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Annex

Probability of vaporization

We assume that each droplet can vaporize independently of what happens with the other

ones. Indeed, low droplet volume fractions were used to minimize interactions between

droplets as well as between vaporization events. Under this assumption of independence,

the probability to observe k vaporization events from the n droplets is given by the bino-

mial distribution with parameters n and p(1). From this model, the probability to obtain

no vaporization event is given by
�
1� p(1)

�n
, and the probability to observe at least one

vaporization event by

p
(n)
�1 = 1� �1� p(1)

�n
: (S1)

Note that for p(1) small and n large such that np(1) remains moderate, a good approximation

of the binomial distribution is the Poisson distribution. In Eq. S1, p(1) is an increasing

function of pressure P with values in [0,1], which we can express as p(1) = 	(P ). If 	(P )

is considered as the cumulative distribution function (cdf) of a random variable X, then

Eq. S1 shows that p
(n)
�1 is the expression for the cdf corresponding to the minimum of n

independent and identically distributed (i.i.d.) samples of X (Eq. 9.1.1 in1). Extreme value

theory then shows that, when n becomes large, p
(n)
�1 can only converge toward one of three

types of distributions depending on 	(P ) (Section 10.5 in2). In particular, when 	(P )

belongs to speci�c families (including the normal, lognormal, maximal Gumbel, minimal

Gumbel, maximal Weibull, and maximal Fréchet distributions), the limiting distribution for

p
(n)
�1 is the minimal Gumbel distribution with location parameter �(n) and scale parameter

�(n) (Table 9.5 in1), i.e.,

p
(n)
�1 � 1� exp

"
�e

�
P��(n)

�(n)

�#
; (S2)

Furthermore, given 	(P ), it is possible to provide an asymptotic expression for the param-

eters of the minimal Gumbel distribution as a function of n. For instance, if 	(P ) is given

S1



by the error function or, equivalently, an integral Gaussian distribution, with median P
(1)
0:5

and standard deviation �(1), then it can be shown that the parameters �(n) and �(n) can be

expressed as

�(n) = P
(1)
0:5 � �(1)dn (S3)

and

�(n) = �(1)cn; (S4)

with

cn =
1p

2 ln(n)
(S5)

and

dn =
p
2 ln(n)� ln(ln(n)) + ln(4�)

2
p
2 ln(n)

: (S6)

This result was obtained by combining the asymptotic result regarding the maximum in the

case of a standard normal distribution (Example 3.3.29 in3), the relation between maximum

and minimum (Section 3.1 in3) as well as the expression of a general normal distribution

in terms of a standard normal distribution. Finally, the ADV corresponding to n droplets,

which we denote by P
(n)
0:5 here to emphasize the dependence on n, is the median of the Gumbel

distribution of Eq. S2, given by

P
(n)
0:5 = �(n) + �(n) ln(ln(2)) (S7)

= P
(1)
0:5 � �(1) [dn � cn ln(ln(2))] ; (S8)

Probability of nucleation

The stochastic nature of bubble nucleation on exposure to an acoustic wave leads us treat

the formation of a nucleus in a given volume as a series of random events. The Poisson

distribution law gives the probability qm of forming exactly m nuclei within a time interval

S2



� 4,5, assuming they occur independently from one another:

qm =
Nm(�)e�N(�)

m!
: (S9)

Here N(�) is the expected average number of nuclei created during the time interval � .

For instance, the probability to form exactly no nucleus is q0 = e�N(�). The sum of all

probabilities should be equal to 1:

1 =
1X
i=0

qi (S10)

Thus, the probability to create at least one nucleus is

q�1 = 1� q0 = 1� e�N(�); (S11)

which can be rewrite as

N(�) = ln

�
1

1� q�1

�
: (S12)

For homogeneous nucleation, the average number of nuclei occuring during a time � and

inside a volume V is related to the volume nucleation rate J through

N(�) = JV �; (S13)

while for heterogeneous nucleation, the average number of nuclei during a time � and on a

surface area A is related to the surface nucleation rate �:

N(�) = �A�: (S14)

The nucleation rates depends on the Boltzmann constant kB, the absolute temperature T ,

and the energy barrier to be overcome W as follows. In the homogeneous case,

J = J0 exp

�
�W

hom

kBT

�
; (S15)
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where6

J0 = NA�

r
2

�M
: (S16)

NA is the Avogadro number, � the density and M the mass of a molecule (of PFH in our

case). In the heterogeneous case,

� = �0 exp

�
�W

het

kBT

�
; (S17)

where6

�0 = N2=31� cos �

2

r
2gl
�M

: (S18)

The rate is null when cos � = 1, i.e. when � = 0 (there is no nucleus) or � (the nucleus is not

attached to the surface). Because of the exponential in nucleation rate, changes by several

orders of magnitude in the values of J0 and �0 only marginally a�ect the �nal results in

nucleation rate.

