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Lorentzian-Model-Based Bayesian Analysis for
Automated Estimation of Attenuated

Resonance Spectrum
Kailiang Xu , Member, IEEE, Guillaume Marrelec, Simon Bernard , and Quentin Grimal

Abstract—Extracting information from a signal exhibiting
damped resonances is a challenging task in many practical cases
due to the presence of noise and high attenuation. The interpreta-
tion of the signal relies on a model whose order (i.e., the number of
resonances) is in general unknown. In this study, the signal is mod-
eled as a sum of Lorentzian lineshapes, and a Bayesian framework
is designed to simultaneously remove the baseline distortion, select
the number of resonances, and recover the parameters of each line-
shape including frequency, damping factor, resonance amplitude,
and noise magnitude. The Bayesian problem is solved resorting to
a reversible jump Markov chain Monte Carlo (RJ-MCMC) sam-
pling scheme. The algorithm is tested on synthetic signals as well
as experimental data from a resonant ultrasound spectroscopy ex-
periment aiming to measure elastic properties. The results show
that, compared to the well-known linear prediction singular value
decomposition method, the RJ-MCMC method achieves a better
performance with the advantages of joint model selection, high ac-
curacy estimation, and uncertainty evaluation. We found that when
the signal-to-noise-ratio is larger than 20 dB, the average relative
error for frequency extraction is smaller than 0.5%. Such an al-
gorithm enables to estimate the number of resonances and extract
tens of resonance parameters from a highly attenuated spectrum,
which can significantly facilitate the automated processing of sig-
nals exhibiting damped resonances.

Index Terms—Spectrum analysis, Bayesian method, model se-
lection, reversible jump Markov chain Monte Carlo (RJ-MCMC),
resonance, deconvolution.

I. INTRODUCTION

R ESONANCE is a ubiquitous phenomenon in physics in
which a system oscillates with a relatively large amplitude
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at one or several preferential frequencies. Such a phenomenon
occurs widely in nature in the form, e.g., of mechanical and
acoustic resonance, electromagnetic waves, nuclear magnetic
resonance, electron spin resonance and resonance of quantum
wave functions. In mechanical and acoustic spectroscopy meth-
ods, resonances have been exploited as a way to infer intrinsic
physical properties of a material, such as elasticity, or structural
properties, such as defects. A typical way to obtain such prop-
erties is to perform a wideband impulse or frequency sweep
excitation test on the system. The resulting information takes
the form of a resonance spectrum, which usually consists of a
series of damped resonant peaks. Each individual resonance is
associated with a lineshape closely following a Lorentzian func-
tion (the shape of the theoretical frequency response function
of an ideal oscillator). Such a Lorentzian function is parameter-
ized by an amplitude, a center frequency, and a quality factor
(Q factor driving the width of the peak). Alternatively, in time
domain, the resonant signal can be modeled as a sum of expo-
nentially damped sinusoids. From a signal processing point of
view, the problem of extracting physical information from a res-
onant spectrum is twofold, including (i) the detection problem,
i.e., to determine the model order or number of modes (sinusoids
or Lorentzian curves), and (ii) the estimation problem, i.e., to
extract the parameters of each Lorentzian lineshape [1]–[3].

For spectral lineshapes containing weakly damped (high
Q factor) resonances, the model order may readily be deter-
mined by counting the number of well-resolved sharp peaks.
However, for spectral lineshapes containing highly damped (low
Q factor) resonances, the Lorentzian lineshapes overlap and, in
general, the resonant frequencies do not correspond to the local
maxima of the spectrum. For such spectra, the problem of esti-
mating the parameters of the resonances is coupled to the prob-
lem of determining the number of resonances. In addition, the
spectra are usually corrupted by noise, making the joint prob-
lem of model detection and parameter estimation even more
challenging.

When the number of resonances is assumed to be known, clas-
sical parametric methods can be applied to achieve resonance
extraction. Well-known estimators are mainly eigenanalysis-
based methods, such as subspace-based MUSIC method, lin-
ear prediction singular value decomposition (LPSVD) method,
and ESPRIT method [4]. These methods have been reviewed
in many articles, e.g., [2], [3]. However, to ensure good per-
formance of the eigenanalysis-based method, the number of
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dominant eigenvalues, corresponding to the number of reso-
nances, has to be predefined. When the model order is con-
sidered as an unknown, two popular model selection rules are
the Akaike information criterion (AIC) [5] and the minimum
description length (MDL) principle [6]. However, the AIC and
MDL rules require a reliable maximum likelihood parameter
estimation for each possible model. There is evidence that AIC
and MDL tend to provide incorrect estimates of the model order
for signals with low signal-to-noise ratio (SNR) and small sam-
ple size [7]. With the predefined number of resonances, Astel
et al., [24] performed a Bayesian analysis with MCMC im-
plementation to process the magnetic resonance spectroscopy
signals of complex biological mixtures.

Another elegant way to simultaneously solve the detection
and estimation problems is to jointly infer the posterior prob-
ability density functions (pdf) of both the model order and the
parameters of interest. The Bayesian framework is particularly
relevant when the model order and parameters are difficult to re-
trieve due to noise and highly-damped resonances. Furthermore,
this framework lends itself to the development of an automated
method and has the decisive advantage to associate a degree
of confidence (probability level) to each quantity of interest.
Andrieu and Doucet [8] applied the reversible jump Markov
chain Monte Carlo (RJ-MCMC) method [9] for joint Bayesian
model selection and posterior distribution estimation. Rubtsov
and Griffin [10] applied the RJ-MCMC method to process a
blood plasma spectrum measured with nuclear magnetic reso-
nance spectroscopy, highlighting the potential of this method
for detecting noisy, low-amplitude, and overlapping resonances
peaks. To the best of our knowledge, no method for joint model
selection and parameter estimation including both resonant fre-
quencies and damping parameters (Q factors) has been reported.
Such a method would be all the more useful that the fundamen-
tal Q factor of the resonance has been widely considered for
many applications, such as ultrasonic atomic force microscopy
[26], piezoelectric force microscopy [27], antennas [25].

The motivation of the study was to develop a method to
retrieve all frequencies and attenuation factors from highly
damped spectral lineshapes under the condition of unknown
number of resonances. In this paper, we present an automated
method of general interest for processing a complex-valued res-
onance spectrum even with an unknown number of resonance
peaks and high attenuation. We design an original joint Bayesian
model with the unknown model order (number of resonances)
and a full set of resonance parameters, i.e., amplitudes, reso-
nant frequencies, Q factor and noise variance. Specifically, we
add to the methodology proposed by Andrieu and Doucet [8]
a Lorentzian model with the damping parameter for each reso-
nance, a model of the baseline distortion (which often corrupts
experimental signals) and a post-processing step (using k-means
clustering) to combine several RJ-MCMC outputs, i.e., esti-
mates obtained from multichannel measurements. The method
is critically tested using both synthetic and experimental sig-
nals containing strongly damped resonances with additive white
Gaussian noise. We demonstrate the utility of the method by
processing strongly attenuated resonant spectra obtained from a
standard resonant ultrasound spectroscopy (RUS) experiment.

