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bstract

Recent advances in magnetic resonance imaging (MRI) are allowing neuroscientists to gain critical insights into the neural networks mediating
 variety of cognitive processes. This work investigates structural and functional connectivity in the human brain under different experimental
onditions through multimodal MRI acquisitions. To define the nodes of a full-brain network, a set of regions was identified from resting-state
unctional MRI (fMRI) data using spatial independent component analysis (sICA) and a hierarchical clustering technique. Diffusion-weighted

maging (DWI) data were acquired from the same subjects and a probabilistic fiber tracking method was used to estimate the structure of this
etwork. Using features originating from graph theory, such as small-world properties and network efficiency, we characterized the structural
nd functional connectivities of the full-brain network and we compared them quantitatively. We showed that structural and functional networks
hared some properties in terms of topology as measured by the distribution of the node degrees, hence supporting the existence of an underlying
natomical substrate for functional networks.
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.  Introduction

Large-scale neural networks are distributed by local neu-
al assemblies transiently linked by long-distance reciprocal
ynamic connections [1]. Such networks are thought to form
n essential substrate for the performance of most cognitive
unctions. Uncovering how these networks operate is thus a key

uestion to understand how the brain works [2,3]. Unfortunately,
he structural and functional properties of human brain networks
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emain to be fully characterized. In particular, the focus of this
aper is to understand how structure supports function.

Both structure and function can be indirectly imaged in vivo
sing magnetic resonance imaging (MRI). On one hand,
iffusion-weighted imaging (DWI) provides significant insight
nto structural white matter pathways within the brain [4]. Trac-
ography algorithms use DWI to reconstruct white matter fiber
undles, connecting distant brains regions, thereby granting
ccess to structural connectivity networks [5,6]. On the other
and, functional MRI (fMRI) gives an indirect access to neuronal
ctivity through its metabolic and hemodynamic consequences,

sing the blood oxygen level-dependent (BOLD) contrast [7,8].
arious approaches have relied on fMRI to identify sets of

unctionally dependent brain regions constituting functional

http://www.sciencedirect.com/science/journal/19590318
dx.doi.org/10.1016/j.irbm.2012.04.005
mailto:Arnaud.Messe@imed.jussieu.fr
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onnectivity networks. Such approaches have been applied to
 wide range of experimental conditions and also at rest, i.e.
hile the subject lies still and refrains from any overt activity

9–13], see Perlbarg and Marrelec [14] for review.
In the recent years, complex networks have received a signif-

cant attention in scientific disciplines ranging from biology to
conomy and social sciences. Networks can be seen as graphs (a
et of nodes linked by edges) and graph-theoretical methods have
een applied to characterize their properties [15–19]. Most net-
orks found in various fields are neither totally disordered (ran-
om) nor totally regular (lattice) but rather exhibit the so-called
mall-world properties [16,19,20]. Many recent studies of the
iterature rely on such graph-theoretical approach to investigate
rain architecture using DWI and fMRI acquisitions [21–23].

This work is an original investigation of the structural and
unctional features of human brain networks using real mul-
imodal MRI acquisitions (DWI and fMRI). Starting from a
et of functional nodes identified from resting-state functional

RI data, we computed structural and functional (at rest, dur-
ng motor task, and visual stimulation) connectivities between
hese nodes to define a network spanning the whole brain. We
hen examined the structural and functional connectivities of
his network using measures drawn from graph theory, such as
mall-worldness or efficiency. Finally, we performed a quanti-
ative statistical comparison of the network properties derived
rom structural and functional connectivities.

.  Materials  and  methods

.1.  Subjects

The present study included thirteen healthy right-handed
olunteers (age 24–30, nine male) who were scanned at the Mon-
real Geriatric Institute, Montreal, Quebec, Canada, according
o a protocol approved by the local ethic committee. The sub-
ects had no history of neurological or psychiatric disorders.
unctional data were recorded during three different conditions:

 continuous rest period, during which subjects remained eyes
losed, and two block-design paradigms: the first paradigm alter-
ated between a motor and a control task, while the second
lternated between a visual stimulation and a control task. For
oth motor and visual conditions, each epoch lasted for 30 s
nd was preceded by a 3-second visual instruction period. The
otor task consisted of performing a left-hand finger-tapping
ovement paced at 2 Hz by a fixation cross-displayed on a

creen. The visual stimulation consisted of an optic flow dis-
lay, where white dots moving in a black background simulated
he visual perception experienced during self-movement in a
hree-dimensional cloud; subjects were instructed to focus on

 fixation cross located at the center of the screen. The control
ask lasted for 30 s and consisted of focusing on a fixation cross
t the center of the screen.
.2.  Image  acquisition  and  data  preprocessing

