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Relating Structural and Functional Connectivity in
MRI: A Simple Model for a Complex Brain

Arnaud Messé*, Habib Benali, and Guillaume Marrelec

Abstract—Advances in magnetic resonance imaging (MRI)
allow to gain critical insight into the structure of neural networks
and their functional dynamics. To relate structural connectivity
[as quantified by diffusion-weighted imaging (DWI) tractography]
and functional connectivity [as obtained from functional MRI
(fMRI)], increasing emphasis has been put on computational
models of brain activity. In the present study, we use structural
equation modeling (SEM) with structural connectivity to predict
functional connectivity. The resulting model takes the simple
form of a spatial simultaneous autoregressive model (sSAR),
whose parameters can be estimated in a Bayesian framework. On
synthetic data, results showed very good accuracy and reliability
of the inference process. On real data, we found that the sSAR
performed significantly better than two other reference models as
well as than structural connectivity alone, but that the Bayesian
procedure did not bring significant improvement in fit compared
to two simpler approaches. Nonetheless, we also found that the
values of the region-specific parameters inferred using Bayesian
inference differed significantly across resting-state networks.
These results demonstrate 1) that a simple abstract model is
able to perform better that more complex models based on more
realistic assumptions, 2) that the parameters of the sSAR can be
estimated and can potentially be used as biomarkers, but also 3)
that the sSAR, while being the best-performing model, is at best
still a very crude model of the relationship between structure and
function in MRI.

Index Terms—Bayesian inference, generative models, human
brain connectivity, magnetic resonance imaging (MRI), simulta-
neous autoregressive model.

I. INTRODUCTION

M AGNETIC resonance imaging (MRI) encompasses
various imaging modalities that can be used to probe

complementary information about the human brain. By tracking
the movement of water molecules, diffusion-weighted imaging
(DWI) provides relevant insight into the main pathways of
white matter fibers connecting different brain regions [1], [2].
Functional MRI (fMRI), by contrast, measures metabolic and
hemodynamic consequences of brain activity [3], [4]. Analysis
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of fMRI data, especially at rest, has been shown to successfully
extract sets of brain regions that are functionally dependent and
constitute brain networks [5], [6].
The functional dynamics of brain regions is reflective, at least

in part, of the underlying anatomical connections [5]–[9]. Com-
bining DWI and fMRI allows to investigate the relationship
between structure and function within brain networks by re-
lating coherent neuronal dynamics with the underlying structure
of anatomical connectivity. In this perspective, a better under-
standing of the connection between structure and function re-
lies on a better understanding of the relationship between DWI
and fMRI data. Some recent results suggest that structure as
extracted by DWI is tightly linked to function as extracted by
fMRI (see [10] for a review). One way to link structure and
function is to define a realistic generative model that, using bio-
physical neuronal functioning and anatomical wiring, is able to
generate brain functional dynamics [11], [12]. However, such a
framework is rather uneasy to explore due to the large number
of parameters potentially involved and the complexity of any
realistic forward model, leading to approaches that are bulky,
computationally challenging and hard to evaluate. Besides, the
precise selection of a given model and corresponding parameter
values over other alternatives is an issue that remains unsolved,
while potentially having dramatic influence on the simulations
[12], [13].
In this paper, we present an original attempt to relate DWI

