
of the manuscript), we expect Î(U, V ), the naive estimator for a bivariate normal distribution from
Equation (S-22) applied to our data (un, vn), to be a good estimator of I(X,Y ) only when σ2 ≪ τ2

and N is large. When this assumption is not valid, an ad hoc estimator Ĩ(X,Y ) of I(X,Y ) could be
proposed using the fact that Cov(U, V ) = Cov(X,Y ), yielding

Ĩ(X,Y ) = −1

2
ln(1− ρ̃2),

with

ρ̃ =
̂Cov(U, V )

τ2
.

However, the theoretical and practical properties of this estimator, as well as its actual value in the
case of the simulation study, remain unclear to the authors.

By contrast, in the case of the simulation study involving a functional dependence with noise,
we are not even aware of how information-theoretic measures could provide a relevant measure of
dependence.
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