Functional MRI series were recorded using a single-shot,
radient-recalled echo-planar imaging sequence (repetition time
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TR]: 3500 ms; echo time [TE]: 40 ms; flip angle: 90◦; matrix
4 × 64 voxels). One hundred and sixty T*2-weighted images
ere acquired for each run. Each volume consisted of 41 con-

iguous axial slices (voxel size: 3.5 mm isotropic). Two runs
ere acquired in each experimental condition and for each sub-

ect. DWI data were recorded using a single-shot, echo-planar
maging sequence (TR: 8200 ms; TE: 97 ms; matrix 128 ×  128
oxels). Twelve independent diffusion-weighted directions
b = 1000 s.mm−2) and a non-weighted image (b = 0 s.mm−2)
ere acquired four times for each subject and these repetitions
ere averaged. Each volume consisted of 52 contiguous axial

lices (voxel size: 2 mm isotropic). A high-resolution co-planar
natomical volume (128 axial slices, voxel size: 1 mm isotropic)
as also acquired during the same scanning session using a

hree-dimensional, spoiled gradient echo sequence (TR: 22 ms,
E: 4 ms, flip angle: 30◦; matrix 256 ×  256 voxels). All scans
ere performed on a 3T Siemens Magnetom Trio MRI scanner.
For each subject prior to data analysis, fMRI data

ere corrected for slice timing using the SPM2 soft-
are (Statistical Parametric Mapping: http://www.fil.ion.ucl.

c.uk/spm/software/spm2/). The resulting data were then cor-
ected for quadratic drifts using linear regression. Volumes from
he two runs corresponding to a same experimental condition
ere then concatenated. FMRI data were registered to the stan-
ard Montreal Neurological Institute (MNI) space using the
onlinearly approach of SPM2 and its EPI template [24]. Fur-
hermore, each DWI scan was aligned to the non-weighted
mage (reference) using affine registration intended to maximise
utual information [25] and brain extraction derived from this

eference scan was then applied to each volume [26] using the
SL software package (FMRIB Software Library, version 4.1:
ttp://www.fmrib.ox.ac.uk/fsl/). The non-linear transformation
f the non-weighted DWI scan of each subject to the MNI space
as also computed using SPM2.

.3. Constructing  the  full-brain  network

.3.1.  Defining  the  regions  of  interest
We used spatial independent component analysis (sICA) to

eparate temporally and spatially structured brain processes at
he group level [27,28]. The forty independent components that
xplained most variance were first extracted for each subject. We
hen clustered the spatial independent components into classes,
hich were representative of the population using a hierarchical

lustering algorithm that maximizes within-class spatial sim-
larity [29]. Spatial similarity was quantified using a distance

 derived from the spatial correlation between components, as
ollows: dij = √

1 −  rij , where rij is the spatial correlation coef-
cient between component i  and j. From the similarity tree, an
d hoc  algorithm was used to define the group-representative
omponents by optimizing both the degree of representativity
DR) and the degree of unicity (DU) of each group component.
or a given class, DR was defined as the number of distinct

uns that contributed to it, divided by the total number of runs.
U was defined as the number of runs that contributed to the

lass with one and only one component, divided by the num-
er of distinct runs that contributed to it. The procedure selects

http://www.fil.ion.ucl.ac.uk/spm/software/spm2/
http://www.fil.ion.ucl.ac.uk/spm/software/spm2/
http://www.fmrib.ox.ac.uk/fsl/
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 group component if at least half of the runs contribute to
t (DR > 0.5) and at least 75% of these runs contribute with
nly one component (DU > 0.75). Finally, for each class, we
omputed a fixed-effect group map of t-scores from all the
ndividual spatial maps belonging to the class. All the group
-score maps were thresholded at P  < 0.05 (not corrected for