and fMRI connectivity measures using structural equation mod-
eling (SEM). SEM, also known as path analysis, has been a
major way to examine effective connectivity in BOLD fMRI
[14], [15]. SEM analysis requires the definition of the structure
of interactions in the form of a directed graph. In a standard
analysis, knowledge of the human brain anatomy and function
is used to propose such a structure; the intensity of the existing
connections are then estimated using fMRI data. By contrast,
in the present approach, the structure of interaction is obtained
(up to a global multiplicative constant) from DWI-based trac-
tography. Such an approach leads to the definition of a spatial
simultaneous autoregressive (sSAR) model [16], [17], see also
[18] and [19] for applications in computational neuroscience
and [20] for an application in MRI functional connectivity anal-
ysis. As mentioned above, realism comes at the expense of com-
plexity: more complex models are usually harder to calibrate,
in particular in terms of their model parameters. As a conse-
quence, the gain in realism brought by a model could very well
be offset by model parameters that are set to values that are
far from optimal. By using a simple abstract model such as
the sSAR, we set the balance between realism and estimability
strongly in favor of estimability, hoping that the expected low
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performance obtained with such a simple model could be some-
what compensated by the improvement brought by the possi-
bility to estimate the model parameters, and that the parameter
values could be used as biomarkers. More precisely, our predic-
tions were the following: i) A naive version of the sSAR with
values from the literature performs worse that current widely
accepted generative models; ii) adding a layer of parameter es-
timation improves the performance of the sSAR; iii) the more
parameters are estimated, the better the fit; and iv) parame-
ters estimated can be used to discriminate between well-known
networks. To test these predictions, we compared the perfor-
mances of functional connectivity simulated according to the
sSAR model with parameters set according to three strategies
(values from the literature, simple optimization of the coupling
factor, and full Bayesian inference) with simulations from two
reference models (rate model and neural mass model [21]) as
well as structural connectivity alone. All analyses were per-
formed at three different spatial scales, namely with parcella-
tions of the brain into 160, 461, and 825 regions. Performance
was quantified using both the predictive power (correlation be-
tween simulated and empirical data) and the mean square error.
Results at all three scales and with the two measures agreed:
prediction ii) and iv) were confirmed, while predictions i) and
iii) turned out to be wrong. Regarding i), the sSAR performed
better than the other models, regardless of how the model pa-
rameters were set. Regarding iii), the sSAR with full Bayesian
inference scheme did not perform better than a simple optimiza-
tion of the coupling parameter.
The outline of this article is the following. We first introduce

the sSAR model and present some of its key features. We then
present a Bayesian procedure to infer the parameter values and
validate it on synthetic data. Finally, the model is applied to real
MRI human brain data and compared to the reference models,
showing the superiority of the sSAR model and the relative ad-
vantage of the Bayesian inference scheme. Consequences of
these results are evoked in the discussion.

II. SSAR MODEL

A. From Structural Equations to Spatial Autoregression

In fMRI data analysis, predicting the pattern of functional in-
teractions between brain regions from structural information is
closely related to the concept of effective connectivity, which is
defined as the effects that regions exert on one another [22]. In
the following, we will turn our attention to structural equation
modeling (SEM), which is a common model of effective con-
nectivity in fMRI [14], [15]. More specifically, consider a net-
work of regions and denote by the BOLD fMRI time
course within region at time .
To account for nonzero mean of the fMRI data, we first decom-
pose into a baseline and a fluctuating signal

(1)

Assume now that the fluctuating signals are related through a
model of structural equations, which relies on expressing each

as a linear function of other ’s for [14], [15]

where and are
-dimensional vectors. The model parameters are

known as the path coefficients; they specify the structure of spa-
tial dependence between observations. is some additive
noise component that stands for the part of the noise that cannot
be accounted for by the other variables. It is usually assumed
to be normally distributed with zero mean and unknown vari-
ance , with a traditional assumption of spatial and temporal
independence. In a standard SEM analysis, some ’s are con-
strained to 0; the other coefficients, which are free to vary, must
be estimated from data, usually by optimization of a cost func-
tion [23]. In the present study, we proceed differently. Instead
of inferring the path coefficients from functional observations,
we assume that each path coefficient can be expressed as

, leading to a model

(2)

where is an -by- matrix. This model is known as
the simultaneous autoregressive (SAR) model [16], [24], [25].
In the present study, it is assumed that is a matrix of struc-
tural connectivity obtained from DWI with the following prop-
erties: no self connections (i.e., ), and rows summing
to 1 (i.e., is right, or row, stochastic). With this last property,

is a weighted average of the signals in regions
, with relative weights given by . is a real number

in [0,1[ coding for a global weight.1 For each region , the rela-
tive values of and quantify the balance between the part of
signal that can be accounted for by the activity of other regions
and the structural properties of the network, ,
and the part of the signal that is endogenous to region , .
According to (1) and (2), is multi-

variate normal with mean and covariance matrix

(3)

where stands for the identity matrix, is a diagonal matrix
with , and “ ” is the regular matrix
transposition.