We can thus relate the probability to create at least one nucleus to the rate of nucleation

regardless the type of nucleation (homogeneous or heterogeneous) using Eq. S11 and Eq.

S15 or S17, and leading to

q�1 = 1� e�
� ; (S19)

where 
 is equal to either JV or �A depending on whether the nucleation is homogeneous

or heterogeneous. The energy required to create at least one nucleus is thus

W (q�1) = kBT ln

0
@ 
�

ln
�

1
1�q�1

�
1
A : (S20)

Model of a heterogeneous nucleation on a soft surface

Since the surface is �exible, we hypothesize that the appearance of a nucleus on the surface

of a droplet of radius R will lead to the surfacce deformation. In such a case, the nucleus

volume is made of two hemispheres, one of radius r1 (similar to the radius r de�ned in
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heterogeneous nucleation on solid surface), and a second radius r2 that is much lower than

the droplet radius R (while it is considered to be equal to R when considering a solid surface).

The work needed to create a nucleus is

W =gl(r1)a( ; r1) + gc(r2)a('; r2)� lca(�;R)

� (Pg � Pl)v + nPFH(�g � �l) (S21)

where the subscripts l, g, and c refers to the liquid PFC, the gaseous PFC, and the glycerol,

respectively, v is the volume of the nucleus, gl(r1), lc and gc(r2) are the interfacial free

energy per unit area between the liquid and gaseous PFH phase, between the liquid PFH and

glycerol, and between the gaseous PFH and glycerol, respectively. These phases are separated

from each other by a surface, whose surface area are respectively a( ; r1), a('; r2) and

a(�;R). The total surface area of the nucleus is a = a( ; r1)+a('; r2). For per�uorohexane,

the value of vapor pressure is equal to Pv � 29:33 kPa.

The volume of a nuclei is (we used the fact that U = cos � and dU = � sin �)

v =
�

3

�
r31(2� 3 cos + cos3  ) + r32(2� 3 cos'+ cos3 ')

�
(S22)

while the surface area of the nuclei are the addition of the two following areas

a(r1) = 2�r21(1� cos ) (S23)

a(r2) = 2�r22(1� cos') (S24)

a(R) = 2�R2(1� cos�) (S25)
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We can derive the following geometrical relationships (see Fig. S.5),

R2 = x2 +OOx
2

(S26)

r21 = x2 +O1Ox
2

(S27)

r22 = x2 +O2Ox
2

(S28)

cos� =
OOx

R
(S29)

cos(� �  ) =
O1Ox

r1
(S30)

cos' =
O2Ox

r2
(S31)

From these equations we can write

R2(1� cos2 �) = r21(1 + cos2  ) = r22(1� cos2 ') (S32)

Consequently

cos� =

r
1�

�r2
R

�2
(1� cos2 ') (S33)

cos =

s�
r2
r1

�2

(1� cos2 ')� 1 (S34)

If d = O1O2, then

d2 = l21 + (r2 � �2)
2 (S35)

r21 = �22 + l21 = r21 cos
2(� � �) + l21 = r21 cos

2(�) + l21 (S36)

The two equations lead to (following the approach of Qian and Ma7)

d =
q
r21 + r22 + 2r1r2 cos � (S37)
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We can calculate that

cos =
r2 cos � + r1

d
(S38)

cos' =
r2 + r1 cos �

d
(S39)

At the critical radii r�1 and r�2 the system is at equilibirum and we have P �g = Pv as well as

the Laplace equations veri�ed at all interfaces:

Pv = P �l +
2gl(r

�
1)

r�1
(S40)

Pv = P �A +
2gc(r

�
2)

r�2
(S41)