ultiple comparisons) and visually inspected to select those
hat exhibited a spatial organization distributed into cortical,
ubcortical, and cerebellar areas known to be involved in cog-
itive, perceptual and sensorimotor functions; the other classes
ere related to noise processes (either physiological or physi-

al) with known spatial distributions [30]. A set of regions of
nterest (ROIs) were finally semi-automatically defined from all
elected maps by applying a region-growing algorithm (based
n local covariance and 26-connexity) starting from local t-score
axima selected manually (the stopping criterion was a cluster

ize of 30 voxels). Each selected map could be considered as
 distinct network, however each network only corresponded
o roughly twenty ROIs, which was not large enough to derive
raph-theoretical measures. As a consequence, the categorisa-
ion of selected nodes into functional networks was not taken
nto account, and the nodes from all networks were considered
ogether to generate full-brain graph measures.

.3.2. Indices  of  structural  and  functional  connectivity
To quantify structural connectivity, ROIs were mapped back

o each subject’s diffusion space by applying the inverse trans-
ormation from the MNI space to the individual DWI space of
ach subject. A probabilistic white matter fiber tracking method
31] implemented in FSL was then used to track all possible con-
ections between all pairs of ROIs. The fiber tracking parameters
ere: 5000 particles per voxel; 0.5 mm propagation step; maxi-
al fiber curvature: 80◦; no anisotropy constraint. An index of

tructural connectivity (sCI) between two ROIs was then defined
s the fraction of samples connecting these two ROIs. This
llowed to quantify the structural aspect of the global nework,
hich was eventually symmetrized by averaging forward and
ackward structural connectivites.

The functional connections were generated as follows. The
ime series of all voxels within a given ROI were spatially aver-
ged to form the representative signal of that ROI. An index of
unctional connectivity (fCI) between two ROIs was then defined
s the absolute correlation between the representative signals of
hese two ROIs for each of the three experimental conditions
fCIr at rest, fCIm during the motor task, and fCIv for the visual
timulation). This allowed us to quantify three functional states
f the full-brain network. Each connectivity index (sCI, fCIr,
CIm, and fCIv) was finally displayed in a connectivity matrix
or each subject.

.4. Network  characterization

The full-brain network was defined as the set of ROIs (or

odes, defined above) linked by connections (or edges, weighted
y sCI, fCIr, fCIm, or fCIv), mathematically described as graphs.
o quantify the topological organization of these graphs, we used
everal measures drawn from classical graph theory, including

a
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s
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easures specifically developed for the analysis of small-world
roperties. These measures were used to compare quantitatively
tructural and functional features of the network. Computation of
he graph-theoretical measures was carried out using a Matlab®

The Mathworks, Inc.) toolbox (Brain Connectivity Toolbox:
ttp://www.brain-connectivity-toolbox.net/) described in detail
n reference [23].

.4.1.  Small-world  properties
We used small-world parameters derived from the charac-

eristic path length of a network and its clustering coefficient
20]. The characteristic path length L  of a network is the aver-
ge length of the shortest path between all pairs of nodes, where
he path length (also called distance) between two nodes corre-
ponds to the minimum number of distinct edges required to link
hese nodes. The clustering coefficient C  is the average of the
lustering coefficients of all nodes, where the clustering coeffi-
ient of a node is the ratio between the actual number of edges
mong the node’s neighbours and the largest number of possi-
le connections within this neighbourhood. Random and lattice
etworks represent extremes of network topology from a totally
isordered (random) network to a totally regular (lattice) net-
ork. Typically, a random network is characterized by small L

nd C  values compared with a regular network. Small-world net-
orks are located between the two extreme configurations and

re characterized by a small L  value (comparable to random net-
orks) and a high C  value (comparable to lattice networks).
o measure the small-world properties of the structural and
unctional connectivity networks defined in the previous sec-
ion, we scaled L  (respectively, C) by dividing its value by the

ean L  (respectively, C) value obtained for 100 matched ran-
om networks (i.e. networks with the same size and density as
he analyzed network); scaled L  and C  values were denoted by
s and Cs, respectively [32,33]. A network will therefore be
onsidered as having the small-world properties if it meets the
ollowing criteria: Ls≈1 and Cs > 1 [20].