B. Inferring the Model Parameters

The sSAR model defined above has parameters: (
parameters), the diagonal elements of ( parameters), and
(1 parameter). In [18], was set to 0.5, while, it was set to

1 in [19]; in both cases uniform noise variance was assumed,
for all . However, these settings were proposed for sim-

ulation purposes only. In our case, where we have to fit a model
to data, we need to take the values for these parameters as un-
known and estimate their probable values. We here propose to
perform this step using Bayesian inference. In a Bayesian frame-
work, all the information necessary for inference is contained in

, the posterior distribution of the model parameters,
where, for the sake of simplicity, stands for . In
the present study, we are mostly interested in the values taken by
parameters and , being a nuisance parameter. The distri-
bution of interest is therefore . Given the model de-

1Note that, since the matrix is row stochastic, its eigenvalues will be of
module smaller than 1. As a consequence, will have a nonzero deter-
minant and be invertible for all .
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tailed in Section II-A, noninformative prior distributions and
Bayes’ updating rule, this distribution can be expressed as (see
Appendix A for more details)

(4)
where is the th diagonal elements of

and where and are the usual sample mean vector

and sum of squares matrix

From (4), one can compute the posterior distribution for ,
leading to (see Appendix A for more details)

(5)

being 1-D, this distribution can be computed explicitly2

on [0,1[. An estimator is given by the posterior expectation of
, i.e.,

The posterior conditional distribution of given is then given
by

(6)

This result shows that, given , each has an inverse chi-
square distribution with degrees of freedom and scale
parameters . Since the expectation of such a
distribution is [26, Appendix A], the posterior
mean can be readily computed as

This quantity can serve as an estimator for . Other statistics
(such as the variance and highest probability density intervals)
can be obtained by numerical sampling as follows. For

:
1) sample according to given by (5);
2) sample according to given by (6).

2In practice, we took with .

III. VALIDATION ON SYNTHETIC DATA

A. Data Generation

Validity of the inference procedure was assessed using syn-
thetic data. In order to be close to real cases, we used struc-
tural connectivity matrices obtained from the real datasets
(see Section IV-B below). Then, we generated multivariate sig-
nals with and a covariance matrix given by (3), with
diagonal. In order to assess the accuracy of the Bayesian proce-
dure, we performed two experiments.
Experiment #1: We set , with ranging from 0.1 to

0.9 by increment of 0.1. For each , 5 000 samples were gener-
ated. For each sample, was selected randomly among the 21
individual structural connectivity matrices and was gener-
ated randomly from the standard uniform distribution on [0,1].
Experiment #2: We set , with constant

over regions and ranging from 0.1 to 0.9 by increment of 0.1.
For each , 5 000 samples were generated. For each sample,
was selected randomly among the 21 individual structural

connectivity matrices and was generated randomly from the
standard uniform distribution on [0,1].
Both experiments were conducted for 100, 200 and 400

times points. The estimates and of the parameters were
computed according to the Bayesian inference procedure (see
Section II-B) and compared to the true values. The estimation
error was quantified using the absolute difference between es-
timated and true values. For , the reliability of the
inference procedure was assessed by monitoring the posterior
probability of , the smallest symmetric
interval centered around the estimator that contains the true
value .

B. Results

The inference error and reliability for and from Exper-
iments 1 and 2 are shown in Fig. 1. The estimators and
were found to be very accurate regardless of sample size. As ex-
pected, the accuracy of increased with increasing and ,
while that of decreased with increasing and decreasing
. Inference reliability was confirmed, as

was very well approximated by the sam-
pling histogram (similar results between and ).

IV. REAL DATA

A. Data Acquisition and Preprocessing

Twenty one right-handed healthy volunteers were recruited
within local community (11 males, mean age 22 2.4 years).
All participants gave written informed consent and the protocol
was approved by the local ethics committee. Data were acquired
using a 3T Siemens Trio TIM MRI scanner (CENIR, Paris,
France). Functional resting-state MRI series were recorded
using a single-shot, gradient-recalled echo-planar imaging
sequence (repetition time (TR): 3290 ms; echo time (TE):
31 ms; 1.5 1.5 2.5 voxels; 46 contiguous slices).
Two hundreds fMRI volumes were acquired. The subjects were
instructed to remain eyes closed and to reduce any mental
effort. DWI data were recorded using a single-shot, echo planar
imaging sequence (TR: 13 s; TE: 121 ms; 2 isotropic
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Fig. 1. Synthetic data. Parameters estimation for data sets of size . Are represented the absolute error (left) and reliability (middle) for
in Experiment 1, as well as the absolute error for (right) in Experiment 2. For each box, the horizontal lines mark the quartiles and the whiskers extend to the
most extreme data points.