II. METHOD

A. Forward Model of Lorentzian Lineshape Spectrum

The resonant spectrum is often modeled as a finite sum of
resonant components [14]. Each component is characterized
by a Lorentzian lineshape, which is found in many physical
situations involving resonant systems. A Lorentzian function
L(f ;A, f0 , φ,Q) characterized by its amplitude A, center fre-
quency f0 , phase angle φ, and quality factor Q is defined by

L(f ;A, f0 , φ,Q) =
Aeiφ

(f 2
0 − f 2) + i f f0

Q

. (1)

Setting {
a = A cos φ
b = A sin φ,

(2)

it can be rearranged into a real and an imaginary part as

L(f ;A, f0 , φ,Q) =
a(f 2

0 − f 2) + b f f0
Q

(f 2
0 − f 2)2 +

(
f f0
Q

)2

+ i
b(f 2

0 − f 2) − af f0
Q

(f 2
0 − f 2)2 +

(
f f0
Q

)2 . (3)

A complex spectrum y(f) can then be modeled as a sum of K
Lorentzian functions, a baseline drift, and random noise

y(f) =
K∑

k=1

L(f ;Ak , f0k , φk ,Qk ) +
M∑

m=1

gm Wm (f) + ε(f).

(4)
In this expression, the drift is assumed to be a linear combination
of M complex functions Wm (f), m = 1, . . . , M , where each
function Wm (f) is weighted by a real coefficient gm . ε(f) is
a complex noise term, where both the real and imaginary parts
are assumed to be zero-mean white Gaussian with identical
variance σ2 .

In the following, we use the general convention that any
complex quantity q = (qk ) ∈ CK will be coded as a vector in
R2K as the concatenation of its K real values followed by its K
imaginary values q = [�(q1), . . . ,�(qK ),�(q1), . . . ,�(qK )]t .

Assuming that the spectrum is sampled at N frequencies
f1 , . . . , fN in [fmin, fmax], we define the data vector y ∈ R2N ,
the error vector ε ∈ R2N , and the drift coefficients g ∈ R2M .
In a similar fashion, we define the vector of projections of
the Lorentzian amplitudes c = (a1 , b1 , . . . , aK , bK )t ∈ R2K ,
where each pair (ak , bk ) is defined as in Eq. (2).

Akin to [8], Eq. (4) can be expressed in vector-matrix form
as

y = Δα + ε, (5)

where α = (gt , ct)t ∈ R2M +2K is the vector of amplitudes
for both the baseline drift and the Lorentzian functions.
Δ = [WX] ∈ R2N (2M +2K ) contains the definition of the
Lorentzian model X ∈ R2N ×2K and the polynomial form of
the drift distortion W ∈ R2N ×2M . As such, it is a function of
the model parameters (see details in Appendix A-A).
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B. Bayesian Inference

In the present model, the parameter vector is composed of
the number of Lorentzian lineshapes K ∈ [0,Kmax], the pa-
rameters (ak , bk , f0k ,Qk ) corresponding to the parameters for
each Lorentzian function k, a parameter gm for each drift m,
the global noise variance σ2 , as well as two other (hyper-) pa-
rameters, Λ and δ2 , whose role will be detailed soon. In the
following, we group parameters of the same kind belonging to
different Lorentzian functions, setting f 0 = (f01 , . . . , f0K ) and
Q = (Q1 , . . . , QK ). α is defined as above.

According to Bayes’ theorem, given the data y, all model
parameters (K,Λ, δ2 ,α,f 0 ,Q, σ2) can be drawn from a pos-
terior probability density function p(K,Λ, δ2 ,α,f 0 ,Q, σ2 |y),
which can be expressed as

p(K,Λ, δ2 ,α,f 0 ,Q, σ2 |y)

∝ p(K,Λ, δ2 ,α,f 0 ,Q, σ2)

× p(y|K,Λ, δ2 ,α,f 0 ,Q, σ2). (6)

In this expression, p(K,Λ, δ2 ,α,f 0 ,Q, σ2) is the prior dis-
tribution of the parameters. It represents the degree of belief
that we have on the relevant values of the possible parameters
before the data are acquired. p(y|K,Λ, δ2 ,α,f 0 ,Q, σ2) is the
likelihood of the data. It describes how the data are generated
according to the model and as a function of the model param-
eters. The sign “∝” specifies that the left- and right-hand sides
of the equation are proportional to each other.

1) Likelihood: According to the model given in Eq. (5), the
data are related to the model parameters through the following
distribution

p(y|K,Λ, δ2 ,α,f 0 ,Q, σ2)

= p(y|K,α,f 0 ,Q, σ2)

∝ (σ2)−
2 N
2 exp

[
− 1

2σ2 (y − Δα)t(y − Δα)
]

. (7)

Note that the dependence on f 0 and Q is instantiated through
Δ. Eq. (7) shows that y is independent of Λ and δ2 , but only
conditionally on all other parameters, namely K, α, f 0 , Q, and
σ2 . A clearer way to see the relationship between y and (Λ, δ2)
is given by Fig. 1: Λ influences K, and δ2 influences α, and
both K and α influence y. As a consequence, y and (Λ, δ2)
are not marginally independent. This is why the posterior dis-
tributions p(Λ|y) and p(δ2 |y) differ from their respective prior
distributions p(Λ) and p(δ2) and provide information regarding
the underlying generation process.

2) Priors: We assume that the prior distribution can be ex-
panded as

p(K,Λ, δ2 ,α,f 0 ,Q, σ2)

= p(Λ) p(K|Λ) p(f 0 |K) p(Q|K)

× p(σ2) p(δ2) p(α|K, δ2 ,f 0 ,Q, σ2). (8)

We now have to specify all prior distributions. The prior
for the number of components p(K|Λ) is set to a Pois-
son distribution with rate Λ, truncated to {0, . . . ,Kmax} (see

Fig. 1. Bayesian network summarizing the model. Gray nodes represent vari-
ables whose values are assumed to be known, while white nodes stand for
parameters whose values need to be inferred. Arrows code for dependence. For
a given node, the model gives the distribution of that node conditionally to its
parents (i.e., nodes with an arrow pointing to that node).

Appendix A-B). Kmax is a heuristic parameter, which should be
larger than the maximum number of expected resonances in a
given dataset, e.g., twice of the expected number of resonances.
The term Λ is related to the expected number of resonances;
both quantities would be equal for Kmax = ∞. p(Λ) is set to a
Gamma distribution with parameters 1

2 + e1 and e2 .
We assume that the resonance frequencies are a priori inde-

pendent,

p(f 0 |K) =
K∏

k=1

p(f0k ),

where the distribution for each resonance frequency f0k is set
to a uniform distribution on [fmin , fmax]. Similarly, the quality
factors are assumed to be a priori independent

p(Q|K) =
K∏

k=1

p(Qk ),

with a Gamma distributions with parameters aQ and bQ for each
Qk (see Appendix A-B).