.4.2.  Efficiency
Network efficiency is expressed in terms of global efficiency

Eg, related to the inverse characteristic path length) and local
fficiency (El, similar to the clustering coefficient) [16]. For a
etwork G  with a set of M  nodes N(G),

g (G) = 1

M (M −  1)

∑

j /= i ∈ N(G)

1

Lij

,

nd El (G) = 1

M

∑

i ∈ N(G)

Eg (Gi) ,

here Li,j corresponds to the path length between nodes i and
, and Gi is the subnetwork composed of the nearest neighbours
f i (i.e. the set of nodes directly linked to i). The efficiency
easures have been shown to have technical and conceptual
dvantages over conventional measures such as characteristic
ath length and clustering coefficient, since it deal with either
he disconnected (i.e., consisting of isolated subgraphs) or non-
parse graphs [16]. Typically, a random network is characterized

http://www.brain-connectivity-toolbox.net/
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y a high Eg value and a small El value compared with a regular
etwork.

.4.3. Network  topology
The topology of a network can be measured by analyzing

he distribution of the node degrees, p(k). The degree k  of a
ode is equal to its total number of connections. Small-world
etworks can be classified into three categories according to the
istribution of their node degrees [15]:

single-scale networks, the degree distribution of which is
exponential, p(k) = e−k/β;

 scale-free networks, which have a power-law degree distribu-
tion, p(k) = k1−α;

 broad-scale networks, which are intermediate between the
two previous ones with an exponentially truncated power-law
distribution of the form p(k) = e−k/βk1−α;

 where α  is the exponent and β  the cut-off. Here, the cumula-
tive distribution, F(k), was used to plot the results in order to
reduce the effects of noise due to the small set of nodes [19].

.5. Structure-function  comparison

In order to investigate similarities between structural and
unctional aspects of the full-brain network across subjects, the
tructural and functional connectivity indices were uniformly
hresholded to obtain binary graphs of varying density, or cost, c
i.e., c is the proportion of links that survive the threshold com-
ared to the total number of possible links). All graph theory
easures for sCI, fCIr, fCIm, and fCIv were computed for each

ubject and each cost. To compare graph measures for struc-
ural and functional connectivity indices across subjects, we
erformed an analysis of variance (ANOVA) at a cost of 4%
nd 6% respectively, with 51 degrees of freedom (4 [connectiv-
ty indices] ×  13 [subjects] – 1). To select the most appropriate

odel for the distribution of the node degrees at a given cost,
e used the Bayesian information criterion (BIC) [34], which

easures the likelihood of the model penalized by its complex-

ty (the lower the BIC value, the more appropriate the model).
o assess the goodness-of-fit of the selected model, we used
2 values for each subject and each connectivity index. An

o
t
n
a

ig. 1. Regions of interest location in axial (left) and sagittal (right) views supe
www.nitrc.org/projects/bnv). Color codes for group component membership.
3 (2012) 243–252

NOVA was performed to test similarity between model param-
ters for structural and functional connectivity indices across
ubjects.

. Results

A total of 132 nodes, distributed over the whole cortical
n = 92) and subcortical (n  = 24) grey matter and the cere-
ellum (n  = 16) were defined among all functional networks
dentified (Fig. 1). The connectivity matrices in Fig. 2 illus-
rate the sCI and the fCIr values and the corresponding binary
raphs for each pair of nodes for a typical subject. Struc-
ural connectivity indices were characterized by sparse matrices
mean: 8.53% and standard deviation [SD]: 1.63% across
ubjects).

The characteristic path lengths of the networks were close to
he values obtained for random networks (Fig. 3, top left). Val-
es of the clustering coefficient C for the connectivity indices
ere between those corresponding to random and lattice net-
orks (Fig. 3, top right). The C  values for the motor and visual

asks were slightly higher than for the rest period, and the C
alues for the sCI were close to those corresponding to lattice
etworks. Moreover, the L  and C values for functional networks
ere relatively stable regardless of the experimental condition,

nd the values corresponding to the sCI were significantly higher
han those corresponding to the fCI (ANOVA: P  < 10−6 at 4%
nd 6% cost). The scaled L  and C  values (Ls and Cs) for all the
onnectivity indices indicated that, independently of the cost,
he networks examined here had small-world properties (i.e.,
s≈1 and Cs > 1) (Fig. 3, bottom row). Finally, Fig. 3 high-

ights the fact that the Ls and Cs values corresponding to the
hree experimental conditions (fCIr, fCIm, and fCIv) were not
ignificantly different from one another, but significantly lower
han those obtained for sCI (ANOVA: P  < 10−6 at 4% and 6%
ost).