voxels; 68 contiguous slices). Fifty encoding directions with
1000 and a nonweighted image were acquired for

each subject. A three dimensional, -weighted, magnetization
prepared rapid gradient-echo volume was also acquired during
the same scanning session (TR: 2.3 ms; TE: 2.98 ms; 1.1
isotropic voxels).
FMRI data were preprocessed using SPM5 software.3 For

each subject, the first four fMRI volumes were discarded to
allow for equilibration, and the remaining 196 fMRI volumes
were corrected for slice-timing and head motion, excessive mo-
tion (greater than 3 mm or 3 ) was not present in any of the
subjects’ scans. The resulting data were then spatially smoothed
using an isotropic 6 mm full-width-at-half-maximum Gaussian
kernel. DWI images were corrected for eddy-current distortions
using FSL, release 4.14 [27]. Spatial normalization using linear
transformations (combination of three translations, three rota-
tions, and one scale factor), between fMRI and DWI data and
the anatomical volume, were computed for each subjects using
FSL. Nonlinear spatial normalization was also computed from
the -weighted anatomical volume of each subject to the stan-
dard space of the Montreal Neurological Institute (MNI) for vi-
sualization purposes.

B. Extraction of Structural and Functional Features

The first step consisted of the definition of a set of regions of
interest, in order to extract the intrinsic functional BOLD dy-
namic of each region and quantify the anatomical white matter
fiber pathways between them.
Regions of Interest: The -weighted anatomical volume of

each subject was parcellated using Freesurfer software5 [28] and
the procedure described in [29]. The procedure divided the brain
into cortical and subcortical gray matter and white matter. A la-
beled cortical surface from an average template brain was pro-
jected onto the individual cortical surfaces. For each subject,
this provided a partition of the brain cortical surface and sub-
cortical structures into 80 regions per hemisphere. Next, each
cortical region of the average template brain was further subdi-
vided into a set of small and compact regions of about 6 and

3Available online: www.fil.ion.ucl.ac.uk/spm/software/spm5/
4Available online: www.fmrib.ox.ac.uk/fsl/
5Available online: surfer.nmr.mgh.harvard.edu/

3 , resulting in a parcellation of the whole cortex into 461
and 825 regions, respectively. These subdivisions were regis-
tered on the individual brains, and then projected into the fMRI
and DWI subjects’ native spaces using the linear transforma-
tions previously calculated.
Anatomical Wiring Connections: To quantify structural con-

nectivity, a probabilistic white matter fiber tracking method [30]
implemented in FSL was used to track all possible connections
between all pairs of regions. For every voxel of the white matter
we initiated 500 fiber samples, starting points were chosen ran-
domly within the voxel space. The initial fiber orientation was
randomly chosen, the fiber then growing in the two opposite di-
rections; propagation step was set to 0.5 mm and maximal fiber
curvature to 80 (no anisotropy constraint). Fiber tracking was
stopped when a sample reached the cortical surface. An index
of structural connectivity between two regions was then defined
as the proportion of fiber samples connecting these two regions
per unit surface. This index was further divided by the average
fiber length to reduce bias towards longer fibers. This structural
connectivity index allowed to build a individual structural
connectivity matrix for each subject, being the structural
connectivity index between regions and , with no self-con-
nections (i.e., ). was then thresholded at 0.001;
supra-threshold values were kept as such.
BOLD Signal: The time series of all voxels within a given re-

gion were spatially averaged to form the representative signal of
that region. To remove spurious sources of variance, linear and
quadratic drifts, motion parameters, averaged ventricular, white
matter and global brain signals were regressed out. Finally, the
resulting time series were low-pass filtered ( 0.1 Hz) [31], [32].

C. Simulating Functional Connectivity

For each subject, the inference procedure was applied to pro-
vide subject-specific estimates and that were reinjected
into (3) to provide an estimator of functional connectivity.
To assess the relative performance of the sSAR approach
with Bayesian inference, we compared this approach (coined
sSARb) to functional connectivity generated according to the
following alternative strategies.
• SC: The matrix of structural connectivity was directly
used alone as a predictor of functional connectivity;
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• Rate andNM: Two generativemodels: a linear model [21],
[33] and a neural mass model [21], [34] (see Appendix B
for more details). For each model, the connectivity param-
eter was obtained by optimization of either the predictive
power (Rate-pp and NM-pp), that is, the Pearson correla-
tion between simulated and empirical functional connec-
tivity [21], [35], [36] or the mean square error (Rate-mse
and NM-mse) at the coarse scale on the av-
erage subject, i.e., the subject that has an average matrix
for both structural and functional connectivity;6

• sSARn: A ‘naive’ sSAR approach using a priori values
for the sSAR parameters: and for all , as
in [18];

• sSARo: An ‘optimized’ sSAR approach with noise vari-
ance fixed and where is selected in order to either
maximize the predictive power (sSARo-pp) or minimize
the mean square error (sSARo-mse) at the coarse scale on
the average subject.