P �l = P �A +
2lc
R

(S42)

For nucleation occurring on the surface of an encapsulated water droplet, we have

P �l = P �A �
2lw
R

(S43)

The Eq. S41 and S42 gives

r�2 =
2gc(r

�
2)

(Pv � P �l ) +
2lw
R

(S44)

while Eq. S40 gives

r�1 =
2gl(r

�
1)

(Pv � P �l )
(S45)

In addition, both radius are linked by the equation (using Eq. S44 and S45))

r�2 =
gc(r

�
2)

gl(r
�
1)

r�1
+ lc

R

(S46)
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In addition,

gl(r
�
1) =

gl

1 + 2�
r�1

(S47)

gc(r
�
2) =

gc

1 + 2�
r�2

(S48)

where � is the Tolman length. Consequently, Eq. S44 and S40 become

r�1 =
2gl

(Pv � P �l )
� 2� (S49)

r�2 =
2gc

(Pv � P �l ) +
2lc
R

� 2� (S50)

Finally, the interfacial tensions should verify the equation (for both a concave or a convex

surface)

gl(r
�
1) cos 

� � lc cos�
� + gc(r

�
2) cos'

� = 0 (S51)

We calculate cos ��, by inserting the values of cos�� (Eq. S33), cos � (Eq. S38) and cos'�

(Eq. S39) in Eq. S51

�
2gl(r

�
1)r

�2
2 + 2glgc(r

�
2)r

�
1r
�
2 + 2gc(r

�
2)r

�2
1 � 2lcr

�2
1 r

�2
2

R2

�
cos2 ��

+
�
22gl(r

�
1)r

�
1r
�
2 + 2gl(r

�
1)gc(r

�
2)r

�2
1 + 2gl(r

�
1)gc(r

�
2)r

�2
2 + 22gc(r

�
2)r

�
1r
�
2 � 22lcr

�
1r
�
2

�
cos ��

+2gl(r
�
1)r

�2
1 + 2gl(r

�
1)gc(r

�
2)r

�
1r
�
2 + 2gc(r

�
2)r

�2
2 � 2lcr

�2
1 � 2lcr

�2
2 +

2lcr
�2
1 r

�2
2

R2
= 0 (S52)

It is a second order equation a cos2 �� + b cos �� + c = 0 where the solutions are

cos �� =
�b�p

b2 � 4ac

2a
(S53)
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Figure S.1: Characterization of core shell droplets with the water volume fraction of 'w � 0:1.
The red circles delimit the water core and the blue circles the outer surface of the droplets.
The measurements carried out on 75 droplets and �tted by a Gaussian distribution led
to the following results: the external droplet radius R = 20:3 µm and the polydispersity,
PDI = (�=�)2 � 3 � 10�3, where � and � are respectively the standard deviation and the
mean value. The internal water radius Rw = 9:1 µm and PDI � 6� 10�4.
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Figure S.2: The data represent Dynamic Light Scattering measurements performed on an
emulsion prepared by high-pressure micro�uidizer. The linear �t of �� versus q2 leads to
R = 74:5� 2 nm and to a polydispersity index PDI = 0:12� 0:06, knowing that a sample is
considered monodisperse when PDI < 0:2.
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Figure S.3: In these experiments, plain PFH droplets of radius R = 20µm were used in
glycerol at 20� with P = 2MPa and f0 = 1:1MHz. (A) Signals emitted by a sample,
containing either glycerol (black) or PFH bubbles in glycerol (grey). (B) Fourier transforms
of the mean values of 300 signals represented in (A). Insets: magni�cations of the signals in
the vicinity of 0.55 and 2.2MHz, respectively.
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Figure S.4: Variation of the pressure wave in the presence of a droplet (solid lines) and in
the absence of a droplet (dotted lines) along the z axis (i.e. � = 0 or �, and 0 < r < R). The
di�erent color lines correspond to various intensities given to the transducer in the HIFU-
beam simulator script. The grey band indicates the radius of the droplet, that is 30 µm in
this �gure. The calculation was performed for z spanning over the acoustic wavelength (i.e.
c=f). The lines are snapshots of the wave where t varies over a wave period T = 1=f and
for which the pressure inside the droplet is the minimal.
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Figure S.5: schema of a nucleus on the plain PFH droplet surface, in contact with water.
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