The distribution for the noise variance p(σ2) is set to a scaled
inverse-chi-square distribution with nσ 2 degrees of freedom and
squared scale vσ 2 . When nσ 2 = vσ 2 = 0, we obtain Jeffreys’
uninformative prior p(σ2) ∝ 1/σ2 .

Finally, the prior for α is set as a Gaussian distribution with
zero mean and covariance σ2Ψ−1 , where Ψ = δ−2ΔtΔ (see
Appendix A-B). p(δ2) is a scaled inverse-chi-square distribution
with nδ 2 degrees of freedom and squared scale factor vδ 2 .

3) Graphical Model: The relationships between all vari-
ables are summarized by a Bayesian network in Fig. 1. The
joint distribution of all variables can be read off from this net-
work.

4) Integration of the Nuisance Parameters: The posterior
distribution can be obtained by putting the likelihood and the
priors distributions together into Bayes’ theorem, Eq. (6). The
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nuisance parameters α and σ2 can then be integrated out yield-
ing (see Appendix B-A)

p(K,Λ, δ2 ,f 0 ,Q|y)

∝ p(Λ) p(K|Λ) p(f 0 |K) p(Q|K) p(δ2)

× (δ2 + 1)−
2 M + 2 K

2
(
vσ 2 + ytΠy

)− 2 N + n
σ 2

2

× I{0,...,Km a x }(K)
K∏

k=1

I[fm in ,fm a x ](f0k ), (9)

for K ∈ {0, . . . , Kmax} and f0k ∈ [fmin , fmax]. In this ex-
pression, we set Π = I − ΔΓ−1Δt and Γ = ΔtΔ + Ψ =
(1 + δ−2)ΔtΔ. I comes from the prior for the frequencies; it is
a way to express that all frequencies should be in [fmin , fmax],
i.e., I[fm in ,fm a x ] = 1.

C. Reversible-Jump Markov Chain Monte Carlo Method

Introduced in physics in the 1950s [28], Markov chain Monte
Carlo (MCMC) methods have been extensively used to generate
an approximate sample from a target distribution π(x), usually a
posterior distribution in the Bayesian community [23]. The two
most popular MCMC methods are Metropolis-Hastings (MH)
method and Gibbs sampler. The MH algorithm consists of two
steps, a proposal step, where a new state xprop is proposed
given the current state x(i) according to a proposal probability
q(xprop |x(i)), and an acceptance step, where xprop is accepted,
(i.e., we set x(i+1) = xprop ), with probability

A(xprop ,x(i)) = min
{

1,
π(xprop)
π(x(i))

q(x(i) |xprop)
q(xprop |x(i))

}
; (10)

otherwise, the current state is retained, x(i+1) = x(i) . The Gibbs
sampler is a particular case of MH algorithm, which samples
x = (x1 , . . . , xN ) one component at a time according to the
conditional distribution of that component given the remaining
components, π(x(i+1)

j |x(i)
1 , . . . , x

(i)
j−1 , x

(i)
j+1 , . . . , x

(i)
N ). In this

case, the acceptance rate is equal to 1.
However, neither the MH sampler nor the Gibbs sampler can

deal with variables of varying dimension, that is, Bayesian prob-
lems of joint model comparison and parameter estimation. In
1995, Green [9] proposed reversible jump MCMC (RJ-MCMC)
to specifically deal with that kind of problem. In the specific
case of our problem, we build from the RJ-MCMC method de-
veloped in [8]. Such an RJ-MCMC sampler is able to jump be-
tween subspaces with different dimensions, i.e., differing num-
bers of Lorentzian lineshapes, which allows us to sample directly
from the joint distribution on Θ =

⋃Km a x
k=0 {k} × Θk, where Θk

stands for the set of parameters corresponding to a signal with
k components. Following [8], [9], we applied three kinds of
moves:

1) Birth move: random birth of a new resonance with fre-
quency and Q factor sampled according to their respective
prior distributions.

2) Death move: removal of a randomly selected existing res-
onance.

3) Update: update of all unknown parameters. As the model
dimension is fixed in the update step, this can be performed
by one step of conventional MCMC sampler.

Let b(K,Λ), d(K,Λ), and u(K,Λ) be the probabilities for a
birth move, a death move, and an update, respectively. The three
probabilities are related by

b(K,Λ) + d(K,Λ) + u(K,Λ) = 1. (11)

When K = 0, there can be no death, so d(0,Λ) = 0. Simi-
larly, when K = Kmax , there can be no birth, since the max-
imum number of components has already been reached, so
b(Kmax ,Λ) = 0. Otherwise, we set

b(K,Λ) = c min
{

1,
p(K + 1|Λ)

p(K|Λ)

}

= c min
{

1,
Λ

K + 1

}
(12a)

and

d(K,Λ) = c min
{

1,
p(K − 1|Λ)

p(K|Λ)

}

= c min
{

1,
K

Λ

}
, (12b)

where p(K|Λ) is the prior probability of K (see Section II-B2
and Eq. (13) in Appendix A-B). The choice of the form
taken by the probabilities for birth and death moves follows
[8], [9]; it ensures b(K,Λ)p(K|Λ) = d(K + 1,Λ)p(K + 1|Λ),
which would guarantee sure acceptance in the case of an
MCMC sampler involving K alone and no data. Furthermore,
b(K,Λ) + d(K,Λ) ∈ [c, 1] for all K and Λ, that is, the proba-
bility for a change in the number of components is always larger
than c. In the present study, we followed [10] and set c = 0.2.

For the update step, we followed the hybrid MCMC sampler
proposed by Andrieu and Doucet [8], which combines Gibbs
and Metropolis-Hasting (MH) steps. More specifically, we se-
quentially sample f0 , Q, Λ, and δ2 from the marginal posterior
distribution of each parameter conditioned on the three other
parameters.

Details of the numerical sampling strategy can be found in
Appendix C. Briefly, RJ-MCMC proceeds as follows:

1) Initialization: set K [0] and Θk
[0] . We use the initial guess

of K = 0, and the order of polynomial drift is empirically
set based on the observation. If it is too high, the model
will have to deal with unnecessary complexity; too low,
the Lorentzian model will (wrongly) have to account for
some high-order residual polynomial drift.

2) At iteration i, perform either a birth move, a death
move or an update with probability b(K [i−1],Λ[i−1]),
d(K [i−1],Λ[i−1]), and u(K [i−1],Λ[i−1]), respectively.

3) Increase i by 1 and go to 2).