Performance was assessed using predictive power as well as
the mean square error [35]. The various sSAR approaches were
designed to provide information regarding the relative contri-
butions of the sSAR model and the Bayesian inference: while
sSARn and sSARo quantified the behavior of the sSAR model
only, the difference in performance between sSARb and sSARo
quantified the specific improvement brought by the Bayesian
inference.

D. Results

1) Parameter Estimation: Results of sSAR parameter esti-
mation from real data are summarized in Fig. 2 and Table I.
Bayesian estimates of were relatively stable across subjects.
All values were above the naive value of . While for

Bayesian estimates were around the values obtained
by sSARo-pp and sSARo-mse, they were found to be under
those values for and . We also found that
increasing increased the estimates of of all sSAR models.
Estimates of the noise variance from sSARb varied signifi-

cantly across subjects and regions for all spatial scales (two-way
ANOVA; ). To test the spatial specificity of these es-
timates, we grouped regions according to the resting-state net-
works they belonged to. More specifically, we considered seven
networks found in [37]: sensorimotor, auditory, executive con-
trol, frontoparietal, visual, default-mode, and subcortical. For
each spatial scale, we kept the regions that overlapped at a level
of at least 80% with a network. We found an effect of both
subject and network on for all scales (two-way ANOVA;

). The network effect is illustrated in Fig. 3.
2) Comparing Performances: Overall, all strategies had

rather similar performance indices (Fig. 4). However, the
differences between strategies were reproducible across sub-
jects. Using permutation-based nonparametric paired testing
(1000 permutations; threshold of 5% with Holm–Bonferroni
correction for multiple comparisons [38]), we found significant
differences across various model-pairs. Strategies could be

6The coarse-scale and average-subject approach was selected for computa-
tional reasons, as a finer-scale and/or subject-specific optimization would be
intractable with the neural mass model in our case (one simulation takes around
14h for ).

Fig. 2. Real data: sSAR parameter estimates. Top: Individual Bayesian mean
standard deviation estimates of compared to the values used in sSARn

and those obtained by sSARo-pp and sSARo-mse (see also Table I).
Bottom: Illustration of the spatial distribution of estimated with sSARb and
averaged over subjects for the lowest spatial scale .

TABLE I
Real Data: Estimates of . VALUES OF OBTAINED

BY SSARO-PP AND SSARO-MSE

ranked according to their performances across spatial scales
and optimization schemes as follows (from best to worst):
• for an optimization based on the predictive power:
sSARo-pp, sSARo-mse, sSARb, sSARn, Rate-pp, NM-pp,
Rate-mse, SC, NM-mse;

• for an optimization based on the mean square error:
sSARo-mse, sSARo-pp, Rate-mse, sSARb, sSARn,
NM-mse, Rate-pp, SC, NM-ppsSARo-mse, sSARo-pp.

As expected, methods performed better when the coupling pa-
rameter was optimized using the measure also used to assess
performance.

V. DISCUSSION

In the present study, we used a spatial SAR model to relate
structural and functional connectivity as measured in the human
brain through DWI and fMRI, respectively. We tested the fol-
lowing predictions: i) a naive version of the sSAR with values
from the literature performs worse that current widely accepted
generative models; ii) adding a layer of parameter estimation
improves the performance of the sSAR; iii) the more parameters
are estimated, the better the fit; and iv) parameters estimated can
be used to discriminate between well-known networks. While
predictions ii) and iv) were confirmed, predictions i) and iii)
turned out to be wrong. For i), the sSAR performed better than
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Fig. 3. Real data: Network-specific noise variance across subjects. For each network, subject and spatial scale, we computed the spatial average of for all
regions belonging to that network. Lines correspond to significant differences between networks (permutation test with 1000 permutations; threshold of 5% with
Holm–Bonferroni correction).

Fig. 4. Real data: Performance of simulation methods. Individual predictive power (left) and mean square error (right) of simulated functional connectivity from all
strategies and scales. Each bar chart represents the mean and associated standard deviation over subjects. For the sake of clarity, lines correspond to nonsignificant
differences between networks (permutation test with 1000 permutations; threshold of 5% with Holm–Bonferroni correction).

the other models, regardless of how the model parameters were
set and, regarding iii), the full Bayesian inference scheme that
inferred all the model parameters did not perform better than the
simple optimization of the coupling parameter.