In terms of efficiency, the present network analyzed was
ocated between typical random and lattice networks regardless

f the connectivity index (Fig. 4). Global efficiencies were close
o random values, resulting in a high global efficiency, with sig-
ificantly lower values for sCI than for fCI (ANOVA: P  < 10−3

t 4% and 6% cost) (Fig. 4, left). Local efficiencies values were

rimposed on a brain template surface using the BrainNet Viewer software

http://www.nitrc.org/projects/bnv
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Fig. 2. Connectivity matrices of structural connectivity (top row, left, logarithmic scale) and functional connectivity values at rest (bottom row, left) for one typical
s es to 
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ubject, and binary matrices resulting from thresholding the connectivity matric
ow and column of the matrices represents a node of the full-brain network.

tatistically higher for sCI than for fCI (ANOVA: P  < 10−6 at

% and 6% cost) (Fig. 4, right).

In the present study, we found that, according to the BIC, the
istributions of the node degrees for sCI and fCI at a cost of 5%

(
n
a

ig. 3. Mean and standard deviation across subjects of the characteristic path len
ng coefficient C (top right), and scaled clustering coefficient Cs (bottom right) 

onnectivity et rest (dark blue), functional connectivity during the motor task (
nd the corresponding values for typical networks: random (light grey) and latt
nalyzed.
obtain various cost values (4%, 6%, and 10% cost from columns 2 to 4). Each

ere best fitted by the exponentially truncated power-law form

Table 1 and Fig. 5). The fitted distributions did not have sig-
ificantly different exponents �  (ANOVA: F  = 1.85, P = 0.15)
nd cut-offs � (ANOVA: F = 2.43, P = 0.07) (Fig. 6) between

gth L (top left), scaled characteristic path length Ls (bottom left), cluster-
as a function of the cost value for structural connectivity (red), functional
green), and functional connectivity for the visual stimulation (light blue),
ice (dark grey), with the same size and density as those of the networks
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ig. 4. Mean and standard deviation across subjects of global efficiency (left), a
orresponding values for random and lattice networks (with the same color cod

onnectivity indices with, on average, a very good fit
R2 = 0.9898 for sCI; R2 = 0.9943 for fCIr; R2 = 0.9942 for fCIm;
nd R2 = 0.9930 for fCIv).

. Discussion

In the present study, we investigated structural and functional
onnectivity in the human brain using features from graph the-
ry. The nodes of the network were defined using sICA and
ierarchical clustering on fMRI data. The structural connec-
ivity index between two nodes was defined as the proportion
f fibers that connected these two nodes, while the functional
onnectivity index between two nodes corresponded to the abso-
ute correlation between the average fMRI time series of these
wo nodes. These connectivity indices were then thresholded at
ifferent costs to produce binary graphs, and graph theory meas-

res were applied to characterize network properties. The results
howed that structural and functional connectivity networks
hared some important features such as their topology. We also
howed that the network functional properties were relatively

d
b
s

able 1
ean and standard deviation of the BIC values across subjects, for the three models 

sCI 

runcated power-law –49.93 ± 4.66 –50.62 

xponential law –53.89 ± 4.10 –53.63 

ower-law –60.27 ± 5.01 –61.60 

CI: structural connectivity; fCIr: functional connectivity at rest; fCIm: functional c
timulation.
cal efficiency (right) for structural connectivity and functional connectivity and
 Fig. 3).

table with regard to the experimental protocol (resting-state,
otor task or visual task).
One of the key issues regarding the investigation of human

rain networks is their definition. Our first step consisted of
efining a set of nodes (or ROIs) and then defining the links
or edges) between these nodes. Many approaches may be used
o define both the nodes and the links, relying either on struc-
ural or functional information, or on other assumptions such
s a  priori  atlases. How the definition of the nodes affects the
xtracted properties is not fully elucidated yet. Wang et al. [35]
eported that the network properties, such as the path length,
ere sensitive to the selected strategy. It has been also suggested

hat density and degrees distribution are related to the number
f node [36]. Here, we defined the nodes of the network from
MRI data at rest, in line with the approach advocated in [37].
he resulting functional networks extracted form a set of dis-

ributed areas that reflect the brain’s baseline activity. In fact, by

efinition, ICA component are strongly temporally correlated
rain regions, thereby the extracted ROIs are very functionally
pecific. Besides, data-driven extraction of brain regions allows

of the node degree distribution, for sCI and fCI for each task.