III. SIMULATIONS

The algorithm was evaluated in terms of resonance detec-
tion as well as frequency and Q factor extraction. We consid-
ered a synthetic signal consisting of resonant components under
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TABLE I
RJ-MCMC RESULTS OF THE SYNTHETIC SPECTRUM

two different SNRs. Zero-mean Gaussian noises were added to
the signal with standard deviations of σ = 0.01 and σ = 0.05.
As shown in Table I, 21 resonant components were synthe-
sized according to the Lorentzian model with different values
of (f0k ,Qk ,Ak , φk ), k ∈ {1, . . . , 21}. For the damping factors
Qk , an integer was arbitrarily chosen in the range [20, 30], which
is considered as high attenuation. For instance, the Q factor of
human cortical bone is in a range [20, 30] [12], [13] and that of
sandstone in [30, 100] [15], [16]. To assess whether the method
could successfully process spectra with overlapping peaks, the
amplitudes Ak were set as many close values in a range of
∈ [0.2, 1.8], such that a quite ‘flat’ spectrum was obtained (see
Figs. 2(g) and 3(g)). The phase parameters φk were arbitrarily
specified in a range [0◦, 180◦]. The polynomial baseline drift was
assumed to have an order of 6, i.e., M = 6. The total number of
iterations was set to 10,000 and the first 3,300 iterations were
removed to account for burn-in period. We used the resulting
sample to compute estimates for the resonant frequencies f̂0k

and damping factors Q̂k , as well as the percentages standard de-
viations (%std). The percentage root-mean-square errors (%err)
were also computed between the estimates (f̂0k and Q̂k ) and
true values (f0k and Qk ), respectively.

The values used for the various parameters involved in the
definition of the prior distributions are summarized in Table II.

Simulated results are shown in Fig. 2 (σ = 0.01) and
Fig. 3 (σ = 0.05). The marginal posterior distributions p(k|y),
p(σ|y), and p(Λ|y) are shown as histograms in Figs. 2(a)–(c)
and 3(a)–(c), respectively. The amplitude spectra of the synthetic
signal and of the reconstructed signal are plotted in Figs. 2(g)
and 3(g). p(fk |y) is presented in hologram in yellow color with
a magnitude 10-time enlarged. Table I also lists the final esti-
mates of each extracted frequency and Q factor as well as the
corresponding true values.

Results from the signal with σ = 0.01 are depicted in Fig. 2.

We used the definition SNR = 10 log10(
a2

k +b2
k

2σ 2 ). Accordingly,

Fig. 2. RJ-MCMC results of simulation with σ = 0.01. (a)–(c) Posterior
distributions of p(k|y), p(σ|y), and p(Λ|y). (d) Instantaneous estimates of
p(k|y). (e)–(f) Instantaneous estimates of frequency and Q factor from the
MAP k = 21. (g) Comparison between the true frequencies ftrue (�) and the
final estimates of the frequencies fest (	) with corresponding error bars of stan-
dard deviation. The original and reconstructed amplitude spectra are plotted in
black solid and red dash lines, respectively.

the SNRs of those Lorentzian lineshapes are in the range be-
tween 23.01 dB and 42.10 dB. The estimate of k is 21, in
agreement with the true number of sinusoids. The estimate of
σ is 0.010, again in accordance with the real value of the noise
amplitude. p(Λ|y) is shown in Fig. 2(c) with a maximum value
at 23.16. The instantaneous estimates of the posterior model
p(k|y) is represented in Fig. 2(d). It was found that at the be-
ginning of the burn-in period, the algorithm was able to jump
among different model spaces without being trapped at a fixed
number of sinusoids. The instantaneous estimates of frequency
and Q factor corresponding to the maximum of p(k|y), i.e.,
k = 21, are shown in Fig. 2(e) and (f), respectively.
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Fig. 3. RJ-MCMC results of the signal with σ = 0.05. (a)–(c) Posterior distri-
butions of p(k|y), p(σ|y), and p(Λ|y). (d) Instantaneous estimates of p(k|y),
(e)–(f) Instantaneous estimates of frequency and Q factor from the MAP k = 18.
(g) Comparison between the true frequencies ftrue (�) and the final estimates
of the frequencies fest (	) with corresponding error bars of standard deviation.
The original and reconstructed amplitude spectra are plotted in black solid and
red dash lines, respectively.

TABLE II
SUMMARY OF NUMERICAL VALUES USED FOR THE PARAMETERS

OF THE PRIOR DISTRIBUTIONS

When σ = 0.05, SNRs of the resonant components are be-
tween 9.03 dB and 28.12 dB, which are lower than that of the sig-
nals in Fig. 2. In Fig. 3(a), it was found that two possible values
of k exist with p(k = 17|y) = 0.344 and p(k = 18|y) = 0.636,
respectively. According to p(σ|y) plotted in Fig. 3(b), the esti-
mated σ is equal to 0.050. p(Λ|y) is shown in Fig. 3(c) with a
maximum value at 19.67. The model ambiguity can also been
seen from the instantaneous estimates of p(k|y) in Fig. 3(d),
where the estimates of k = 17 and 18 are both visited many
times. In agreement with the maximum of p(k|y), 18 sets of
estimates of frequencies and Q factors were chosen, with 3 un-
detected frequencies; the corresponding estimates are shown in
Fig. 3(e) and (f), respectively.

The RJ-MCMC method can furthermore be used to analyze
the confidence of each estimate. As an example, Fig. 4 compares
the distributions of p(f01 |y), p(Q1 |y) and p(f01 , Q1 |y). When
σ = 0.01 and 0.05, the pair (f̂01 , Q̂1) is given by (0.1230, 21.68)
and (0.1231, 15.92), respectively. When σ = 0.05, the %std of
(f̂01 , Q̂1) are larger than those when σ = 0.01. As shown in
Table I, it was found that in both cases the %std of frequency

Fig. 4. Comparison of the marginal posterior distributions of f01 and Q1 . For
σ = 0.01 (top) and σ = 0.05 (bottom), we represented the joint posterior dis-
tribution p(f01 , Q1 |y) (a and d), as well as the marginal posterior distribution
p(f01 |y) (b and e) and p(Q1 |y) (c and f).

estimates are less than 1%; on the contrary, quite large %std of Q
factor estimates were obtained, e.g., when σ = 0.05, the largest
%std of Q factor estimate can be 73.14%. For final estimates of
f̂0 and Q̂, when σ = 0.01, the average values of %err are 0.12%
and 11.19%, respectively; when σ = 0.05, those are 0.30% and
41.36%, respectively. In both cases, the %err of the detected
frequency estimates are less than 1%.

IV. RUS EXPERIMENTS

In this section, we provide a face-to-face comparison between
the frequencies and Q factors extracted using the RJ-MCMC
method proposed in this study and previous results obtained
using a non-automated method referred to as LPSVD which
combines (1) a linear predictive (LP) filter in the time domain
associated to an SVD step to select the number of resonances
[15], [17], and (2) a non-linear fitting in frequency domain
of the complex spectrum to refine the estimation of resonant
frequencies and Q values [12]. In practice, the selection of the
number of frequencies (model order) after the SVD step requires
user interaction.

The experimental data involved [12] were typical acoustic
resonance signals, measured by using the resonant ultrasound
spectroscopy (RUS) method. RUS is a standard method in mate-
rial science that uses tens of resonances at ultrasonic bandwidth
from a millimeter-scale solid specimen to accurately determine
the material elastic properties with high Q factors like metals
(usually Q > 100) [11]. However, its performance for the char-
acterization of highly attenuated media with low Q factor has
long been suffering from the inaccurate frequency extraction of
strong overlapping resonant peaks. We here present the RUS sig-
nals measured from highly attenuated specimens with Q factors
around 20.