A. The sSAR

Use of the sSAR as a generative model of functional connec-
tivity has several advantages. As mentioned above, it predicts
functional connectivity better than the two other models. As a
consequence, it is, to our knowledge, the best tool to investi-
gate the relationship between structure and function inMRI. Be-
sides, this model is simple enough to allow inference. Using the
Bayesian inference procedure, we saw that the noise variances
so estimated differed from network to network.While the physi-
ological meaning of the sSAR parameters remain to be clarified,
it is our hope that, regardless of their meaning, these parameters
could be useful biomarkers, may it be of certain networks or
pathologies.
More conceptually, this study demonstrate that simple statis-

tical models can be used to relate brain structure and function.
Supported by the increase of computational power, more and
more complex models of brain activity have been proposed and
used in the MRI community to relate structural and functional
connectivity [21], [35], [36]. These models rely on an increas-
ingly detailed description of the biophysical and physiological
processes underlying neuronal activity as well as its metabolic

and hemodynamic consequences [10], [12], [39]. More recently,
several attempts have been made to provide understanding of
the structure-function relationship using more abstract and de-
scriptive models, either with partial correlation and SEM [40],
[41] or mixture models [42]–[44]. While realistic models rely
on an analysis of the mechanisms underlying the generation of
function from structure with parameters endowed with physio-
logical interpretation, statistical models try to describe the data
without any or much mechanistic interpretation. In this aspect,
the sSARmodel developed here has an ambiguous status. While
it can be considered as mechanistic (at least at a macroscopic
and abstract level, see Sections II-A and V-C), it also shares fea-
tures with statistical models, such as a global description at the
level of the data, the use of statistical distributions, and the pos-
sibility to infer parameter values. The fact that the sSARmodels
outperform more realistic models might be the sign that MRI
can only be used to understand the relationship between brain
structure and function at a statistical, not mechanistic, level. In
any case, we hope that the present study, by making a link be-
tween realistic and more abstract approaches, will open the door
to an even wider variety of modeling.

B. sSAR and Structural Information

DWI tractography provides information of undirected con-
nectedness between regions, that is, it cannot differentiate be-
tween projections in one or in the other direction. By contrast,
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Fig. 5. Real data: Performance of simulation methods. Individual predictive power (top) and mean square error (bottom) of simulated functional connectivity from
all strategies and scales for direct and indirect connections, left and right column, respectively. Each bar chart represents the mean and associated standard deviation
over subjects. For the sake of clarity, lines correspond to nonsignificant differences between networks (permutation test with 1000 permutations; threshold of 5%
with Holm–Bonferroni correction).

SEM and its sSAR derivation were originally designed to handle
directed graphs. This apparent contradiction of using informa-
tion of undirected nature for a model that is intrinsically directed
is not specific to the sSAR. Indeed, most generative models of
brain activity, including the Rate and the Neural Mass models
used in the present study, rely on directed information (e.g., the
projections of neuronal entities onto one another) but use struc-
tural information from DWI (see, e.g., [21]). The way tractog-
raphy is performed, it could result in a nonsymmetrical matrix,
but this is rather considered as a spurious effect than a real indi-
cation of directionality between regions. As a consequence, the
structural matrix is usually not the raw output from tractography
but a post-processed version thereof. In our study, the postpro-
cessing results in a matrix that is reciprocal (i.e., if and
only if ) but not symmetrical (i.e., the weights of two
reciprocal interactions may differ), see Sections II-A and IV-B.
Even though the biological meaning of such matrices remains to
be understood, they can be handled with no particular difficulty
by all models tested here.
Another feature of DWI tractography is that it essentially

provides information of monosynaptic connectivity. How this
monosynaptic connectivity generates a pattern of functional
connectivity that reflects both direct and indirect connectivity
depends on the generative model selected. The advantage of
the sSAR is that, because of its simplicity, the question can
easily be answered in an analytical way. From (2), one has that

Using Taylor expansion for sufficiently small, one directly
obtains that

In other words, the sSAR can be interpreted as a process that
propagates a node-specific signal to other nodes in one
step [corresponding to ], two steps [corresponding to

], and so on. As a consequence, polysynaptic activity
is modeled in the sSAR as a chain of monosynaptic connec-
tions. However, from a practical perspective, we observed that
all models tested here performed worse for indirect connections
than for direct connections at least in terms of predictive power
(see Fig. 5). Whether this is an issue of the generative models
themselves or rather of the tractography algorithm (which is
likely to miss long range fibers such as homotopic connections)
remains to be elucidated.