fCIr fCIm fCIv

± 7.86 –49.03 ± 5.15 –51.35 ± 9.17
± 5.73 –53.42 ± 3.22 –54.89 ± 6.74
± 7.87 –60.66 ± 4.13 –62.72 ± 9.42

onnectivity during the motor task; fCIv: functional connectivity for the visual
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Fig. 5. For the typical subject in Fig. 2, for a cost of 5%, the cumulative distribution F(k) (where k is the degree) of the node degrees according to structural connectivity
(sCI, top left), functional connectivity at rest (fCIr, top right), functional connectivity during the motor task (fCIm, bottom left), and functional connectivity for
t ata, th
i  –70.9
f BIC =

f
r
l
t
i
u
a
t

i
g
s
t

F
s

he visual stimulation (fCIv, bottom right). The plus signs represent observed d
nformation criterion [BIC] = –51.46 for sCI; –44.60 for fCIr; –51.22 for fCIm;
or fCIr; –54.42 for fCIm; –66.57 for fCIv), and the dotted line the power law (

or selection of more specific regions, with respect to anatomy,
ather than gross anatomical regions, which encompass unre-
ated functional regions and unreliable fiber tracks. Secondly,
he definition of the edges (or connectivity) between nodes is

mportant for the construction of the network. Here, we chose to
se classical measures of connectivity, i.e., the fraction of fibers
nd the absolute correlation between brain nodes. Knowing that
he choice of a threshold is still critical [38], the connectivity

t
T

b

ig. 6. Boxplot of the exponent � (left) and cut-off � (right) for the fitted exponentia
ubjects. For each box, the horizontal lines mark the quartiles, the whiskers extend to
e solid line is the fitted exponentially truncated power-law function (Bayesian
7 for fCIv), the dashed line the exponential law (BIC = –53.78 for sCI; –48.90

 –60.53 for sCI; –56.06 for fCIr; –61.70 for fCIm; –80.71 for fCIv).

ndices were therefore thresholded uniformly to obtain binary
raphs. Then, graph theory measures designed for binary graphs
uch as the small-world properties were applied [19,20], in order
o characterize quantitatively the structural and functional fea-

ures of the network, each measure being calculated at each cost.
he conclusions were similar at various costs.

Previous studies exhibiting graph theory properties of human
rain networks have focused on various approaches, such as

lly truncated power-law function at 5% cost for the connectivity indices across
 the most extreme data points, and outliers are represented by plus signs.
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unctional imaging [39–42] and structural imaging [39,43–45]
ith as a common finding the small-world properties of the

nalyzed networks. Given an a priori  template of grey matter
egions in references [41] and [39], the authors applied par-
ial correlation and a discrete wavelet transform, respectively,
o fMRI time series at rest to estimate functional connectivity
nd found a small-world topology of sparse connections. The
rst study showing the small-world properties of human brain
tructural networks was initiated by He et al. [45], the graph
as built based on the correlation between the cortical thick-
esses of brain areas, assuming that the strength of the links
etween brain regions (or structural pattern) could be related to
he cross-correlation of cortical thickness. More recently, in ref-
rences [43] and [44], maps of about 80 cortical and subcortical
rey matter regions were constructed from DWI data and ana-
yzed using graph theory. Networks exhibited the small-world
roperties and some regions like the precuneus and the supe-
ior frontal and parietal cortices were found to be network hubs
46]. Node topology, as measured by the distribution of the node
egrees, presents also consistent characteristics in the literature
ith the main observation of broad-scale topology [6,39,43,45],
espite a controversial result in reference [47] showing a scale-
ree topology. To our knowledge, only one study investigated the
raph properties in both structural and functional connectivity
48]. The authors derived a group-level network and investigated
ts properties using both structural and functional connectivity.
owever, the analyzed network was defined with an arbitrary

emplate and no statistical test was used to quantify to which
xtent both representations (structural and functional) were
elated.