A typical RUS measurement consists of placing a rectangular
parallelepipedic specimen between an emitting and a receiving
ultrasonic transducer and measuring the frequency response of
the specimen in a given bandwidth. A RUS spectrum appears
to be a combination of several Lorentzian lineshapes, each one
corresponding to a mechanical vibrational mode with a certain
frequency. Besides, different coupling conditions between the
specimen and transducers also lead to different amplitudes and
phases of the signal for each mode, which finally results in dif-
ferent resonant spectra. In other words, the lineshapes vary from
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one measurement to another after repositioning of the specimen
between the transducers. However, in this process, the intrin-
sic mechanical resonance frequencies are not affected by the
way they appear in the lineshapes. Here, we used data from a
RUS experiment on a human cortical bone specimen, consisting
of an ensemble of six spectra recorded after repositioning the
specimen on the RUS setup. In the successive repositionings,
the excitation, reception and coupling conditions are slightly
modified, resulting in modifications of the relative amplitudes,
phases, and noise levels of the spectra. While in principle each
spectrum should contain all resonant frequencies within the
measured bandwidth, only a number of them, with sufficiently
large amplitudes, can actually be extracted. Compiling the infor-
mation from the six spectra during signal processing is helpful
for mode identification and extraction.

Our version of the RJ-MCMC algorithm was applied inde-
pendently to each RUS spectrum. For each RJ-MCMC compu-
tation, parameters were set to values identical to those listed in
Table II. In order to pool the results from the six independent
RJ-MCMC computations, all frequency outputs were classified
using a k-means clustering method. K-means is a clustering
method that can automatically partition a dataset into clusters,
in which each observation of the dataset belongs to the clus-
ter with the nearest mean [18], [19]. It was here applied as a
two-step heuristic post-processing procedure to reorganize the
RJ-MCMC estimates from multichannel measurements. Two
parameters, cluster size and standard deviation threshold, were
introduced. First, chains with large standard deviation values
were discarded. The remaining Markov chains were partitioned
into Nc groups using k-means method. Nc number was set in
accordance with the maximum of p(k|y) obtained from the
RJ-MCMC results of all measured spectra. Second, an iterative
clustering procedure was performed for those f0k clusters with
large numbers of estimates. This procedure stopped when the
standard deviation of each new sub-clusters was found to be
smaller than the standard deviation tolerance. The sub-clusters
with a small number of estimates were further discarded. The
final estimates were thus obtained.

As shown in Fig. 5(a)–(f), left, different numbers of frequency
estimates were obtained from different spectra. On the right-
hand of Fig. 5(a)–(f), a good match was found between the
original amplitude spectra and the reconstructed ones. The re-
moved frequencies were selected by the magnitude of %std with
a threshold of 1%. After k-means clustering for the frequency
estimates obtained from all spectra, the final estimates of f0

are presented in Fig. 5(g). The cluster-size threshold used in
k-means step is 10,000.

Table III compares current estimates with results previously
published. The estimated frequencies are compared to the the-
oretical frequencies fcal calculated from the optimized elastic
coefficients after solving the inverse problem. In a previous
study [12], there were 30 calculated frequencies in the band-
width 0.10–0.28 MHz, and 20 frequencies could be retrieved
using the classical LPSVD method. The RJ-MCMC method en-
abled to automatically recover 21 frequencies. The average %err
of the frequencies in the previous and current studies are 0.25%
and 0.28%. The %std of the frequency estimates obtained by

Fig. 5. RJ-MCMC analysis for 6 spectra measured from a human cortical
bone specimen [12]. On the left-hand of (a)–(f), p(k|y) obtained from the
6 different spectra are plotted; on the right-hand of (a)–(f), the original and
reconstructed amplitude spectra of each signal are depicted in black solid and
red dash lines. (g) Final frequency estimates obtained after k-means clustering.
The final estimates, i.e., fchosen , are marked in green ‘	’; discarded frequency
estimates, i.e., frem oval , are marked in red ‘�’. Error bars show the standard
deviations for estimates of all frequencies. The p(fk |y) is presented in hologram
in yellow color, but with a magnitude 10-time enlarged.

RJ-MCMC method are less than 1%. Because there is actually
no efficient way to know the theoretical Q factors, Q̂k factor can
only be compared to the Q′

k . The average %err of the Q factors
between the two studies is 5.72%.

V. DISCUSSION

The accurate estimation of resonant frequencies and attenua-
tion factors in a damped spectrum is a signal processing problem
encountered in many applications. Relying on the work of [8],
we designed a practical Bayesian framework which allows, in
a spectrum, for an automated retrieval of the number of reso-
nances as well as the parameters defining the lineshape of each
resonance.

The RJ-MCMC strategy proposed by Andrieu and Doucet
[8] can be used to extract the resonant components, but their
method cannot deal with complex signal, cannot remove the
baseline distortion, and cannot estimate the full set of reso-
nance parameters, such as the Q factors. In response to these
limitation, we presented an improved Bayesian framework to
automatically and jointly estimate the number of resonances as
well as their frequencies and Q factors. Specifically, we further
expanded [8]’s approach by considering a more complex model
that (i) deals with a complex signal, (ii) takes the attenuation
parameter, i.e., the Q factor, into account, (iii) introduces the
polynomial terms in the model to fit the baseline distortion,
(iv) applies a k-means clustering method to reorganize the RJ-
MCMC estimates obtained from a multichannel measurement.
The proposed method was used to process highly attenuated and
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TABLE III
COMPARISON OF THE RJ-MCMC RESULTS WITH PREVIOUS RESULTS [12]

Theoretically calculated frequencies (fc a l c ) are given as standard values. We compare the extracted experimental frequency using
LPSVD method (f ′

0 k , Q ′
k ) in our previous study and current RJ-MCMC estimates (f̂0 k , Q̂k ).

complex-valued resonance spectra. A good estimation of the full
set of resonance parameters, i.e., the model order (number of res-
onances) and the unknown model parameters (amplitudes, reso-
nant frequencies, damping coefficients and noise variance), was
achieved.

The algorithm was tested using synthetic spectra and spectra
from a resonant ultrasound spectroscopy experiment on a bone
specimen. The performance of the algorithm was demonstrated
by comparing the frequencies and Q factors estimated with RJ-
MCMC to reference: known values in the case of the synthetic
signals and estimated values obtained by a trained user with
manual processing and theoretical validation after solving the
inverse problem in the case of experimental signals. We found
that the discrepancy between the reference values and the fre-
quency estimates using the RJ-MCMC method was less than
1%. On the other hand, as shown in Table I, with a high SNR
of 20 dB to 40 dB (σ = 0.01), the Q factors could be estimated
with an average relative error of 11.19% and 8.76% of devia-
tion; when the SNR was lower and in a range of 10 dB to 20 dB
(σ = 0.05), the average relative error of Q factor estimates could
be 40.36% with 23.42% variation. According to the Lorentzian
model in Eqs. (1)–(4), the spectrum shape can be influenced by
frequency, damping factor, amplitude, and phase. With only one
given spectrum consisting of tens of resonances, the solution of
the Lorentzian model parameters is not unique with high un-
certainty. The results indicated that the uncertainty of Q factor
estimates was larger than those of the frequencies.