C. sSAR and Dynamics

The main feature of the present model is its simplicity. It
does not try to first simulate neuronal activity and then model
the BOLD signal as the metabolic and/or hemodynamic conse-
quence of this activity; it is a direct model of the BOLD signal.
Also, it is a model that is discrete and, as such, only attempts
to explain the data and not the (necessarily continuous) under-
lying processes that lead to them. Even as a discrete model, it
ignores temporal autocorrelation, since the data are assumed to
be temporally independent. All in all, this model is merely an
observational, or descriptive, model.
In this context, one could wonder in what measure the sSAR

model and, more generally, SEM can be related to the under-
lying dynamics at the origin of the BOLD signal. One point is
that SEM can be interpreted as describing the equilibrium point
of the dynamic process [45]

(7)

While SEM has also been presented as the stationary version
of this dynamic model [41], this fact has been challenged, since
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stationarity implies equality of distributions at times and ,
not necessarily equality of the variables themselves [19]. In this
context, how the sSAR could result from a dynamic process
remains to be clarified. A possible explanation is that the sSAR
model can emerge as the integration of a fast dynamic process at
a slow time scale. More specifically, assume that the following
continuous process:

occurs at a fast temporal scale. Then, integration of such a
process between times and with
yields

(8)

Setting

and

Equation (8) can be expressed as

with

being of the order of , a small will lead to a small
. In this case, it is legitimate to consider the sSAR as an

approximation of the behavior of the process .

D. Generative Models of Functional Connectivity

Regardless of its potential interpretation, we introduced the
sSAR model in order to propose a simple mathematical model
of BOLD fMRI covariations. Our rationale was that, since
SEM has been successfully used in fMRI data analysis, a model
that would be inspired from it might be a good candidate to
account for fMRI intercorrelations. Most existing models are
rather complex to understand and handle. With the sSAR, we
were hoping to add to the modeler’s toolbox a model that could
give a crude sense of how brain structure and function are
related. It turned out that all variants of the sSAR proposed here
outperformed two current generative models of brain activity.
This result leads to quite interesting consequences. De-

pending on the perspective we take, it either emphasizes the

TABLE II
Real Data: Posterior Probabilities. OF THE POSTERIOR PROBABILITY
OF THE PARAMETER VALUES OBTAINED WITH THE DIFFERENT VARIANTS
OF THE SSAR. PROBABILITIES ARE CALCULATED USING EQ. (4) AND
SUMMARIZED AS MEAN (STANDARD DEVIATION) ACROSS SUBJECTS.

ALL VALUES SHOULD BE MULTIPLIED BY 100

good behavior of the sSAR compared to established models—a
good behavior which remains to be explained with regard to
its lack of physiological realism—or the inadequacy of the
existing models to take functional connectivity into account.
All in all, the maximum predictive power that was observed
was 0.377, a quantity that leaves ample room for improvement.
Note that better performances have been reported in the litera-
ture, but these were related to experiments on data selected to
improve performance (e.g., direct connections [21], [35], intra-
hemispheric data [36] only, or matrix of structural connectivity
with homologous connections added [20]). In these cases, we
found that all models performed better than in the case with
full data detailed in the present manuscript, but that the order
of performance between models remained unaltered.

E. Bayesian Inference

The fact that Bayesian inference did not bring a significant
improvement to sSAR performance was evidenced for all three
scales ( , , and ) and two measures
of performance (predictive power and mean square error). This
result came as a surprise. We do not think it could be attributed
to a flaw in the inference process itself, which performed as ex-
pected on simulated data (see Section III). Under the assump-
tions made in Section II (including the generative model and the
prior distributions), Bayesian analysis provides an assessment
of the most probable values for the model parameters through
the posterior probability distribution. This can be confirmed by
calculating the posterior probability associated with the param-
eter values estimated with the other sSAR variants (sSAR-pp
and sSAR-mse), which was found to be clearly smaller than
when one takes the values estimated with sSARb (see Table II).
The fact that these most probable parameters do not correspond
to the ones that one would consider as best according to rea-
sonable metrics might suggest that the model used is too crude.
While the use of noninformative priors could be challenged, we
do not believe that this choice matters that much, since we have
a relatively large number of data compared to number of un-
known parameters. By contrast, the use of a model as described
in (1) and (2) might appear more problematic, in particular with
respect to how the noise is taken into account. Indeed, the only
“noise” considered here, i.e., in (2), is noise in the statistical
sense but it can still be interpreted in terms of the underlying
SEM model. What would make sense would be to incorporate
a quantity that takes measurement error in the model, e.g., by
adding a noise term to (1). This new approach would in partic-
ular be compatible with sSAR-mse, since it will find the param-
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eter values that minimize the mean square error of
compared to .