Our results are in agreement with those of previous investiga-
ors, in that we observed small-world properties and broad-scale
opology with both structural and functional connectivity for
he same subjects. This observation demonstrates that structure
hares common properties with function. Some of our results
ere similar to those obtained in reference [48]. Nevertheless,
ere we assessed network properties from the same subjects in
arious states (at rest, during a motor task, and visual stimula-
ion). Besides, we observed that functional network properties
ere relatively stable with regard to the experimental proto-

ol (resting-state, motor task or visual task). This contradicts
revious results [47], where it was observed some variations
n the distribution of the node degrees during a finger-tapping
ask and listening to music using fMRI data. Our results rather
uggest that the intrinsic functional properties of the network
ere stable with regard to the task. The possible functional

eorganisation during a specific task might imply only local
hanges in the network properties. Another implication to this
or future research is that it is possible to look into subnetworks
f graphs generated from different functional states to reveal
nsights into what properties are changing at a region-by-region
evel.

The main features of the small-world properties correspond

o the two essential organizational principles of the human
rain [38]. The first one is integration, corresponding to the
oordination of distributed resources to create coherent states,
hich can be related to the characteristic path length or the

n
t
f
i

3 (2012) 243–252

lobal efficiency. The second one is segregation, meaning
 rapid extraction of information, measured by local clus-
ering or local efficiency. Another important property of a
etwork is its node topology, which can be described by the
istribution of node degrees [15]. The network’s node topol-
gy measures graph behaviour, such as resilience to attacks
39].

Showing some similarities between structural and functional
eatures tends, in turn, to suggest that structure is linked to
unction. Another important question that emerges from this
bservation is how to relate structure to function. Few studies
ave addressed the direct link between structural connectivity
etworks (i.e., networks as defined by DWI) and functional con-
ectivity networks (i.e., networks as defined by fMRI). Some
f the studies that examined the anatomical substrate of spe-
ific functional regions such as the primary motor cortex [49] or
he visual system [23] suggested that structure and function as

easured by MRI can be linked together. However, such investi-
ations remain limited due to the complexity of the human brain,
s well as the inability of these approaches to examine networks
ather than regions. Indeed, networks involve a large number
f regions forming a complex architecture with specific prop-
rties that cannot be described locally [38,50]. More recently,
ome studies demonstrated that specific functional brain net-
orks extracted at rest such as the default-mode network [51] or

he attentional and motor networks [52] were anatomically con-
ected. However, an anatomical link between functional regions
oes not necessarily imply a functional connection between
hese regions and vice versa, due particularly to indirect connec-
ions. Furthermore, these studies only provided visual evidence
n favor of a relationship between structure and function. It is
till unclear in what measure structure supports function; espe-
ially whether structural features of brain networks serve as

 substrate to the functional features. A recent study investi-
ated the functional processes underlying the structure using

 neural mass to model the functional activity, the resulting
imulated functional connectivity was statistically correlated
ith the resting-state fMRI derived functional connectivity

53].
In reference [44], the structural network was revealed by

sing hard angular resolution diffusion imaging, which deals
ith the complexity of diffusion distribution in some voxels

4,5,54] using new diffusion models and tractography meth-
ds [31,54,55]. Yet, in this work, we used a standard clinical
equence (with 12 diffusion-weighted directions) that allows
ne to extract a simple diffusion model like the diffusion ten-
or, which models the local diffusion by an ellipsoid, but does
ot solve fiber crossing issues. The influence of the diffusion
odel on structural connectivity measures is still an open issue.
or function, many approaches exist to quantify links between
istinct brain regions from functional imaging, as partial cor-
elation or wavelet transformation [39,41]. As for structural
onnectivity, the effect of a functional interaction measure on
etwork properties is unknown. It would be of great interest
o investigate multimodal MRI network properties using dif-

erent imaging sequences and preprocessing steps, and several
nteraction measures.
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.  Conclusion

Our results suggest the existence of a relationship charac-
erized by graph theory measures between functional behavior
nd the underlying structure of human brain networks. Prob-
bilistic tracking accurately described structural connectivity,
ielding a structural index that proved to have similar properties
o functional connectivity. Such a conclusion is in agreement
ith the recent literature, which indeed suggests that functional
rganization of the brain is embedded within some structural
rganization.
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