The RJ-MCMC method as used in the present work re-
quires to define several parameters (Fig. 1 and Table II), which
include Kmax , (e1 , e2), (aQ , bQ ), (nδ 2 , vδ 2 ), and (nσ 2 , vσ 2 ).
Kmax can be initially set to a number much larger than that of
the expected number of resonances. The prior probability for Λ
was set to an uninformative conjugate prior with small values
for (e1 , e2) = (0.1, 0.1). Depending on the resonance systems,
(aQ , bQ ) can be readily adjusted to ensure an efficient sampling
of the Q factors in a certain range of interest. In our RUS data
with high attenuation, the Q factors of different resonances were
always less than 100, so that we set (aQ , bQ ) = (2, 24). Andrieu
and Doucet [8] discussed the specification of (nδ 2 , vδ 2 ). nδ 2 = 2
ensures an infinite variance and there is a weak influence of
the choice of vδ 2 on the final results. We fixed (nδ 2 , vδ 2 ) =
(2, 100). The results experimentally indicate that the perfor-
mance of the algorithm is insensitive to the specification of these
parameters.

The RJ-MCMC strategy is very robust and flexible. We imple-
mented three kinds of moves in the study. Some more sophisti-
cated moves, named split and merge, could also be considered,
which could be of interest to deal with situations where one
spectrum peak contains two or several resonances with quite
close frequencies [20]. In our practice, it appeared that the three
moves already implemented here were efficient enough. The
additional split and merge moves will increase the computation
cost, but might not significantly improve the performance of the
algorithm.
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The algorithm was coded using Matlab. The computation
was performed on a laptop computer (Intel Core i7-5500U,
2.4 GHz). Each processing required 300 s on average. We set the
iteration and burn-in period to 10,000 and 3,300, respectively.
A smaller iteration number could be considered. In addition,
parallel computation strategies could be applied.

When processing multiple signals with different numbers of
resonances, the posterior distributions p(k|y) and p(f0k |y) ob-
tained from different spectra can be quite different. A clustering
method was adopted to pool the results obtained from differ-
ent measurements. In fact, the Bayesian framework offers great
flexibility of the model, which could possibly be revised for
simultaneous processing of multiple spectra. Limited by the
space, we do not generalize the algorithm to multichannel spec-
tra analysis, which we hope will be clarified in a further study.

The proposed method provides an efficient solution to analyse
highly-damped spectra. One application of the method is the
processing of RUS signals where elastic properties of a solid are
deduced from the resonance frequencies of a sample. Currently,
the application of RUS to measure materials with low Q factors
(biological hard tissues, reinforced plastic materials, rocks etc.)
is limited due to the difficulty to extract a sufficient number
of resonant frequencies from the RUS spectrum in a reliable
manner [12], [13], [16]. The proposed RJ-MCMC method is a
mean to process RUS signals automatically (no trial-and- error
process with a trained user) and provides a degree of confidence
for the estimated signal parameters.

VI. CONCLUSION

The proposed Lorentzian model based automatic RJ-MCMC
Bayesian method provides an efficient way for resonant signal
processing. Tens of resonant frequencies can be simultaneously
retrieved with damping factors from the posterior distributions
of the Markov chains. The algorithm can facilitate automatic
processing of highly attenuated resonant signal without a pre-
defined number of resonances and the intervention of a trained
operator.

APPENDIX A
MODEL SPECIFICATION

A. Vector-Matrix Definition of the Lorentzian Model

The matrix Δ = [WX] ∈ R2N (2M +2K ) consists of a poly-
nomial basis matrix W and a Lorentzian model basis matrix X.
The 2N -by-2M matrix W is given by

W =
[
R 0
0 S

]
,

with the N -by-M matrix

R =

⎡
⎢⎣
�[W1(f1)] · · · �[WM (f1)]

...
...

�[W1(fN )] · · · �[WM (fN )]

⎤
⎥⎦ ,

and the N -by-M matrix

S =

⎡
⎢⎣
�[W1(f1)] · · · �[WM (f1)]

...
...

�[W1(fN )] · · · �[WM (fN )]

⎤
⎥⎦ .

The 2N -by-2K matrix X is designed as

X =
[
L(f01 , Q1) · · · L(f0K ,QK )

]
,

where each 2N -by-2 matrix L(f0k ,Qk ) of the form

L(f0k ,Qk ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

J1(f1 ; f0k ,Qk ) J2(f1 ; f0k ,Qk )
...

...
J1(fN ; f0k ,Qk ) J2(fN ; f0k ,Qk )
−J2(f1 ; f0k ,Qk ) J1(f1 ; f0k ,Qk )

...
...

−J2(f1 ; f0k ,Qk ) J1(f1 ; f0k ,Qk )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

with

J1(f ; f0k ,Qk ) =
f 2

0k − f 2

(f 2
0k − f 2)2 +

(
f f0 k

Qk

)2

J2(f ; f0k ,Qk ) =
f f0 k

Qk

(f 2
0k − f 2)2 +

(
f f0 k

Qk

)2 .

B. Prior Distributions

We set the prior distributions for K, Λ, δ2 , f 0 , and α follow-
ing [8]. For Q, we use a Gamma distribution, which is conve-
nient to provide vague information about a positive parameter.

The prior distribution for the number of components K is set
to a Poisson distribution with rate Λ, truncated to {0, . . . ,Kmax}

p(K|Λ) ∝ Poisson(K|Λ), K ∈ {0, . . . , Kmax}

∝ ΛK

K!
e−Λ

=
ΛK

K ! e
−Λ∑Km a x

K =0
ΛK

K ! e
−Λ

I{0,...,Km a x }(K), (13)

where I(K) is equal to 1 for K ∈ {0, . . . , Kmax} and to 0 other-
wise. The prior distribution for Λ is set to a Gamma distribution
with parameters 1

2 + e1 and e2

p(Λ) = Gamma

(
Λ

∣∣∣∣∣
1
2

+ e1 , e2

)

=
e

1
2 +e1
2

Γ( 1
2 + e1)

Λ
1
2 +e1 −1 exp(−e2Λ), Λ > 0. (14)

The prior distribution for each resonance frequency f0k is set to
a uniform distribution on [fmin , fmax]

p(f0k ) =
1

fmax − fmin
, f0k ∈ [fmin , fmax].
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The prior distribution for each quality factor Qk is set to a
Gamma distribution with parameters aQ and bQ

p(Qk ) = Gamma (Qk |aQ , bQ )

=
b
aQ

Q

Γ(aQ )
Q

aQ −1
k exp(−bQQk ), Qk > 0. (15)

The prior distribution for α is set as a Gaussian distribution with
zero mean and covariance σ2Ψ−1

p(α|K, δ2 , f 0 , Q, σ2) = N
(
α|0, σ2Ψ−1

)