F. Perspectives

Future work includes testing alternative autoregressive
models from the literature, such as autoregressive moving
average, conditional autoregressive or hierarchical models
[46]–[48], as well as a noisy version of the model of (1). One
could also imagine different variants of the sSAR model, e.g.,
one with one coupling coefficient per region instead of a
global . Of course, in the perspective of using the parameters
from these models as biomarkers, it would be of great interest
to derive Bayesian inference schemes for such models.
Moreover, in the context of simple models, it may be pos-

sible to have access to the model marginal likelihood, namely
, either in closed form or numerically. This

quantity is key to Bayesian model comparison. One could then
perform hypothesis testing, for instance to test several com-
peting indices of structural connectivity, strategies for fMRI
time-series preprocessing (band filtering, regress out confound
signals), or even resilience to anatomical lesions, and many
others.

APPENDIX A
BAYESIAN INFERENCE

Let be the diagonal matrix defined by
. According to Bayes’ updating rule,

can be expressed as

where “ ” relates two expressions that are proportional. In
this equation, stands for the prior distribution of the
model parameters and for the model likelihood.
Both quantities can be expressed readily as follows.

A. Likelihood

According to the model described in Section II-A, the likeli-
hood yields

where the quadratic term

can be expanded as

In this expression, is the usual trace function, and and
are the samplemean vector and sum of squares matrix as defined
in the main text. and are matrix functions of the
sample and model covariance matrix, respectively

and

Since is assumed to be diagonal, we have

and

where is the th diagonal element of . This leads to
the following expression for the likelihood function:

B. Prior Distributions

Not assuming any prior dependence between the model pa-
rameters, we can decompose as

Similarly, we assume no prior dependence between the elements
of or those of , leading to

and

For each parameter, we assume a noninformative prior, yielding
a uniform prior distribution for and each and a Jeffreys
distribution for each , , i.e.,

Note that the priors for and are improper.

C. Joint Posterior Distribution

Bringing the prior distribution and the likelihood together
yields for the joint posterior distribution
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D. Marginal Distributions

, considered as a function of , is proportional to
a multivariate normal distribution with mean and covariance
matrix . Since

integration with respect to yields

(9)

As a function of , this distribution is proportional to a product
of inverse chi-square distributions with degrees of
freedom and scale parameter . Integration
with respect to therefore leads to

(10)

E. Estimation of the Parameters of Interest

being 1-D, this distribution can be computed ex-
plicitely on with set to 0.001. An estimator is
given by the posterior expectation of . Estimation of the noise
variance parameters can then be performed as follows. The
conditional posterior distribution of given , , is
given by

where and are given by (9) and (5), respec-
tively. Keeping only terms that depend on yields

APPENDIX B
ALTERNATIVE GENERATIVE MODELS

The rate model is a classical linear dynamic model of neu-
ronal populations [49]

Here we have ; and .
The neural-mass model is a nonlinear biophysical model of

neuronal dynamics relying on the Hodgkin–Huxley model [50].
The main dynamical variables are the mean membrane poten-
tial of excitatory and inhibitory populations , which are

governed by the conductance of ions channels . The total cur-
rent flow across pyramidal cell membranes is given by

with , and where and are the
fractions of open ion channels and the Nernst potential for that
ion species, respectively. For large ion channels population, the
fraction of open ion channels is given by the sigmoid-shaped
neural activation function, except for the potassium channels
that decay exponentially. and represent the average
firing-rates of excitatory and inhibitory neurons. corresponds
to nonspecific subcortical excitation; scales the -to-
synaptic strength; and denotes the number of NMDA
receptors relative to that of AMPA receptors. Parameters are
set to values taken from [21].
Simulated fMRI BOLD signal was obtained from simulated

neuronal activity bymeans of the Balloon–Windkessel hemody-
namic model [51], [52]. Global mean signal was then regressed
out from each region’s time series. Finally, simulated FC was
computed as Pearson correlation between simulated time series.
After optimization, we generated three runs of 8 min BOLD ac-
tivity and averaged the corresponding FCs to obtain the simu-
lated FC for each dynamical model and each subject.
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