= (2πσ2)−
2 M + 2 K

2 |Ψ| 1
2 exp

(
−αtΨα

2σ2

)
,

(16)

where Ψ = δ−2ΔtΔ. Such a prior distribution corresponds to
a g-prior distribution [21]. p(δ2) is set to a scaled inverse-chi-
square distribution with nδ 2 degrees of freedom and squared
scale factor vδ 2

p(δ2) = Scale-inv-χ2 (δ2 |nδ 2 , vδ 2

)

=

(nδ 2 vδ 2

2

) v
δ 2
2

Γ
( vδ 2

2

) exp
(−nδ 2 vδ 2

2δ 2

)
(δ2)

(
n

δ 2
2 +1

) . (17)

Finally, the distribution for the noise variance p(σ2) is set to a
scaled inverse-chi-square distribution with nσ 2 degrees of free-
dom and squared scale vσ 2

p(σ2) = Scale-inv-χ2 (σ2 |nσ 2 , vσ 2

)

=

(nσ 2 vσ 2

2

) v
σ 2
2

Γ
( vσ 2

2

) exp
(−nσ 2 vσ 2

2σ 2

)
(σ2)

(
n

σ 2
2 +1

) . (18)

APPENDIX B
INFERENCE

A. Integration of the Nuisance Parameters

Substituting the detailed expressions of the various prior dis-
tributions in Eq. (8) and incorporating them together with the
likelihood of Eq. (7) into Bayes’ theorem, Eq. (6), the full pos-
terior distribution reads

p(K,Λ, δ2 ,α,f 0 ,Q, σ2 |y)

∝ p(Λ) p(K|Λ) p(f 0 |K) p(Q|K) p(δ2) (2π)−
2 N + 2 M + 2 K

2

× (
σ2)−( 2 N + 2 M + 2 K + n

σ 2
2 +1

)
exp

(
− vσ 2

2σ2

)

× |Ψ| 1
2 exp

{
− 1

2σ2

[
(α − α̂)tΓ(α − α̂) + ytΠy

]}

× I{0,...,Km a x }(K)
K∏

k=1

I[fm in ,fm a x ](f0k ) (19)

where Γ = ΔtΔ + Ψ = (1 + δ−2)ΔtΔ, α̂ = Γ−1Δty, and
Π = I − ΔΓ−1Δt .

While being parameters of the Lorentzian model, α and σ2

are not of direct interest for resonance spectrum analysis. We

therefore integrate out these so-called nuisance parameters. As
a function of α, the above distribution is proportional to a mul-
tivariate Gaussian distribution with mean α̂ and covariance ma-
trix σ2Γ−1 . Integration with respect to α therefore implies to
multiply by (2πσ2)

2 M + 2 K
2 |Γ|− 1

2 , yielding

p(K,Λ, δ2 ,f 0 ,Q, σ2 |y)

∝ p(Λ) p(K|Λ) p(f 0 |K) p(Q|K) p(δ2)

× (
σ2)−( 2 N + n

σ 2
2 +1

)
exp

(
−vσ 2 + ytΠy

2σ2

)

× (δ2 + 1)−
2 M + 2 K

2 I{0,...,Km a x }(K)
K∏

k=1

I[fm in ,fm a x ](f0k ).

(20)

As a function of σ2 , this previous distribution is proportional to
a scaled inverse-chi-square distribution with 2N + nσ 2 degrees
of freedom and squared scale vσ 2 + ytΠy. We integrate with
respect to σ2 , yielding

p(K, Λ, δ2 , f 0 , Q|y) ∝ p(Λ) p(K |Λ) p(f 0 |K) p(Q|K) p(δ2)

× (δ2 + 1)−
2 M + 2 K

2

× (
vσ 2 + ytΠy

)− 2 N + n
σ 2

2

× I{0,...,Km a x }(K)
K∏

k=1

I[fm in ,fm a x ](f0k ).

(21)

B. Conditional Posterior Distributions of σ2 and α

Following Eq. (20), the conditional posterior distributions for
σ2 is given by

p(σ2 |y,K,Λ, δ2 ,f 0 ,Q) ∝ p(K,Λ, δ2 ,f 0 ,Q, σ2 |y)

∝ (
σ2)−( 2 N + n

σ 2
2 +1

)

× exp
(
−vσ 2 + ytΠy

2σ2

)
, (22)

which means that σ2 conditionally follows a scaled inverse-
chi-square distribution with 2N + nσ 2 degrees of freedom and
squared scale (vσ 2 + ytΠy)/(2N + nσ 2 ). Then, according to
Eq. (19), the conditional posterior distributions for α is given
by

p(α|y, K, Λ, δ2 , f 0 , Q, σ2) ∝ p(K, Λ, δ2 , α, f 0 , Q, σ2 |y)

∝ exp

[
− 1

2σ2 (α − α̂)tΓ(α − α̂)

]
,

(23)

which implies that α conditionally follows a multivariate
Gaussian distribution with mean α̂ and covariance matrix
σ2Γ−1 .
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APPENDIX C
NUMERICAL SAMPLING SCHEME

A. Birth Move
� Propose a new component with a frequency fprop and

quality factor Qprop according to the priors qf (fprop) and
qQ (Qprop), respectively.

qf (fprop) =
1

fmax − fmin
I[fm in ,fm a x ](fprop)

qQ (Qprop) = Gamma(Qprop |aQ , bQ ).

� Insert the new component at location k, and define the
new frequency vector as f̃ 0 = f 0 ⊕k fprop and the new
vector of quality factors as Q̃ = Q ⊕k Qprop . The sign
“⊕” specifies the insertion of the proposal component into
the vector on the left-hand side.

� The new state (K + 1,Λ, δ2 , f̃ 0 , Q̃|y) is kept with proba-
bility abirth = min{1, rbirth} [22], [23];

rbirth =
p(K + 1,Λ, δ2 , f̃ 0 , Q̃|y)

p(K,Λ, δ2 , f̃ 0 , Q̃|y)

d(K + 1,Λ)
b(K,Λ)

×
1

K +1
1

K +1 qf (fprop) qQ (Qprop)
. (24)

According to Eq. (21), the ratio of posterior distributions
can be simplified as

p(K + 1,Λ, δ2 , f̃ 0 , Q̃|y)
p(K,Λ, δ2 ,f 0 ,Q|y)

=
Λ

K + 1
1

fmax − fmin

p(Q̃|K + 1)
p(Q|K)

× 1
δ2 + 1

(
vσ 2 + yTΠ̃y

vσ 2 + yTΠy

)− 2 N + n
σ 2

2

. (25)

The ratio of death to birth is [8]

d(K + 1,Λ)
b(K,Λ)

=
p(K + 1|Λ)

p(K|Λ)
=

K + 1
Λ

.

Finally, the acceptance ratio is

rbirth =
1

δ2 + 1

(
vσ 2 + yTΠ̃y

vσ 2 + yTΠy

)− 2 N + n
σ 2

2

. (26)

B. Death Move
� Select one component among the K existing ones with fre-

quency f0k and quality factor Qk and define f̃ 0 = f 0�k as
the new frequency vector and Q̃ = Q�k as the new vector
of quality factors. The sign “�” specifies the removal of
the selected component from the vector on the left-hand
side.

� The new state (K − 1,Λ, δ2 , f̃ 0 , Q̃|y) is kept with proba-
bility adeath = min{1, rdeath} [22], [23];

rdeath =
p(K − 1,Λ, δ2 , f̃ 0 , Q̃|y)

p(K,Λ, δ2 ,f 0 ,Q|y)

× b(K − 1,Λ)
d(K,Λ)

1
K +1

1
K +1 qf (fprop)qQ (Qprop)

.

(27)

As for the birth move, the ratio of posterior distributions
can be simplified using Eq. (21), yielding

p(K − 1,Λ, δ2 , f̃ 0 , Q̃|y)
p(K,Λ, δ2 ,f 0 ,Q|y)

=
K

Λ
(fmax − fmin)

p(Q̃|K − 1)
p(Q|K)

× (δ2 + 1)

(
vσ 2 + yTΠ̃y

vσ 2 + yTΠy

)− 2 N + n
σ 2

2

. (28)

The ratio of birth to death is

b(K − 1,Λ)
d(K,Λ)

=
p(K − 1|Λ)

p(K|Λ)
=

Λ
K

.

The acceptance ratio is

rdeath = (δ2 + 1)

(
vσ 2 + yTΠ̃y

vσ 2 + yTΠy

)− 2 N + n
σ 2

2

. (29)

Note that this is the inverse of the ratio for a birth from
K − 1 to K frequencies.

C. Update

At each stage of the sampling with a fixed number of
Lorentzian components, all the parameters are updated as de-
scribed below.

a) Updating Λ: The conditional posterior distribution for Λ
reads

p(Λ|y,K, δ2 ,f 0 ,Q) ∝ p(Λ)p(K|Λ)

∝ ΛK + 1
2 +e1 −1 e−(1+e2 )Λ∑Km a x
K =0

ΛK

K ! e
−Λ

Λ > 0. (30)

Λ is updated using the MH steps,
� With probability 0 < λ < 1, we perform an MH step

with proposal distribution Gamma(Λprop |K + 1
2 + e1 ,

1 + e2).
� With probability 1 − λ, we perform an MH step with pro-

posal distribution N (Λprop |Λ, σ2
Λ), where we selected a

small heuristic value of σ2
Λ = 0.25.

� Λ is accepted with probability computed according to
Eq. (10). The invariant distribution is the conditional pos-
terior distribution of Λ in Eq. (30).

b) Updating δ2: Following the graphic model in Fig. 1, δ2 can
be sampled after sampling σ2 and α using the Gibbs sampler.
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� The conditional posterior distributions of the nuisance pa-
rameters (σ2 ,α) are drawn from their full conditional dis-
tribution.

p(σ2 |y,K,Λ, δ2 ,f 0 ,Q)

= Scale-inv-χ2

[
σ2
∣∣∣2N + nσ 2 ,

(
vσ 2 + yTΠy

)
2N + nσ 2

]
.

(31)

and

p(α|y,K,Λ, δ2 ,f 0 ,Q, σ2) = N (α|α̃, σ2Γ−1). (32)

� We use the Gibbs sampler for δ2 . The conditional posterior
distribution is

p(δ2 |y,K,Λ,α,f 0 ,Q, σ2)

∝ p(δ2) |Ψ| 1
2 exp

(
−αTΨα

2σ2

)

∝ (
δ2)−( 2 M + 2 K + n

δ 2
2 +1

)

× exp
[
− 1

2δ2

(
vδ 2 +

αTΔTΔα

σ2

)]

= Inv-χ2
[
δ2
∣∣∣2M + 2K + nδ 2 ,

1
M + 2K + nδ 2

(
vδ 2 +

αTΔTΔα

σ2

)]
.

(33)

Details of the parameter specification are given in Discus-
sion V.

c) Updating f 0: The conditional posterior probability of each
frequency f0k reads

p(f0k |y,K,Λ, δ2 ,f 0,∼k ,Q)

∝ p(f0k |K)
(
vσ 2 + yTΠy

)− 2 N + n
σ 2

2 I[fm in ,fm a x ](f0k )

∝ (
vσ 2 + yTΠy

)− 2 N + n
σ 2

2 I[fm in ,fm a x ](f0k ). (34)

Since f 0 is a vector, we use a hybrid MCMC sampler that
combines Gibbs steps and MH steps. In details, each f0k is
randomly selected and sampled using a MH step.

� With probability 0 < λ < 1, we perform an MH step with
proposal distribution that is proportional to the squared
modulus of the spectrum data.

� With probability 1 − λ, we perform an MH step
with proposal distribution as a normal distribution

N
(
f0kprop

∣∣∣f0k , σ2
f

)
, where σ2

f should be enough small,

and we assigned the frequency sampling step, i.e., σ2
f =

fm a x −fm in
Nf

.
� f0k is accepted with probability computed according to

Eq. (10), where the conditional posterior probability in
Eq. (34) is the invariant distribution.

d) Updating Q: The conditional posterior distribution for
each Qk reads

p(Qk |y,K,Λ, δ2 ,f 0 ,Q∼k )

∝ p(Qk |K)
(
vσ 2 + yTΠy

)− 2 N + n
σ 2

2 . (35)

Akin to the f k updating strategy, each Qk of Q is randomly
chosen and sampled using MH steps.

� With probability 0 < λ < 1, we sample Qk using the prior
distribution Gamma

(
Qk

∣∣aQ , bQ

)
as the proposal distri-

bution.
� With probability 1 − λ, the proposal distribution is a nor-

mal distribution N
(
Qkprop

∣∣∣Qk, σ2
Q

)
, where σ2

Q = 0.01.
� In both MH steps, the acceptance ratio is computed accord-

ing to Eq. (10), where the conditional posterior distribution
in Eq. (35) is the invariant distribution.

APPENDIX D
NOTATION

� IE (z) is the indicator function of the set E. If z ∈ E,
IE (z) = 1, 0 otherwise.

� Gaussian

N (
z
∣∣μ, σ2) =

1√
2σ2π

exp− (z − μ)2

2σ2 .

� Gamma

Gamma
(
z
∣∣α, β

)
=

βα

Γ(α)
zα−1 exp(−βz)

α, β > 0 and z > 0.

� Scaled inverse-chi-square

Scale-inv-χ2 (z∣∣ν, τ 2) =

(
τ 2 ν
2

) ν
2

Γ
(

ν
2

) exp
(
− ν τ 2

2z

)
z1+ ν

2

z > 0.

� Uniform

UE (z) =
[∫

E

dz

]−1

IE (z)
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ematics jointly from the École Centrale Paris, Paris, France, and the Universität
Stuttgart, Stuttgart, Germany, in 1999, and the Ph.D. degree in medical imaging
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Normandie, Le Havre, France, and works with the
Waves and Complex Media Laboratory. His research
interests include ultrasound methods for imaging and
material characterization, modeling of wave propa-
gation, and inverse problems.

Quentin Grimal has been with the Department of
Engineering, Sorbonne Université, Paris, France, and
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